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Abstract—A crucial step for optimizing a system is the for-
mulation of the objective function, and part of it concerns the
selection of the design parameters. One of the major concerns
regarding the parameterization of the objective function is the
trade-off between exploring feasible solutions in the design space
and maintaining admissible computational effort. In order to
achieve such balance in optimization problems with Computer
Aided Engineering (CAE) models, the conventional constructive
geometric representations are substituted by deformation meth-
ods, e.g. free form deformation, where the position of a few
control points might be capable of handling large scale shape
modifications. However, in light of the recent developments in
the field of geometric deep learning architectures, autoencoders
have risen as a promising alternative for efficiently condensing
high-dimensional models into compact representations. Hence,
in this paper we present a novel perspective on geometric
deep learning models, by exploring the applicability of the
latent space of a Point Cloud Autoencoder (PC-AE) in shape
optimization problems with evolutionary algorithms. Focusing on
engineering applications, a target shape matching optimization
is used as a surrogate problem for computationally expensive
CAE simulations. Through the evaluation of the quality of the
solutions achieved in the optimization and further aspects, such as
shape feasibility, PC-AE models have shown to be consistent and
suitable geometric representations for such problems, adding a
new perspective on the approaches for handling high-dimensional
models to optimization tasks.

Keywords—evolutionary design optimization, geometric repre-
sentation, free form deformation, point cloud autoencoder

I. INTRODUCTION

The formulation of a problem to optimize an engineering
system often requires several simplifications and trade-offs,
such as the balance between computational effort and accuracy
of the model. In fact, the definition of the objective function
and constraints might take as much as half of the effort to
actually find the optimum design [1].

The selection of the design variables is part of the formu-
lation process and reflects directly on the level of complexity
of solving the problem. On the one hand, it is necessary to
select a reasonable number of parameters to enable meaningful
modifications in the modelled system, driving the optimization
algorithm towards the best solution. On the other hand, high
dimensional spaces increase the necessary number of fitness
function evaluations to characterize the landscape, since the
influence of each variable is more diluted than in the low-
dimensional case. Hence, in applications with computationally

expensive functions, the use of multiple parameters is unde-
sired and might be prohibitive [2].

A problem that fits to the scenario described above is the
optimization of aerodynamic shapes, such as a vehicle body
or aircraft fuselage. In such problems, the design variables are
mainly geometric features, since the flow and fluid charac-
teristics are dictated by the nature of the environment where
the components will operate. Therefore, the expertise of the
designer plays a significant role, given that one might prefer
designs related to previous successful experiences instead of
creating a generic model. Additionally, the user has to define
the dependency between the parameters in a way that the
optimum solution is not overconstrained [3], which is usually
not a trivial task.

When deformation approaches [4] came into scene, many
of the discussed difficulties could be tackled. A central aspect
of these methods is enabling large scale shape modifications
controlled by a low number of parameters [5], favouring the
balance between design space exploration and complexity
of the problem. Especially for CAE models represented as
meshes, the deformation methods allow a significant boost in
the optimization problems, since they can be applied directly to
the nodes of the discretized domain, avoiding the re-meshing
phase, which is usually very time consuming [6], [7].

Neglecting the meshing costs, further methods can be con-
sidered for this purpose. Recently much effort has been applied
to the research of Geometric Deep Learning (GDL) architec-
tures, and autoencoders have risen as promising alternatives
for the reduction of dimensionality in geometric problems. In
the context of optimization tasks, an encode-decoder structure
can be used for basis transformation, from the Euclidean to
a low-dimensional latent domain, where the operations on
the geometry can be performed. Further than the reduction
in the dimensionality of the problem, the autoencoder might
be capable of abstracting features differently than a human
perspective, enabling different geometric parameterizations
and the generation of novel designs.

Hence, we explore in this paper the potential of latent
variables of a PC-AE as geometric representations for shape
optimization tasks, as not yet reported in the literature. Fur-
thermore, our approach focuses on engineering applications,
bringing to discussion not only a numerical comparison to
state-of-the-art deformation methods, but also other relevant
aspects, such as shape feasibility, adaptability of the represen-



tation and interpretability of the latent variables. Our study
in embedded in the framework of a target shape matching
optimization problem, which substitutes the computationally
expensive CAE numerical simulations, enabling the perfor-
mance of several experiments.

The paper is structured according to the following order: it
starts with the survey of the literature, in Section II, followed
by the definition of the experimental setup and methods in
Section III. The results of the experiments are discussed in
Section IV, where the characteristics of the novel geometric
representation is discussed in detail. The outlook and con-
clusions of the research close the paper and are presented in
Section V.

II. LITERATURE SURVEY ON GEOMETRIC
REPRESENTATIONS

The term Geometric Representation often refers to more
than the study of solid bodies, although it is historically associ-
ated to the methods for generating, modifying and visualizing
shapes [8]. In order to understand and compare different
representations, it is important to classify them according to
the method for parameterizing the geometries. According to
[3], the methods can be divided into constructive, deformative
and volume based.

A. Contructive Solid Geometry

The constructive approach, also as discussed in [8], concerns
the approaches based on non-parametric functions, boolean
trees and PDE (Partial Differential Equations). Such tech-
niques are widely implemented in CAD (Computer Aided De-
sign) via combinations of CSG (Constructive Solid Geometry)
and Splines, justified by the capability of the CSG to describe
complex geometries as a tree of boolean operations between
primitives [9], [10], added to the high compatibility of splines
with visualization tools [11]–[13]. In this class, B-Splines
and NURBS (Non-Uniform Rational Basis Splines) are the
most used representations, and an example of application for
aerodynamic shape optimization is presented by Della Vechia
and Nicolosi in [14].

B. Shape Deformation Techniques

Instead of redefining the geometry based on predefined fea-
tures, deformative approaches allow the optimizer to operate
directly on the nodes of the mesh, treating them as design
parameters [15]. Among the techniques, FFD is the most
common one and is characterized by embedding the shape
of interest into a tri-variate polynomial volume (e.g. Bézier),
defined by a series of control points and where a R3 → R3

mapping can be applied [16].
In the literature, there are several reports on the application

of FFD techniques to shape optimization. In [6] an FFD
algorithm is coupled with an evolutionary strategy for the
optimization of a three-dimensional high performance com-
pressor aerofoil model. Also in [7] the optimization of a stator
blade is performed using a framework that integrates FFD
representations in an evolutionary optimization environment.

Using a similar framework, in [17] the optimization of an
element in the exhaust system of an internal combustı́on engine
is explored.

Sieger et al. [18] compare the performance of three deforma-
tion FFD, DFFDM (Direct FFD Manipulation) and RBF (Ra-
dial Basis Function based deformations), in shape optimization
tasks. Among the criteria used for comparing the methods, the
authors discussed about the adaptability and interpretability of
the obtained variables, important characteristics which are also
taken into account in the present paper.

C. Geometric Deep Learning

The definition of design parameters can be seen as a feature
selection, where the designer abstracts the representation into
a set of meaningful variables. Machine learning techniques
are capable of automatically abstracting information of a high
dimensional domain without the biased vision of a human user
and, therefore, they have a great potential to generate efficient
geometric representations.

Geometric Deep Learning (GDL) architectures have been
intensively studied in the recent years. Many of the techniques
are extensions of the operations used in Artificial Neural
Networks (ANN) for image processing. Bronstein et al. present
a detailed discussion in [19] about the topic, extending the
mathematical formulation from the Euclidean domain, i.e. data
defined on a uniform underlying structure, to non-Euclidean
data, such as point clouds and graphs.

In many engineering applications involving geometric oper-
ations and CAE analyses, meshes are the base representation
of choice, especially due to its compatibility to numerical
simulation methods (e.g. Finite Element Method). These rep-
resentations contain a rich amount of information, however, for
GDL purposes, meshes are hard to abstract into simpler latent
representations, due to the complexity of the representation,
although some effort has already been reported in [20] and
[21].

Nevertheless, several base representations can be derived
from meshes, given their intrinsic amount of information. The
simplest one is the point cloud, which consists on the list of
nodes contained in the mesh and has been recently targeted
by researchers due to the increasing popularizations of 3D
sensoring and demand for spatial features processing. For GDL
purposes, several architectures have already been published,
such as PointNet [22], PointNet++ [23] and FoldingNet [24].

The most common difficulty for learning data from point
clouds is imposing order-, shift- and rotation invariance to
the autoencoder architecture, since the data belongs to a non-
Euclidean domain. Therefore, the architectures cited before
present pre-processing and modifications in the conventional
multi-layer convolutional networks in order to embed the rela-
tion between the points and avoid order dependent operations.

A fourth architecture is proposed by Achlioptas et al. [25],
where the operations performed by the encoder treat each
point individually in five 1-D convolution layers, followed by
ReLU activation functions. The sixth layer is responsible for
extracting the latent representation via a maximum pooling



operation performed over the calculated features. Hence, for a
given point cloud, the same latent representation is extracted,
regardless of the ordering of the points, since the calculated
features do not change and the maximum pooling is order
independent. Finally, three fully connected layers with ReLU
activation functions compose the decoder, which retrieves an
approximation of the input point cloud. In [25], the authors
also demonstrate geometric operations in the latent space,
discussion which enabled the developments in the present
study. In Figure 1 an example of car shape interpolation using
latent variables is shown, which we obtained by reproducing
the architecture proposed in [25] and training it on the car
class of ShapeNet [26].

Fig. 1. Validation of our framework implementation by a reproduction of
shape interpolations using the latent variables of a trained PC-AE.

III. EXPERIMENTAL SETUP AND METHODS

In the light of the works reviewed in the literature survey,
our objective is to evaluate the efficiency of the latent space for
geometric representation in evolutionary optimization tasks. A
generic single-objective optimization problem can be formu-
lated as

min
x∈D

f(x), subject to

gi(x) ≤ 0, i = 1, 2, ...p

hj(x) = 0, j = 1, 2, ...q

(1)

where f(x) is the objective function, and g(x) and h(x)
are the equality and inequality constraints, respectively. In
the present work, a target shape matching problem is con-
sidered, given its low computational cost and applicability
of the revewed methods for geometric parameterization [27].
Therefore, the modified Hausdorff distance is used as objective
function, since it is a metric of similarity between shapes and
has been applied in previous work [28]. It is mathematically
defined as

H(a, ã) = 1

2

(
N∑
i=1

min
ai∈G0

|ai − ã|2 +
N∑
j=1

min
ãj∈G
|ãj − a|2

)
(2)

where N is the number of samples from the geometry, ai the
points in the reference shape G0 and ãj the points from the
deformed geometry G.

The design variables x in this problem are the parameters
that control the deformation or shape generation method. For
the experiments, two types of representations were selected:
FFD and the latent variables obtained by an autoencoder.
Hence, the parameters will be associated to the position of the
control points in the first case and to variations in the latent

variables in the second. The parameterization of the shapes
will are detailed in the following sections.

For training and testing the autoencoder, as well as to
provide potential target shapes for the optimization, a dataset
of 500 shapes was generated using a benchmark car shape
[29] and a standard FFD algorithm [?] which has been used
throughout this paper. The deformations consist of random
scalings of the vehicle along its principal axes, without con-
serving the aspect ratio, in order to facilitate the verification
of the optimization results and increase the interpretability of
variations in the latent variables.

The performance of the latent space as representation is
assessed using two experiments that reflect typical cases of en-
gineering optimization. The first consists of an unconstrained
optimization using the shapes contained in the training dataset
of the autoencoder, which theoretically should result in a per-
fect match for both representations. In the second experiment,
a new set of target shapes is adopted, containing geometries
that that prevent any of the optimizations to converge to
a perfect match. For each experiment, 50 optimizations are
carried out, in order to avoid the effects of singularities
and special combinations between initial and target shapes.
Additionally, the correlation between the variables in the latent
and design spaces is analysed, in order to identify future
directions of research on the topic.

A. Free Form Deformation Algorithm

The FFD algorithm used in the experiments has been
proposed by Sederberg and Parry [30], where the deformations
are calculated using the trivariate Bernstein polynomial. There-
fore, by imposing a parallelepiped enclosing the geometry of
interest, i.e. a control volume, any point v of the shape can
be described with respect to a local coordinate system defined
by orthogonal vectors ~s,~t, ~u, given by

v = v0 + s~s+ t~t+ u~u (3)

where s, t, u are scalars, obtained using linear algebra, and
v0 ia a point that belongs to the control volume, described
in the original coordinate system. Within the parallelepiped,
equally spaced grids of control points pi can be defined, which
globally deform the geometry when displaced, according to the
following equation:

vFFD =

l∑
i=0

(
l

i

)
(1− s)l−isi

{
m∑
j=0

(
m

j

)
(1− t)m−jtj[

n∑
k=o

(
n

k

)
(1− u)n−kukpijk

]} (4)

where vFFD is the deformed point, l,m, n are the number of
control planes in the ~s,~t, ~u directions, respectively.

For the points inside the control volume, the continuity Ck

is ensured by the formulation of the Bezier curves, used in
the algorithm. When the geometry is partially enclosed by the
control volume, the kth continuity can be achieved only if



the k planes adjacent to the boundaries are not moved, which
might constrain the range of shapes that can be achieved.

For the purposes of this work and for the sake of simplicity,
only cases with fully enclosed geometries are considered, since
the geometric properties of the FFD algorithm are not subject
of investigation. Furthermore, the same configuration was used
for both generating the dataset of shapes and performing the
target shape matching, such that all the optimizations would
have a possible and known solution.

The configuration of the control volume used in the defor-
mations is shown in Figure 2 and contains 6 planes in X and
Z directions and 4 in Y direction. For the optimization, the
position of the planes are considered symmetric with respect
to the geometric center of the car, resulting in 8 parameters,
as shown in Figure 2.

Fig. 2. Layout of the planes in the control volume and design variables
adopted for the optimization.

B. Modified Vanilla Point Cloud Autoencoder
The autoencoder used in the experiments is based on the

Vanilla architecture, presented in [25], and it is depicted in
Figure 3. Compared to the reference, the proposed PC-AE
presents minor modifications in the activation functions, in
order to adapt it better to the optimization task and to the
limits of normalization used for the geometries.

Fig. 3. Architecture of the modified Vanilla PC-AE Architecture used for
encoding the geometries.

In the layer anterior to the maximum pooling, the activation
function was changed from ReLU to hyperbolic tangent. Then,

the values of each dimension of the latent representation are
limited to the range [−1, 1], which simplifies the definition of
constraints. Also, in the last fully connected layer, the sigmoid
function was used instead of the ReLU, since coordinates of
all points were normalized to the range [0.1, 0.9]. In order to
validate the proposed architecture, it was trained using point
clouds sampled from the ShapeNet core dataset and the same
training parameters and algorithm to calculate the Chamfer
Distance as reported in [25], yielding the results shown in
Table I.

TABLE I
EVALUATION OF THE LOSS FUNCTION AFTER TRAINING AND FOR

TESTING, USING THE REFERENCE AND MODIFIED ARCHITECTURES.

Optimizer Adam Optimizer
Learning rate 5.00E-04
Epochs 500
Architectures Reference Modified
Chamfer Distance on the training set 3.34E-04 2.91E-04
Chamfer Distance on the test set 4.00E-04 3.03E-04
Standard deviation 9.70E-05 8.84E-05

As a last modification to the proposal in [25], the loss
function considered for training the autoencoder was the sum
of the mean squared distance between the points in the
reference and predicted point clouds, given by the following
equation:

Loss =
1

N

( N∑
i=1

‖xi − x̃i‖2
)

(5)

where N is the number of points, xi and x̃i are the i points
from the ground truth and retrieved point clouds, respectively.

In the original implementation, the authors used the Cham-
fer and Earth Mover’s Distances as loss functions, which do
not impose the ordering of the points, being less restrictive
than our suggested method. However, if the point clouds were
generated from isometric meshes, which is the case for this
work, maintaining the ordering of the points might ease the
reconstruction of the mesh from the autoencoder output, since
the connectivity between the nodes is already known, decreas-
ing the post-processing costs. Also, the computational cost per
iteration is considerably lower, requiring less infrastructure for
training and performing experiments with the autoencoder.

The main drawbacks of forcing the order of the points
during the training are the required number of iterations
to achieve convergence and the restriction to datasets that
contain only isomorphic meshes. Nevertheless, it is important
to stress that this approach does not make the architecture
itself order dependent, since the 1-dimensional convolutions
in the encoder and the maximum pooling operation to retrieve
the latent representation were kept according to the original
implementation.

The PC-AE used in the experiments presents the same
number of filters for each layer as presented in [25], except for
the latent code, which is set to a 8-dimensional vector. Hence,
although the landscape for the optimization with the latent



representation differs from the one obtained with FFD, both
problems present at least the same dimensionality, allowing
a reasonable comparison between methods. Also, the model
was trained using 90% of the shapes in the dataset, selected
randomly, and the Adam Optimizer [31], with learning rate
η = 5E−04, β1 = 0.9, β2 = 0.99, in batches of 50 shapes and
over 1700 iterations. The evaluation of the loss function on the
training and test sets resulted in 0.067 and 0.082, respectively.

C. Optimization algorithm: CMA-ES

The selection of the optimizer for the present study ac-
counted for the characteristics of the problem and objectives of
the experiments. The aim is to emulate an environment as close
as possible to a real case of engineering optimization, where
the objective functions are computationally expensive and a
high convergence ratio is required. Nevertheless, the study
aims to evaluate the effects of the geometric representations
rather than modifying the optimizer or tuning the hyperparam-
eters, therefore, low number of parameters and robustness are
also expected.

Considering the previous assumptions, Evolutionary Algo-
rithms (EA) are a better fit than gradient-based optimizers.
EAs do not require derivatives and their mechanism of search
for the optimum allows the exploration of the design space,
reducing the chances of achieving sub-optimal solutions.
Nevertheless, it is important to point out that the gradient-
based algorithms are still applicable to the problem, since the
objective function can be derived with respect to the inputs
for both representations. An assessment of their capability of
handling such problems would also be an interesting scientific
contribution, since they are not often explored in such domain.

The method selected for the experiments is the CMA-ES,
due to its suitability for small populations [32]–[35], high
convergence ratio and low number of hyperparameters. The
approach implemented for the tests follows the proposal of
Hansen et al. [36], considering a (3, 10)-strategy, with initial
step size as 0.01 and 70 generations. The step size was defined
experimentally, with the purpose to avoid aggressive shape
modifications during the first stages of the optimization and,
therefore, the use of constraints.

IV. RESULTS

A. Optimization with full-match shapes

The first scenario concerns the experiment using geometries
contained in training set of the PC-AE. Therefore, the true
optimum in all optimizations is theoretically achievable for
both representations. The behavior of the objective function
was analysed statistically considering the fittest individuals of
all cases, for 7 sampled generations. The results are shown in
the box-plots of Figures 4 and 5.

As expected, nearly all the individuals converged to the
target shape, since the dataset was known by the PC-AE
and could be obtained with the parameters used in FFD.
However, comparing the mean and standard deviation of the
results in the last generations, the optimizations with the latent
representation led to more consistent results, since the fittest

Fig. 4. Normalized objective function and statistics of the fittest individuals
for all the optimizations using FFD as geometric representation.

Fig. 5. Normalized objective function and statistics of the fittest individuals
for all the optimizations using the latent space as geometric representation.

individuals were often closer to the optimum, as indicated by
the standard deviation values shown Table II and visually noted
in Figure 5.

TABLE II
MEAN AND STANDARD DEVIATION FOR THE NORMALIZED OBJECTIVE

FUNCTION EVALUATIONS OVER THE LAST GENERATIONS

Generation
20 30 40 50 60 70

µ FFD 0.1397 0.1054 0.0901 0.0817 0.0784 0.076
σ FFD 0.0646 0.0496 0.0468 0.042 0.0408 0.0404
µ PC-AE 0.1364 0.0846 0.0466 0.0276 0.0188 0.0159
σ PC-AE 0.0463 0.0416 0.0265 0.0157 0.0099 0.0083

In terms of feasibility of the geometries for CAE appli-
cations, both representations led to meshes with reasonable
smoothness at the latest stages. However, in some of the cases
using the PC-AE, the shapes obtained at intermediate steps of
the optimizations were not viable for CAE simulations, due
to high irregularity of the elements, as shown in Figure 6.
Hence only the FFD ensures continuity Ck of the surface, it
was expected that the results obtained by the deformational
method would provide higher smoothness and regularity of
the surfaces.



Fig. 6. Mesh reconstruction for intermediate shapes obtained in one of
the cases with the PC-AE. From the left to the right: 10th, 20th, 30th and
70th generations, the last showing the difference to the target shape in blue
elements.

B. Matching to unknown shapes

In the previous experiment, the optimizations were per-
formed using target shapes that could be achieved with the
selected parameterization, therefore, focusing on the exploita-
tion capability of the representations. In order to obtain an
impression of the potential for exploring new designs, a second
experiment is performed using target shapes that cannot be
achieved using the proposed parameters for both representa-
tions.

The target shapes were generated by positioning the control
points of the lattice used in the first experiment according to
harmonic functions in three axes. Performing the optimizations
and analysing the best individuals over generations, the results
yield the statistics shown in Figures 7 and 8.

Fig. 7. Normalized objective function and statistics of the fittest individuals
for all the optimizations using FFD as geometric representation.

Confirming the expectations, the optimizer was not able
to converge to the target shape in any of the cases and
for both representations. Statistically, the performance of the
optimization using the PC-AE is still comparable to the cases
with the FFD, but most of the shapes obtained with the
autoencoder led to infeasible meshes for CAE applications,
as shown in Figure 9.

C. Analysis of the latent variables

In order to identify potential causes for the results obtained
with the PC-AE representation, it is important to understand
how the latent variables are related to the parameters in the
original design space. A second source of influence on the
results is the configuration of the optimizer, however, for the
sake of brevity, the tuning of hyperparameters will not be
approached in this paper.

Fig. 8. Normalized objective function and statistics of the fittest individuals
for all the optimizations using the latent space as geometric representation.

Fig. 9. In red, on the left, optimized shape obtained using FFD representation
and on the right the results obtained with the PC-AE for the same target
geometry. The blue meshes are the corresponding target shapes.

Returning to the deformations of the first experiment, an
analysis of the correlation factor between latent variables and
the factor of scale along each axis was performed. Considering
60 randomly selected shapes from the dataset, the obtained
values are shown in Table III, where SF and LV stand for
Scaling Factor and Latent Variable, respectively.

TABLE III
CORRELATION BETWEEN THE LATENT VARIABLES AND DESIGN

PARAMETERS USED TO GENERATE THE DATASET

SF 1 SF 2 SF 3
LV1 0.2409 -0.1723 0.9995
LV2 0.5623 0.8708 0.0084
LV3 0.9812 0.0682 0.3905
LV4 0.9989 0.0987 0.1898
LV5 0.6087 0.7455 0.0135
LV6 0.9985 0.0969 0.2061
LV7 0.1366 0.9820 0.0118
LV8 0.9981 0.0926 0.2036

As shown in the previous Table, each latent variable has
a strong correlation with one component of deformation and
a weaker, yet significant, with a secondary component of
deformation. Hence, due to the coupling between the latent
variables and multiple components of deformation, the mod-
ifications made in the latent variables are prone to generate
noise and undesired displacements of the points, resulting in
infeasible meshes.

In order to explore the given justification, the PC-AE was
retrained considering the same conditions, but the dimension-
ality of the latent representation was reduced to 3 variables.



Performing the same analysis of correlation, the new factors
yield the values shown in Table IV. Although the effect of the
variables on the scaling along the axes is not fully decoupled,
it is less aggressive than in the previous case, increasing the
potential to achieve a smoother transition between shapes.

TABLE IV
CORRELATION BETWEEN THE PARAMETERS IN THE DESIGN SPACE AND

LATENT VARIABLES FOR THE PC-AE RETRAINED WITH 3 LATENT
VARIABLES.

SF1 SF2 SF3
LR1 0.9915 0.2186 0.1968
LR2 -0.1741 0.9641 -0.2383
LR3 -0.1386 -0.2301 0.9374

For verification purposes, additional 30 target shape match-
ing optimizations were performed using the simplified repre-
sentation, leading to the results of Figure 10. Similar to the
initial experiment, all the cases converged to shapes close to
the true optimum, with small deviations. Also, the number of
steps performed until reacing convergence was smaller, which
can be explained by the reduction in the dimensionality of the
design space. Finally, analysing the feasibility of the meshes
at intermediate steps, most of the shapes presented high
smoothness and no self-intersections, therefore, the coupling
between the latent variables and multiple shape modification
parameters has an influence on the feasibility of the shapes.
An example retrieved from one of the cases is shown in Figure
11.

Fig. 10. Statistic of the optimizations using a simplified latent representation.
The extreme values used for the normalization are 4.052 and 205.8.

Fig. 11. Mesh reconstructed for a sampled geometry at the 5th generation of
the optimization (left) and final stage (right), with the target shape shown in
blue.

V. CONCLUSION

In the search for a balance between design exploration
and computational costs, different geometric parameterizations
for reduction of dimensionality have been developed. Among
them, deformational approaches have been proven successful,
especially for aerodynamic shape optimization, where the
objective functions are often dependent on computationally
expensive numerical simulations. In the past few years, GDL
techniques started being investigated and new potential meth-
ods for compressing CAE models into efficient representations
came into scene.

In this paper we explored the efficiency of the bottleneck
layer of a PC-AE as a geometric representation for evolu-
tionary shape optimization problems, implementing a breaking
through application for GDL models. The representation was
tested on a target shape matching optimization framework, us-
ing the CMA-ES algorithm as optimizer and an FFD technique
as a reference for comparison. The experiments were designed
to analyse cases where the true optimum and only local optima
could be achieved. On both tests, the PC-AE representation led
to results at least comparable to the FFD approach, with mean
objective function values of 7.259 and 19.384 in the first case
for the PC-AE and FFD representations, respectively.

Nevertheless, the proposed method requires a dataset for
training the autoencoder, which is not always available prior to
the optimization. Additionally, defining the dataset is already
a challenging task, since it should contain the complete set of
geometric features that the network should be able to reach
during the optimization, which are frequently also unknown.
Hence, the development of a method for exploring geometric
features and designing a dataset is still required for imple-
menting the proposed approach in real-world tasks.

Additionally, the quality of the meshes at intermediate
steps of the optimization was investigated, since it is a usual
requirement for CAE applications. From the two main factors
that influence the shape generation process, only the footprints
on how the autoencoder abstracted the geometric features was
analysed. In order to do so, the correlation between the latent
variables and parameters used to generate the dataset were
correlated for two latent spaces of different dimensionality.
The analysis pointed out that the coupling between the a latent
variable and multiple geometric features is a possible source
of shape infeasibility, anaspect which was tested in a third
round of optimizations using a latent representation with the
same dimensionality of the design space.
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[34] T. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms for
parameter optimization,” Evolutionary Computation, vol. 1, no. 1, pp.
1–23, 1993. [Online]. Available: https://doi.org/10.1162/evco.1993.1.1.1
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