
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Accelerating Vegetation Evolution with Mutation
Strategy and Gbased Growth Strategy

YU, Jun
JSPS : Research Fellow

TAKAGI, Hideyuki
Faculty of Design, Kyushu University

https://hdl.handle.net/2324/2545025

出版情報：Proceedings IEEE Symposium Series on Computational Intelligence. 2019, pp.3040-3046,
2019-12-06. IEEE
バージョン：
権利関係：



Accelerating Vegetation Evolution with Mutation
Strategy and Gbased Growth Strategy

Jun YU
JSPS Research Fellow

Graduate School of Design
Kyushu University
Fukuoka, Japan
yujun@kyudai.jp

Hideyuki TAKAGI
Faculty of Design
Kyushu University
Fukuoka, Japan

URL: http://www.design.kyushu-u.ac.jp/∼takagi/

Abstract—We propose two strategies, mutation strategy and
Gbased growth strategy, to enhance the performance of standard
vegetation evolution (VEGE) that simulates the growth and
reproduction of vegetation repeatedly to find the global optimum.
We introduce two different mutation methods into the growth
period and the maturity period individually to increase the
diversity of population by simulating different types of mutations
in real plants. Inspired by various growth patterns of real
plants, the Gbased growth strategy is proposed to replace a
completely random growth operation of original VEGE and bias
all non-optimal individuals to grow towards the current best
area. We design a series of controlled experiments to evaluate
the performance of our proposed strategies using 28 benchmark
functions from CEC2013 suite with three different dimensions.
The experimental results confirmed the mutation strategy can
increase the diversity and the Gbased growth strategy plays
an important role in accelerating convergence. Besides, the
combination of both strategies can further improve the VEGE
performance.

Index Terms—evolutionary computation, vegetation evolution,
optimization, mutation strategy, Gbased growth

I. INTRODUCTION

Evolutionary computation (EC) algorithms as a powerful
optimization technique have attracted lots of attention from
practitioners thanks to their various characteristics, such as
easy-using, robustness, intelligence and others. Besides, they
have been used in industry widely and solved many com-
plex real-world applications successfully [1], [2], e.g. image
processing, speech recognition, engineering design, robotics,
games, etc. Due to the vast demand from academia and
industry, many efficient EC algorithms inspired by survival
of the fittest and group behavior of animals, have sprung up
like mushrooms in recent decades, e.g. differential evolution
[3], particle swarm optimization [4], fireworks algorithm [5]
and others [6], [7]. Moreover, many researchers are enthu-
siastic about introducing novel strategies into these existing
EC algorithms to further improve their performance [8]–[11].
Thus, how to improve the performance of EC algorithms has
become a hot topic in the EC community.

Vegetation evolution (VEGE) [12] is a new member of
EC algorithms and simulates the growth and reproduction
of vegetation repeatedly to find the global optimum. Each
individual of VEGE experiences the growth period and the

maturity period to undertake exploitation and exploration,
respectively. Then, these two periods are performed alternately
to balance two different search capabilities until a termination
condition is reached. Subsequently, we investigated the im-
pact of each component of VEGE on performance and gave
several experience settings when applying VEGE to optimize
problems. As a rising star, there is still a lot of room to further
improve the performance of VEGE.

The main objective of this paper is to integrate two proposed
strategies into VEGE to enhance its performance based on our
previous analysis results. The random mutation and Gaussian
mutation are used in the growth period and the maturity
period individually to increase the diversity of population.
The Gbased strategy promotes all non-optimal individuals bias
to grow towards the current best area rather than completely
random growth. The second objective is to analyze the effect
of our proposed two strategies as well as their applicability.
Finally, we point out a few open topics to discuss.

After this introduction section, we summarize the opti-
mization framework of VEGE in the Section II. Then, the
proposed two strategies are presented in detail in the Section
III. A series of controlled experiments are designed to evaluate
the performance of our proposed strategies in the Section
IV. Finally, we analyze issues coming from the experimental
results and discuss some potential directions, and conclude our
work in the Section V and VI, respectively.

II. VEGETATION EVOLUTION

Many real plants grow up from the seeds and use various
complex mechanisms to ensure their survival. Once these
surviving individuals mature, they generate a large number
of next-generation seeds and disperse these seeds widely to
thrive population with diverse methods, e.g. water dispersal,
animal carrying and others [13]. Then, some seeds rooted in
the suitable environment start a new round of growth and
generate their seeds when they become mature. Inspired by
these processes, a new optimization framework is spawned,
and the growth and maturity of plants can be viewed as local
search and wide search in VEGE. The Fig. 1 demonstrates
growth pattern of plants abstractly, which may help understand
the core ideas of our proposed VEGE easily.



Fig. 1: The abstract growth state of plants. We divide it into
two different periods subjectively, the growth period and the
maturity period.

As same as all other EC algorithms, VEGE is also a
population-based optimization method. It randomly generates
a fixed number of individuals as the initial population, and
these individuals grow independently each other to undertake
local search (reference the upper left part of the Fig. 1).
After the local search reaches to the predetermined maxi-
mum number of growth, each individual becomes mature and
generates multiple seed individuals to achieve wide search
(reference the lower right part of the Fig. 1). Then, the top
PS individuals with better fitness are selected into the next
generation from a mixed pool consisting of current population
and all generated seed individuals. These selected individuals
repeat the growth process as the same as their parent until
a termination condition is reached. The Fig 2 demonstrates
the general framework of the VEGE. Because the focus of
this paper is not to introduce VEGE, see the implementation
details of the VEGE in the original literature [12].

III. MUTATION STRATEGY AND GBASED GROWTH
STRATEGY

We observe the growth pattern of vegetation, abstract their
survival mechanisms simply, and simulated them as VEGE to
find the global optimum. Although our previous studies have
shown that VEGE was effective and promising, it can still
be further improved by introducing new strategies inspired
by various real plants, that use more sophisticated strategies
to adapt to different environments. For example, different
plants have different growth patterns, such as phototropism,
aggregate, and they reproduce both sexually and asexually. In-
spired by these real and effective mechanisms, we propose two
strategies to enhance the performance of standard VEGE. The

Fig. 2: The search process of our proposed VEGE algorithm.
(a) Initial population is randomly generated, dotted arrows
indicate the growth directions of individuals within a local
area. (b) Multiple seed individuals are generated by each
individual. Red circles indicate seeds individuals and all of
them form a temporary seed population. (c) Individuals in the
new generation are selected from all individuals in the step
(b). Steps (b) and (c) are iterated until a termination condition
is satisfied.

Algorithm 1 Two different mutation methods are used in
the growth period and the maturity period, respectively. D:
dimension; MR: mutation probability; xj

min: lower of the j-
th dimension; xj

max: upper of the j-th dimension.
1: for j = 0; j < D; j ++ do
2: if rand(0, 1) < MR then
3: if An individual, x, is in the growth period then
4: xj = rand(xj

min, x
j
max)

5: else
6: xj = xj +Gaussian(0, 1)
7: end if
8: end if
9: end for

first mutation strategy introduces different mutation methods
to increase diversity and avoid falling into local optima. The
Gbased growth strategy is expected to accelerate the growth
of non-optimal individuals to more potential areas rather than
completely random growth. Here, two proposed strategies are
described in detail.

A. Mutation Strategy

Mutation is an important means to increase diversity of
plants to face various unknown environments. Plant mutations
can be roughly divided into two categories, caused by external
factors and internal factors. External factors, e.g. surroundings
and radiation may make individuals change dramatically or
even lose some of their functions, while internal factors, e.g.
gene mutation make a large change in individuals with a small
probability, usually mutated individuals belong to the same
race and can mate with others individuals. Inspired by these
observations, a random mutation method is used in the growth
period to simulate uncertain external factors, and the Gaussian
mutation is used in the maturity period to simulate mutations
at the gene level. The Algorithm 1 outlines these two kinds of
mutation pseudo-codes. Note that a standard Gauss mutation
is employed in following evaluation experiments, and MR is
set to a constant 0.05.



B. Gbased Growth Strategy

The growth period is originally designed to further improve
the convergence accuracy of individuals by motivating them to
evolve into promising areas. Based on our previous findings,
random growth strategy used in standard VEGE does not
achieve the desired effects [14]. Thus, a new growth strategy
with higher efficiency is needed to replace the original strategy
to achieve the above objectives.

Through observations of the growth patterns of real plants,
there are many different growth strategies to ensure their
survival after a long period of natural selection and evolution.
For example, many plants show a tendency towards the sun to
receive more light. Additionally, they also tend to be develop
in aggregate rather than independent, which is a good defense
against unknown risks.

Inspired by these observations, we roughly extract the
characteristics of their growth and propose a Gbased growth
strategy. Corresponding to our proposed VEGE, we set the
current best individual as the sun, i.e. the source of attraction,
which causes other individuals to converge toward it to achieve
accelerated convergence. Thus, the new growth strategy uses
the Eq. (1) instead of the Eq. (2) used in standard VEGE for
controlling the local growth of individuals. The Fig. 3 demon-
strates the difference between these two growth strategies. So
far, both proposed strategies have been described in detail,
and the Algorithm 2 shows a generic framework of standard
VEGE combined with our proposed two strategies.

x̂i = xi + rand(−1, 1)×GR+ ω × (xbest − xi) (1)

x̂i = xi + rand(−1, 1)×GR (2)

Where, xi and xbest are the i-th and the best individual
of current population, respectively. The GR is a constant to
control the maximum radius of a growth. The ω is a weight
for tuning the influence of the optimal individual, and we set
it as 0.5 in our following evaluation experiments.

Fig. 3: (a) Random growth strategy used in standard VEGE,
where offspring is randomly generated within GR. (b) Our
proposed growth strategy, where the red dashed lines indicate
the effect of the current best individual on the attraction of
other individuals to achieve aggregation.

Algorithm 2 General framework of the VEGE with our two
proposed strategies. The steps 6, 7 and 13 describes our
proposal.

1: Initialize population randomly.
2: Evaluate the population.
3: while A termination condition is not reached do
4: if individuals are still in the growth period then
5: for i = 0; i < PS; i++ do
6: The i-th individual performs proposed Gbased

growth.
7: Perform a random mutation described in the Al-

gorithm 2.
8: The better offspring replaces its parent, otherwise

keep the i-th individual.
9: end for

10: else
11: for i = 0; i < PS; i++ do
12: The i-th individual performs a maturity operation.
13: Perform the Gaussian mutation described in the

Algorithm 2.
14: end for
15: Select the next generation from a mixed pool con-

sisting of current population and all generated seed
individuals.

16: end if
17: end while
18: Output the found optima.

IV. EXPERIMENTAL EVALUATIONS

We evaluate two proposed strategies for VEGE by changing
their combination as shown in the Table I and analyze their
performance. The evaluation is conducted using 28 CEC2013
benchmark functions [15] with 3 different dimensions of 2-
D, 10-D, and 30-D. They contain a series of competitions
for solving single-objective optimizations. We run these four
VEGE variants with the same set of 30 different initial
individuals, i.e. 30 trial runs, for each benchmark function.
The Table II shows the experimental parameter settings.

TABLE I: Four VEGE variants.

1 original VEGE [12]
2 original VEGE + mutation strategy
3 original VEGE + Gbased growth strategy
4 original VEGE + both strategies

TABLE II: VEGE algorithm parameter settings.

population size for 2-D, 10-D, and 30-D search 20
growth cycle GC 5
growth radius GR a random number in [-1,1]
total seed individuals SI for 2-D, 10-D, and 30-D search 100
moving scaling MS a random number in [-2,2]
stop condition; max. # of fitness evaluations, 1000, 10,000, 40,000
MAXNFC , for for 2-D, 10-D, and 30-D search

We evaluate convergence along the number of fitness calls
rather than generations for fair evaluations, and apply the



Friedman test and Holm’s multiple comparison test at the stop
condition, i.e., the maximum number of fitness evaluations, to
check significant difference among four variants. The results
of statistical tests are shown in the Table III. The Fig. 4 shows
the average convergence curve of four variants with 30 trial
runs on 30-D benchmark functions.

TABLE III: Statistical test results of the Friedman test and
Holm’s multiple comparison test for average fitness of 30 trial
runs among four variants at the stop condition. A ≫ B and
A > B mean that A is significant better than B with significant
levels of 1% and 5%, respectively. A ≈ B means that although
A is better than B, there is no significant difference between
them. Symbols 1-4 are defined in the Table I.

2D 10D 30D
F1 4 ≈ 3 ≫ 1 ≈ 2 3 ≈ 4 ≫ 1 ≈ 2 3 ≫ 4 ≫ 1 ≫ 2
F2 2 ≈ 3 ≈ 1 ≈ 2 3 ≈ 4 ≫ 2 > 1 3 ≫ 4 ≫ 1 ≫ 2
F3 3 ≈ 4 ≈ 1 ≈ 2 2 > 4 ≈ 3 > 1 3 ≈ 4 ≫ 1 ≫ 2
F4 2 ≈ 1 ≈ 4 ≈ 3 4 ≈ 3 ≈ 1 ≈ 2 4 ≈ 3 ≫ 1 ≈ 2
F5 3 ≈ 4 ≫ 2 ≈ 1 4 ≈ 3 ≫ 1 > 2 3 ≫ 4 ≫ 1 ≫ 2
F6 3 ≈ 4 ≫ 2 ≈ 1 1 ≈ 2 ≈ 3 ≈ 4 1 ≈ 3 ≈ 4 ≫ 2
F7 4 ≈ 3 ≫ 2 ≈ 1 4 ≈ 3 ≫ 2 ≈ 1 4 ≫ 3 > 1 ≈ 2
F8 3 ≈ 4 ≫ 1 ≈ 2 1 ≈ 4 ≈ 3 ≈ 2 1 ≈ 3 ≈ 2 ≈ 4
F9 4 ≈ 3 ≫ 2 ≈ 1 4 ≈ 3 ≫ 2 > 1 4 ≫ 3 ≈ 2 > 1
F10 3 ≈ 4 ≫ 2 ≈ 1 3 ≈ 4 ≫ 1 ≈ 2 3 ≫ 4 ≫ 1 ≫ 2
F11 4 ≈ 3 ≫ 2 ≈ 1 4 ≈ 3 ≈ 2 ≫ 1 4 ≫ 2 ≫ 1 ≈ 3
F12 4 ≈ 3 ≫ 2 ≈ 1 4 > 2 ≈ 3 ≈ 1 4 ≫ 3 ≈ 1 ≈ 2
F13 3 ≈ 4 > 1 ≈ 2 2 ≈ 1 ≫ 4 ≈ 3 4 ≫ 3 ≫ 2 ≈ 1
F14 3 ≈ 4 ≈ 2 ≈ 1 2 ≫ 4 ≈ 1 > 3 2 ≫ 4 ≫ 1 > 3
F15 4 ≈ 3 ≈ 2 ≈ 1 1 ≈ 2 ≈ 3 > 4 1 ≫ 2 > 3 ≈ 4
F16 2 ≈ 1 ≈ 4 ≈ 3 1 ≈ 2 ≈ 4 ≈ 3 1 ≫ 3 ≈ 2 ≈ 4
F17 2 ≈ 4 ≈ 3 ≈ 1 3 ≈ 4 ≫ 2 ≈ 1 4 ≈ 3 ≫ 2 ≈ 1
F18 2 ≈ 3 ≈ 4 ≈ 1 4 ≈ 3 ≫ 2 ≈ 1 4 ≈ 3 ≫ 2 ≈ 1
F19 3 ≈ 4 ≫ 2 ≈ 1 4 ≈ 3 ≫ 1 ≈ 2 4 > 3 ≫ 1 ≈ 2
F20 4 ≈ 3 ≫ 2 ≈ 1 3 ≈ 4 ≈ 2 ≈ 1 3 ≈ 4 ≫ 2 ≈ 1
F21 3 ≈ 4 ≫ 2 ≈ 1 1 ≈ 2 ≈ 3 > 4 3 ≈ 4 ≈ 1 ≫ 2
F22 3 ≈ 4 ≈ 2 ≈ 1 2 ≫ 4 > 1 ≈ 3 2 ≫ 4 ≫ 1 ≈ 3
F23 3 ≈ 4 ≫ 2 ≈ 1 1 ≈ 2 ≈ 4 ≈ 3 1 > 2 ≫ 3 ≈ 4
F24 3 ≈ 4 ≫ 1 ≈ 2 4 ≫ 3 ≫ 2 ≈ 1 4 ≫ 3 ≈ 2 ≈ 1
F25 4 ≈ 3 > 2 ≈ 1 3 ≈ 4 ≫ 2 ≈ 1 4 ≫ 3 ≈ 2 ≈ 1
F26 3 ≈ 4 > 2 ≈ 1 2 ≈ 1 ≈ 4 ≈ 3 2 ≈ 1 ≈ 4 ≈ 3
F27 4 ≈ 3 ≈ 2 ≈ 1 4 ≈ 3 ≫ 2 ≈ 1 4 ≫ 3 ≫ 2 ≫ 1
F28 3 ≈ 4 ≫ 2 ≈ 1 2 ≈ 1 ≈ 4 ≈ 3 4 ≫ 1 ≈ 2 ≫ 3

V. DISCUSSIONS

A. Discussion on Mutation Strategy
Gene mutations are randomness and uncertainty into evalu-

ation, and can generate diverse individuals to overcome com-
plex and changeable environments. Although mutant individ-
uals become better or poor, some of these mutant individuals
that adapt to new natural selection and then survive. Because
of the rapid development of technology, humans have been
able to intervene and guide mutations, even integrate genes
among different species. We can say that mutation is one of
the important means for plants to survive the population.

However, original VEGE uses no mutation operation. We
introduce two different mutation methods into the VEGE to
simulate the mutation characteristics of natural plants in differ-
ent periods to increase risk resistance. The random mutation

is used in the growth period and does not have any regularity
to alter genetic information randomly. We expect that this will
prevent it from falling into local optimum areas. Gaussian
mutation is used in the maturity period, and the greater the
difference, the smaller the probability of individual occurrence,
which we expect to increase the diversity of population. A
new parameter, MR, is introduced to control the frequency of
mutations in our proposal. Although the mutational probability
is equal on each dimension, the mutational probability of indi-
viduals increases as the dimension increases. The experimental
results confirmed our hypothesis, and the convergence curve
indicates that the mutation strategy can jump out of local arears
in some cases. However, acceleration effect is not stable and
obvious.

One of potential topics is how to use mutations to accelerate
convergence efficiently. Actually, mutations in real plants
are affected by many factors, and even different individu-
als belonging to the same species have different mutational
probabilities. We have assigned the same mutation probabil-
ity to each dimension without considering their fitness and
the characteristics of the optimization problems. Perhaps an
adaptive mutation probability could be more powerful and
intelligent according to the optimization process; we will pay
our attention to this aspect.

B. Discussion on Gbased Growth Strategy

We proposed the Gbest growth strategy because excellent
mechanisms of natural plants in their growth period. Even
after extensive research of plants, humans have discovered that
plants have many almost-magical mechanisms and unknowns
methods of ensuring their growth. We did not extract these
effective mechanisms or simulate them in the original VEGE,
but only use random growth strategy to simulate plant growth.

The new growth strategy consists of two parts as our first
attempt: random search and Gbased attraction. The latter uses
the current best individual to attract others and favor it. We in-
troduce a new weighting parameter, ω, to control the influence
of the optimal individual. When ω is set to 0, the proposed
growth strategy degenerates to random growth strategy used
in the original VEGE. As the ω increases, so too does the
strength of the effect of the optimal individual on the others,
i.e., the aggregation speed becomes faster. The experimental
results (Fig. 4) conformed that the Gbased growth strategy
does accelerate the convergence speed, especially in the early
stages.

Although the proposed growth strategy shows a powerful
acceleration effect, it still needs further improvements. Here,
several open topics are given. (1) The current best individual
still grow randomly because the Gbased attraction is 0, and
it affects the convergence of other non-optimal individuals.
Thus, how to accelerate the growth of the optimal individual
reasonably becomes one of our future work. Perhaps using
historical information is a good choice to guide the growth of
the current best individual. (2) ω is the key factors affecting
performance of our proposal. We used a constant ω in our
evaluation experiments, but, its results fell into local optimum



areas in some case, e.g. F24 to F28 on 30-D, because the
Gbased attraction was too strong. To overcome these limita-
tions, we are going to propose an adaptive version to tune the
ω according to optimized processes and evolution information
of individuals.

C. Analysis of Additional Cost

We would like to discuss the advantages of the two strate-
gies confirmed through our experimental evaluation. Both
strategies are inspired by the behaviour of real plants and their
characteristics for plant evolution. Although both strategies
need new parameters, they do not need additional fitness
calculations. We observed that the mutation strategy jumps out
of local area by increasing diversity, but its acceleration effect
was not obvious. Conversely, the Gbased growth strategy could
accelerate the convergence speed of the population signifi-
cantly, but it may lead to fall in local areas as mentioned above.
The combination of both strategies, however, can balance their
shortcomings and achieve better performance. Anyway, we can
say that our proposal is low cost, high return strategies.

We apply the Friedman test and the Holm multiple com-
parison test to check significant difference among four VEGE
variants. From the results of statistical tests, the Gbased growth
strategy has better acceleration than the mutation strategy on
the low dimension. However, the mutation strategy shows
stronger effects in some cases of higher dimensional tasks.
It is because the probability of a high-dimensional individual
mutation becomes higher, thus the higher the dimension, the
more obvious the effect is. Our proposals did not work at all
for F15 and F16, and even worsened the performance. It may
be because there are too many local optima, and they make
our proposal fall into local optima and hindered evolution.
This indicates that increasing randomness may be beneficial
for such problems because it allows the population to jump
out of the local optima. We need further analysis that may
give us hints to develop more suitable strategies for VEGE.

VI. CONCLUSION

We proposed two strategies to improve the performance
of the VEGE. The controlled experiments confirmed that the
mutation strategy increased the diversity of population and
avoid falling into premature. The Gbased growth strategy can
accelerate the convergence speed of non-optimal individuals.
Besides, the combination of both strategies may further en-
hance performance of VEGE in some cases.

We continuously introduce novel mechanisms inspired by
real plants as our future work, e.g. dynamic population
mechanism and adaptive parameter tuning to improving the
performance of the VEGE.
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Fig. 4: Average convergence curves of 30-D F1–F28 benchmark functions. We can observe that VEGE with our proposal can
its accelerate search.


