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Abstract—The literature on machine teaching, machine edu-
cation, and curriculum design for machines is in its infancy with
sparse papers on the topic primarily focusing on data and model
engineering factors to improve machine learning. In this paper,
we first discuss selected attempts to date on machine teaching and
education. We then bring theories and methodologies together
from human education to structure and mathematically define
the core problems in lesson design for machine education and
the modelling approaches required to support the steps for
machine education. Last, but not least, we offer an ontology-
based methodology to guide the development of lesson plans to
produce transparent and explainable modular learning machines,
including neural networks.

Index Terms—Curriculum Design, Machine Teaching, Machine
Education, Transparent and Explainable Modular Neural Net-
works

I. INTRODUCTION

W ITH recent advances in deep learning and a new-found
abundance of data on massive scales, researchers have

started to feel the need to follow structured methodological
approaches to teaching machines in similar ways humans
follow structured teaching approaches when teaching other hu-
mans, leading to the fields of machine teaching [1], curriculum
design for machines [2], and machine education [3].

A common aspect of this domain’s literature is that it is
driven by machine learners alone with a focus on data engi-
neering and model engineering to improve machine learning.
As such, except for a couple of recent attempts [4], [5],
[6], the literature on machine teaching and education has not
taken inspiration from the more mature literature on human
teaching and education which houses a wealth of pedagogical
frameworks, philosophies and theories that could benefit the
machine education field.

In this paper, we will present an initial approach to connect
threads from the human education literature to machine edu-
cation. The remainder of this paper is structured as follows.
Section II acts as a short background section on current work
on machine teaching and education. Section III presents key

concepts in pedagogy and curriculum design methodologies
in human education, followed by the first attempt to structure
machine education in a manner that leverages the significant
literature on human education, thereby addressing significant
methodological gaps in the machine education literature. We
then conclude the paper with a discussion on open challenges
in the field.

II. MACHINE TEACHING AND EDUCATION

The emerging literature of machine-teaching can be traced
back to Elman’s work in 1993 [7], which promoted the
need to ‘start small ’ and structure learning experiences from
simple to more complex. Elman systematically increased the
memory of the learner while fixing the complexity of the
input to the learner, and was able to teach the machine
to learn a ‘semi-realistic artificial language’ with increasing
levels of competencies. These ideas have anchored the roots
of machine-teaching in the literature, which started to emerge
as a field only in the last few years. However, similar to Elman,
the work is mostly driven by experts in machine learning with
intimate knowledge of algorithms, simple tasks, and, in most
cases, exiguous grounds in teaching methodologies. Moreover,
in the field of evolutionary-learning, other than limited recent
attempts [5], the research area is in its infancy. To the best of
our knowledge, attempts in the evolutionary neural network
literature are rare.

Clayton and Abbass [5] designed a curriculum suitable for
reinforcement learning used within an autonomous agent in
shepherding tasks. They extended Dick and Carey’s Model
for Systematic Instructional Design (SID) [8], [9], which
offers the following ten steps: identification of an instruc-
tional goal, conducting instructional analysis, identification of
entry behaviours and characteristics, write-up of performance
objectives, development of criterion-referenced assessments,
development of instructional strategies, development of and/or
select instruction, development of and carrying out of for-
mative evaluations, revising the instruction, and conducting
summative evaluation.
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Fig. 1. The methodological framework for machine education.

Gee and Abbass [6] offered a complete methodology to
teach machines by extending George’s classical curriculum
design [10] with task analysis to suit machine education.
They used a supervised learning approach to the shepherding
problem to demonstrate the methodology and were successful
in learning primitive shepherding behaviours.

Zhu et al. [4] presented a preliminary high-level study
to ground machine teaching in some concepts in human
education. They introduced eight dimensions to characterize
the different threads of research that have either taken place
or could take place in the area of machine teaching: Human
vs. machine; Teaching signal; Batch vs. sequential teach-
ing; Model-based vs. model-free; Student awareness; One vs.
many; Angelic vs. adversarial; and Theoretical vs. empirical.

Aside from the above, all other research on machine teach-
ing in the literature relies on classic machine learning and
deep learning, merely focusing on task decomposition and data
engineering.

III. MACHINE TEACHING AND EDUCATION

The primary challenge in transforming concepts from the
human education literature to machine education is the differ-
ences between current state-of-the-art in machine cognition
and human cognition. Humans can understand and act on
ambiguous language sitting at a variety of levels of abstraction.
Human teachers follow pedagogical theories that allow them
a great deal of freedom in operationalizing the concepts and
the fluidity to adopt these concepts differently based on a
learner’s needs. Machines require a more formal representation
of these concepts in the form of mathematical models. To
ensure the trustworthiness of the machine learners produced

through machine education, assessments, for example, need
to be captured in formal models that are mathematically and
logically verifiable. At this stage, we need to transform the
above concepts mathematically adjust them for a machine
context. We will start with the following problem definition,
where we will distinguish between machine education, which
is concerned with the design and implementation of the
process, and machine teaching, which is concerned with the
delivery of materials to the machine.

Given a user, U , wishing to design an Artificial Intelligence
(AI) student, T , to fulfil U ’s design intent, I , by performing
task, K, a curriculum designer, CD, aims to transform I into
a set of concrete learning skills, S, and a set of goals, G, that
concretely measure that T developed S successfully. Given S
and G, CD needs then to define the set of lessons, L, lesson
plan, PL, a set of formative assessments, FA, and a set of
summative assessments, SA, to teach S to T such that all goals
in G are achieved as measured by the formative and summative
assessments, FA and SA, respectively. If a syllabus, Y , is
defined by Y = (L,LP, FA, SA), a learner-centric curricu-
lum is defined by the tuple C = (T,K, S,G, Y ). Machine
education is to design C and select the teacher, R, while
machine teaching is to select and implement Y such that, R
delivers Y to T , T develops skills S to perform K, so that
the goals G are met as measured by FA and SA.

We define three broad steps representing the three chal-
lenges that need to be overcome to move from the need
analysis for curriculum design all the way to a functional
syllabus that could be used to teach machine learners. These
three steps are presented in the conceptual diagram in Figure 1
and are discussed below:
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1) Our first step in designing theoretical constructs for
machine teaching is to identify an appropriate modelling
paradigm to operationalize the human education con-
cepts presented in the previous section and transform
them into objective and quantitative models. Formally,
this step could be represented as follows:

Step1 : (I ∧K)→ (S ∧G)

This step will be addressed in the next subsection,
which will introduce participatory modelling and the use
of system dynamics as a modelling framework suited
for representing the complexity that could arise from
complex problems in machine learning. The primary
aim of these participatory modelling approaches is to
transform user requirements in terms of what the user
expects the machine learner to learn (need–analysis
in curriculum design) into formal specifications of the
learning outcomes, formulation of objectives, and mod-
els for testing and evaluation of the educational journey
of a machine learner.

2) The second step is the design of syllabus, and in par-
ticular the decomposition of the overall curriculum into
lessons. The following sub-section will focus more on
the syllabus and will present the concept of scaffolding
as a means of decomposing a learning task into chunks.
We will then require that each chunk is associated with
appropriate semantics, such that the orders of chunks
follow appropriate semantic orders that allow the overall
curriculum to be semantically ordered and fit within an
appropriate ontological framework.

Step2 : (S ∧G)→ Y

3) The third step focuses on the curriculum design itself.
This step is not discussed in this paper is and the context
of our future work.

Step3 : (S ∧G ∧ Y )→ C

A. Participatory and system dynamics modelling

The aim of this step is to transform a user intent and tasks
into precise skills and goals; that is, (I

∧
K) → (S

∧
G).

Participatory modelling is a purposeful learning process for
action that engages the implicit and explicit knowledge of
problem actors to create formal and shared representations of
the problem of interest [11]. The key distinction of participa-
tory modelings from other participatory and actionable science
research approaches is its unique focus on the utilization of
different types of models (i.e. conceptual and quantitative)
and modelling approaches (e.g. system dynamics) to structure
the learning process, organize and integrate knowledge (i.e.
sources and forms), and package the produced knowledge into
useful artefacts. This modelling focus offers a clear stepwise
methodological framework to capture an actor’s mental model
(i.e. perceptions, knowledge, requirements) and transform
them into operational outcomes [12].

There exist several typologies for characterising the ex-
pected outcomes of employing participatory modelling [13].
Broadly speaking, operational outcomes can be categorised
into: cognitive (e.g. increase in the level of actor’s knowledge
or skills), social (e.g. establishing formal rules to organize ac-
tors’ interactions), and normative outcomes (e.g. development
of methods for decision analysis). Participatory modelling has
been applied in a variety of domains achieved a wide range
of purposes, including decision making [14], deliberation and
negotiation [15], futuristic system design [16], and to much
less extent support formal education and curriculum design.
Various participatory modelling frameworks exist that propose
specific process steps and combinations of qualitative and
quantitative modelling methods [12]. Major differences among
existing participatory modelling frameworks relate to the mod-
elling methods included, such as agent-based modelling (see
for example [17]) or system dynamics modelling (see for
example [18]. Consideration of the context in the design of
participatory modelling processes is a critical factor [18].

Regardless of the detailed differences stemming from the
choice of the modelling framework, a typical participatory
modelling approach proceeds through iterations of the follow-
ing mechanisms [19]: problem scoping and context setting,
process design, model development, and feedback, monitoring
and evaluation.

Based on systems thinking and control theory, system dy-
namics encompasses a range of methods including: conceptual
and graphical models (e.g. influence diagrams, stock and flow
diagrams), quantitative models (e.g. simulation, games [20]),
and participatory methods (e.g. groups model building [21]).
At the core of the conceptual basis of system dynamics,
learning plays a central role in shaping the development of sys-
tem dynamics methods and praxis. Learning, about complex
problems and the mental models that individuals and groups
have about these problems, is recognised as a key rationale and
outcome for using system dynamics methods [22]. A typical
system dynamics process progresses through the following
steps [23]: (1) problem scoping, (2) conceptual modelling, (3)
model formulation and implementation, (4) model use.

The process of operationalizing human education concepts
into machine education is mainly concerned with addressing
the fundamental question of ‘how can we teach machines ef-
fectively’? In other words, what is the relative effectiveness of
different pedagogical theories, strategies, tactics, syllabus, and
the overall curriculum design in producing the desirable learn-
ing outcomes? This is a question that can be addressed through
theoretical arguments, but equally through experiments based
on simulation of system dynamics models. Conceptual sys-
tem dynamics techniques (such as causal loop diagrams and
stocks and flows diagrams) capture the implicit and explicit
assumptions about the learning process, with particular focus
on interdependency and feedback interactions that shape the
learning process and determine its outcomes. Data to support
the development and validation of these assumptions, referred
to as dynamic hypotheses, are gathered through multiple
sources, such as expert opinions, literature surveys, and empir-
ical data [23]. The transformation of the conceptual model into
a quantitative system dynamics model allows for testing the
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effectiveness of different learning theories and implementation
scenarios. System dynamics takes the view that any type of
dynamic abilities (e.g. skills, knowledge) can be represented as
a stock (a rectangle), or a set of related stocks (See Figure 2
for an example), that accumulates or depletes over time in
effect of changes in inflow (e.g. knowledge acquisition, skill
building) and outflow (e.g. unlearning skills).

The figure depicts a simplified model of the curriculum
process, where a gap between the current competency of the
machine and its target skill level has been identified. The speed
of the learner along with learning outcomes drawn from a
lesson pool form the basis upon which skills are built. As
skills continue to flow in the mental model of the learner, the
first level of skill starts to increase. When the target level of
skill is reached, the learner is ready and the skills start to build
up in the next level. The control loop continues through a set
of adjusting actions that control the draw of lessons from the
lesson pool based on observations arising from how the learner
is meeting a target skill level. This stock-and-flow diagram has
multiple uses. First, it forms the basis for the controller of the
machine teaching process that decides when and how much
certain data flow to the machine for training. Second, it is
a diagnostic tool that helps to identify when the targets for
certain skills are not met. Third, it could communicate to, and
guide, the teacher (human or machine) in the machine teaching
process. The next sub-section will zoom in on stock rectangle
labelled as “lessons pool” to look into how the overall syllabus
gets decomposed into lessons.

B. Scaffolding and Syllabus Design

The aim of this step is to transform the skills and goals from
the previous steps into a syllabus; that is, (S∧G)→ Y . Recall-
ing that a syllabus is made of lessons, lessons plan, formative,
and summative assessment; that is, Y = (L,LP, FA, SA). A
key challenge in this step is to transform the skills and goals
into lessons and decomposing these lessons in a way that the
machine could be taught.

Machine teaching attempts to learn the data set that gener-
ated a specific model. This process is a form of inverting a
model by projecting it back to the feature space and the data
sample that was used to parameterise the model. Equally, if we
have a learning outcome that needs to be achieved, machine
teaching will generate the learning lessons necessary to reach
this learning outcome. For artificially supervised learners, this
step is about the generation of the experience, observations, or
training samples that are needed to lead to a specific model.

In this section, we propose Incremental Semantic Machine
Teaching (ISMT), where the objective is to transform the
discovery of the sample to a learning process, whereby the
learner starts with a random or targeted sample (called a
chunk) then learns to add chunks as necessary to move the
learner as close as possible to achieving the overall learning
outcomes. In this incremental process, the choice of the
sample is guided by the semantics to be encoded within the
intermediate models.

The concept of scaffolding [24] in human education in-
volves the decomposition of the curriculum into chunks and

the sequencing of these chunks in the learning process to
incrementally evolve the learner’s knowledge. Hammond and
Gibbons [24] proposed scaffolding at the macro “designed-
in” level. They decomposed the curriculum design process
into seven stages: determining student’s experience and prior
learning, selection of tasks, sequencing of tasks, participant
structures, semiotic systems, mediational texts, and metalin-
guistic and metacognition awareness. We will focus on the
formalism for the first four stages and postpone the latter
stages to our future work.

Define a target function ~y = f(~w, ~x), where ~w are the
weights parameterizing the function. The Machine Learning
(ML) problem can be defined as:

Definition 1 (ML Problem): Given a training set Γ = (~x, ~y),
find ~w such that ~̂y = f(~w⊗~x) and the loss function, Err(~̂y, ~y),
is minimum.

In the above definition, ~x represents the inputs (an m ×
n matrix of m observations and n, preferably independent,
variables) and ~y represents the true output vector. Together,
they form the sample, Γ, used for building model ~̂y. The error
function Err(~̂y, ~y) can be arbitrarily chosen to be any type of
loss function.

The Machine Teaching (MT) problem is the dual of the ML
problem above, where the problem is to find an estimate of the
sample Γ̂, that if it was used in place of Γ, it would generate
an equivalent model ~̂y. The problem can be defined formally
as follows:

Definition 2 (MT Problem): Given a model ~̂y = f(~w ⊗
~x) and its parameters ~w, find Γ̂ such that the loss function,
Err(~̂y, ~y), is minimum.

One of the greatest statisticians of his time wrote: “. . . , the
object of statistical methods is the reduction of data. A quantity
of data, by which usually by its mere bulk is incapable of
entering the mind, is to be replaced by relatively few quantities
which shall adequately represent the whole, of which, in other
words, shall contain as much as possible, ideally the whole, of
the relevant information contained in the original data” (p278,
[25]).

Even though ML attempts to find this reduced form by
describing a model of the data, so often some form of parsimo-
nious pressures are needed to further ensure that the model is
the shortest description possible [26]. Parsimonious pressures
in fields such as neural networks are achieved through a
regularization term that gets added to the loss function.

Similar to ML where the parsimonious pressure is to find
the shortest model, the parsimonious pressures leading to
efficiencies in MT (we will call it EMT for efficient MT) is to
find the smallest dataset. This may not always be preferable.
For example, the most comprehensible dataset to teach a
human may not be practically the most efficient. Redundancy
and repetitions are sometimes useful tools to reinforce the
message for the learner.

Nevertheless, to teach a machine, EMT contributes to effi-
ciency of resources and ensures the machine is taught in the
most effective manner. An advantage of EMT is that it reduces
demands on the machine’s working memory. The definition of
EMT is:



5

Fig. 2. High level stock and flow diagram of the progression between skill levels.

Definition 3: [EMT Problem] Given a model ~̂y = f(~w ⊗
~x) and its parameters ~w, find Γ̂ such that Err(~̂y, ~y) and
Cmpx(Γ̂) are minimum.
Cmpx(Γ̂) is some complexity metric operating on the

dataset required to train the machine; be it simply the number
of records/instances, entropy of the sample, or another user
defined metric for complexity. A classic regularization term
in machine learning reduces the complexity of the model,
whereas Cmpx(Ŝ) reduces the complexity of the sample.

The one-off nature of MT/EMT as defined above can be
decomposed into a series of chunks that forms a timeseries
of incremental MT/EMT (IMT/IEMT) to teach the machine
incrementally.

Definition 4 (IEMT Problem): Given a model ~̂y = f(~w⊗~x)
and its parameters ~w, find Γ̂t such that lim∞∫

t

Γ̂t

, Err(~̂y, ~y) and

Cmpx(Γ̂) are minimum.

The
∞∫
t

Γ̂t → Γ̂ term is stating that as we accumulate the

chunks through integration or summation in discrete cases, in
the limit, the cumulative chunks should approach the overall
sample Γ̂ that is needed to approximate Γ.

Our definition of a curriculum above differs from Bengio
et.al. [27]. In their case, a curriculum is seen as a weighting

function on the sample with a higher weight initially given
to a simpler problem to learn. Weights then shift to the more
difficult problems in a similar manner to the classic Boosting
algorithm [28], [29], where misclassified instances in one
iteration receive higher weights in the following iteration, and
an ensemble of learners get formed. Our methods, however,
will generate modular structures that form a single network,
while each module has a ‘meaning’ within an ontological
representation.

Curriculum design assumes that Γ is known, while IEMT
attempts to find ordered sets that in the limit will approximate
Γ̂. Formally, curriculum design partitions Γ such that

⋃
o

Γo =

Γ. In IEMT, each Γ̂t does not need to be a subset of Γ. These
are only guiding lessons to lead the learner towards Γ̂.

For a linear learner, each Γ̂t results in ~wt. The objective of

IEMT is to ensure that as
∞∫
t

Γ̂t → Γ̂, thus, from Definition 3,

we draw limt→∞ ( ~wt) → ~w. Each ~wt defines a vector of
angles, ~θt, with a dimension of n− 1.

So far, the only condition we have on Γ̂t is that it is as short
as possible. A second critical condition we need to establish is
that Γ̂t should be interpretable; that is, a meaning is associated
with each chunk, and that the sequence of Γ̂t over time
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is, therefore, explainable by understanding the relationships
among the meaning of the individual chunks and their order.
This condition is what we call semantic ordering; that is, by
sequencing chunks to the machine, with each chunk has a
meaning that contributes to the overall logic of the learning
process, we will have a lesson plan with identifiable rationale.

To achieve semantic ordering, we will need to design an
ontology, Ont for the lessons. Each lesson needs to deliver a
concept in that ontology, by generating the required sample of
data to learn the concept. As the machine learner learns these
lessons and compresses them using its internal representation,
the process converges to a machine learner that has learnt
the overall task, an explanation of how the learner has learnt
the task, and a task-centred interpretation for each module.
The above could be captured mathematically as shown in
Equations 1- 2, where the Linked operator synthesizes the
semantic order such that the synthesis covers the overall
ontology.

Semantic(Γ̂t) ∈ Ont (1)

Linked(Semantic(Γ̂t)
t

) = Ont (2)

IV. CASE STUDY

In this section, we present a synthetic case study using an
artificial neural network to demonstrate scaffolding and the
associated semantic representation. The 2D problem represents
features calculated on different agents swarming in a space.
A swarm is a group of agents that self-synchronise actions
to achieve an effect or outcome. A slow swarm means that
members of the swarm moves slowly, resulting on a longer
time to reach the target; allowing them better opportunities to
exchange information and learn from the environment. A fast
swarm needs to get to its target fast, with lesser time to learn
or exchange information.

Each cluster is represented by the mode of the time between
successive visits of landmarks and the mode of the distance
between the landmarks. The simple ontology is represented
in Figure 3, whereby the primary concept of swarming is
associated with two concepts. One is that a swarm has speed
and the other is that a swarm occurs spatially over distance.

Fig. 3. Simple Swarm Attack Ontology.

In this dataset, the ground truth is represented with two
inequalities given in Equation 3- 4. The rationale underpinning
them is to define different forms of swarming. Equation 3
covers the space of slow swarming over medium ranges.
Equation 4 covers the space of fast swarming over longer

Fig. 4. Data Chunks.

distances. The intersection of the hyperplanes corresponding
to these two inequalities create four polyhedra; three of which
are polytopes.

3× Time+ 5×Distance ≥ 150 (3)

5× Time+ 2×Distance ≥ 100 (4)

If we consider this as the curriculum we wish to deliver
to a machine learner, we could use the ontology to guide the
sequencing of the datasets to the machine learner. Figure 4
presents the samples used to generate the two lessons and
the resultant networks. The first two samples were generated
to learn the lessons associated with Equations 3 and 4,
respectively; signifying slow swarming over medium ranges,
and fast swarming over longer distances, respectively.

As each concept is learnt by one network, these networks
get frozen for the third lesson that synthesizes these concepts
to learn the different types of swarming as shown in Figure 5.

V. DISCUSSION AND CONCLUSION

Machine teaching is an emerging field with a focus on the
experience that gets presented to the machine, or what to learn.
It complements machine learning, which focuses on how to
learn. The literature is in its infancy, focusing on the data side
with less or no emphasis being placed on the pedagogical
framework for this educational process. In this paper, we
brought concepts from education to introduce machine edu-
cation, presenting to researchers and scientists the ingredients
to educate machines in a similar manner to human education.
System dynamics is proposed as an appropriate modelling
framework to transform user intent and tasks into the skills
expected from the machine and the learning goals. We then
presented the concept of scaffolding, which, when coupled
with ontology, offers a structured methodology to semantically
decompose the problem into data chunks. Together with the
system dynamic model, the approach allows the design of a
transparent machine learners and offers a methodology that
could systematically, experimentally or theoretically verify the
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Fig. 5. Data Chunks.

learning experience of the machine to ensure its trustworthi-
ness.
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