Evaluating Automatically Generated YARA Rules
and Enhancing Their Effectiveness

Nitin Naik!, Paul Jenkins?2, Roger Cooke?, Jonathan Gillett® and Yaochu Jin*

!School of Informatics and Digital Engineering, Aston University, United Kingdom
2School of Computing, University of Portsmouth, United Kingdom
3Defence School of Communications and Information Systems, Ministry of Defence, United Kingdom
“Department of Computer Science, University of Surrey, United Kingdom
Email: n.naikl @aston.ac.uk, paul.jenkins@port.ac.uk, roger.cooke472@mod.gov.uk,
jon.gillett704 @mod.gov.uk, yaochu.jin@surrey.ac.uk

Abstract—Emerging as a widely accepted technique for mal-
ware analysis, YARA rules due to its flexible and customisable
nature, allows malware analysts to develop rules according to the
requirements of a specific security domain. YARA rules can be
automatically generated using tools, however, they may require
post-processing for their optimisation, and may not be effective
for the specific security domain. This compels the requirement to
enhance automatically generated YARA rules and increase their
effectiveness for malware analysis without increasing computa-
tional overheads. Reflecting on the above requirement, this paper
initially evaluates automatically generated YARA rules using
three YARA tools: yarGen, yaraGenerator and yabin. These
tools are Python-based open-source tools used to generate YARA
rules automatically utilising different underlying techniques.
Subsequently, it proposes a method to enhance automatically
generated YARA rules using a fuzzy hashing method. This
proposed enhancement method can improve the effectiveness
of YARA rules irrespective of the chosen YARA tool used to
generate YARA rules, which is demonstrated through several
experiments on samples of collected malware and goodware.

Index Terms—Malware Analysis; YARA Rules; Fuzzy Hash-
ing; yarGen, yaraGenerator; yabin; Ransomware; Indicator of
Compromise; IoC String.

I. INTRODUCTION

The accelerating rate of malware incidents on daily basis
indicates the magnitude of the problem in malware analysis.
While malware analysts detect many malware attacks and
incidents, keeping pace with the number and different types
of attacks poses a significant challenge to malware analysts.
There is no silver bullet with respect to malware, as there is
no single malware analysis technique with the capability to
treat all malware incidents, as a result analysts select the most
suitable malware analysis technique for the specific security
incident under consideration [1]. In recent years, YARA rules
technique has emerged as a widely accepted technique for
malware analysis due to its flexible and customisable nature,
allowing malware analysts to develop YARA rules according
to their specific requirements in targeting specific types of
threats [2]. YARA rules are generated based on reverse en-
gineering of malware samples to include the most common

Indicator of Compromise (IoC) strings from those malware
samples to find similar types of malware.

The success of YARA rules is dependent on the effective-
ness of generated YARA rules, which is determined by the
types of IoC strings and the number of IoC strings utilised in
its rules [3]. Therefore, the generation of the most effective
YARA rules is the biggest challenge in applying YARA rules
for malware analysis [4]. YARA rules can be generated either
manually or automatically. Generating YARA rules manually
requires a highly-specialized skill-set in a specific security
area, whereas generating YARA rules automatically using a
tool is a relatively easy task [5]. However, there are several
issues with automatically generated YARA rules such as these
rules require post processing operations for their optimisa-
tion, despite this they may not become very effective for
certain types of threats [4], [5]. This drives the requirement
to enhance YARA rules and make them more effective for
malware analysis. There are a number of ways to achieve this
aim, however, any chosen mechanism should not increase the
computational overheads as certain types of YARA rules may
slow down the operation when applied to a large sample of
malware [2], [6], [7]. Reflecting on the above requirement
and the further enhancement of YARA rules, this paper at
first evaluates automatically generated YARA rules using three
YARA tools yarGen, yaraGenerator and yabin. These tools
are Python-based open-source tools used to generate YARA
rules automatically utilising different underlying techniques.
Subsequently, it proposes a method to enhance automatically
generated YARA rules using a fuzzy hashing method. This
proposed enhancement method can improve the effectiveness
of YARA rules irrespective of the chosen YARA tool used
to generate YARA rules [8], which is demonstrated through
several experiments on the collected malware and goodware
samples.

The paper is divided into the following sections: Section
IT discusses YARA rules and fuzzy hashing as the underlying
methods. Section III describes the three employed tools for
automatically generating YARA rules: yarGen, yaraGenerator
and yabin. Section IV explains the collection and verification

process of ransomware and goodware samples. Section V
performs an evaluation of automatically generated YARA rules
using yarGen, yaraGenerator and yabin Tools. Section VI
presents the proposed enhancement process of automatically
generated YARA rules using above YARA tools by employing
the fuzzy hashing method SSDEEP. Section VII explores
advantages and limitations of YARA Rules. Lastly, Section
VIII concludes the paper and outlines some future work.

II. YARA RULES AND Fuzzy HASHING

A. YARA Rules

YARA rules are developed to detect malware by match-
ing its signatures/strings with the existing malware signa-
tures/strings [3], [9]. These rules contain predetermined sig-
natures/strings related to known malware used in attempting
to match against the targeted files, folders, or processes
[10]. YARA rules consist of three sections: meta, strings and
condition as shown in Figs. 1 and 2. Here, strings can be
classified into three types: text strings, hexadecimal strings
and regular expression strings. Text strings are generally a
readable text complemented with some modifiers (e.g., nocase,
ASCII, wide, and fullword), to manage the process more
effectively [11]. Hexadecimal strings are a sequence of raw
bytes complemented with three flexible formats: wild-cards,
jumps, and alternatives [11]. Regular expression strings are
similar to text strings as a readable text complemented with
some modifiers; which are available since version 2.0 and
increases the capability of YARA rules [11]. Text strings
and regular expressions which express a sequence of raw
bytes through the use of escape sequences. The final part of
YARA rules is a rule condition that specifies the number of
signatures/strings required matching with the target to declare
the sample as malware [12]. YARA conditions determine
whether to trigger the rule or not, however, these conditions
are Boolean expressions similar to those used in all other
programming languages [11].

rule RuleName rule WannaCry
{ {
meta: meta:
description = “descriptions of rule” description = “Generic Signature of WannaCry”
author = “name” author = “Nitin Naik”
date = “dd/mm/yyyy” date = “01/06/2018"
reference = “url” reference = “www.mydomain.com”

strings:
Stext_string = “text1 you wish to find in malware”
Stext_string2 = “text2 you wish to find in malware”

strings:
Stext_string1 = “encrypt”
Stext_string2 = “bitcoin”

Shex_string1 = {hex1 you wish to find in malware}
Shex_string2 = {hex2 you wish to find in malware}

Shex_string1 = {B6 D3 56 AS 78 43}
Shex_string2 = {E8 27 F9 83 C4 82}

Sreg_exp_stringl = /regular expressions1 you wish to find in malware/
Sreg_exp_string2 = /regular expressions2 you wish to find in malware/

Sreg_exp_stringl = /md5: [0-9a-fA-F]{32)/
Sreg_exp_string2 = /state: (on|off)/

condition:
Stext_string1 or Stext_string2 or
Shex_string1 or Shex_string2 or
Sreg_exp_string or Sreg_exp_string2
} }

condition:
Stext_string1 or $text_string2 or
Shex_string1 or $hex_string2 or
Sreg_exp_stringl or Sreg_exp_string2

Fig. 1. YARA Rules: Syntax Fig. 2. YARA Rules: Example

B. Fuzzy Hashing

Fuzzy hashing is used to determine the similarity between
digital files, which makes it a very useful method for malware
analysis as several pieces of malware and their variants possess
some similarity with each other, which is not detected by a
cryptographic hash as it has a binary outcome i.e., either the
two files are exactly identical or not [13], [14]. In a fuzzy
hashing technique, the file of interest is split into several blocks
and each block is treated separately for calculating its hash,
finally, hashes of all the blocks are concatenated to obtain the
fuzzy hash of that file (see Fig. 3). A number of factors affect
the size of the fuzzy hash of a file, comprising of the block
size, the size of the file and the output size of the chosen
hash function [15]. Fuzzy hashing methods are divided into
different types namely: Context-Triggered Piecewise Hashing
(CTPH), Statistically-Improbable Features (SIF), Block-Based
Hashing (BBH) and Block-Based Rebuilding (BBR) [16],
[17], [18]. Forensic analysis of malware requires a thorough
knowledge of the degree of similarity between known malware
and inert files to assess files for their threat potential [19]. This
is especially important when considering the analysis and clus-
tering of suspected malware in order to discover new variants
[20], [21]. As a result, the use of the similarity preserving
property of fuzzy hashing is useful in malware analysis while
comparing unknown files with known malware families during
malware analysis, where samples possess similar functionality,
yet different cryptographic hash values [22].

Divide File Generate Hash for Concatenate all
into Segments each Segment Hashes to generate
Fuzzy Hash
F Segment 1 Hash 1
Fuzzy Hash =
Hash 1 + Hash 2 + Hash 3 + Hash N
I Segment 2 [Hash 2
— _l/_‘\ FU|ZzZY | HA|SH
L Segment 3 [— Hash 3
E Segment N Hash N

Fig. 3. Fuzzy Hash generation process in Fuzzy Hashing [10]

III. EMPLOYED TOOLS FOR AUTOMATICALLY GENERATED
YARA RULES: YARGEN, YARAGENERATOR AND YABIN

Generating YARA rules automatically is the most popular
method in employing YARA rules in malware analysis. In this
work, three different tools yarGen, yaraGenerator and yabin
are used to generate YARA rules automatically for evaluating
their effectiveness. Here, these three tools are explained with
their advantages and drawbacks.

A. yarGen Tool

yarGen is a Python-based tool utilised to generate YARA
rules, which is developed by Florian Roth [23]. It generates
YARA rules utilising some intelligent techniques such as

fuzzy regular expressions, Naive Bayes classifier and Gibber-
ish Detector [24]. The generated YARA rules include those
strings and opcodes from malware which do not match with
the provided goodware databases [23]. These YARA rules
contain a predefined number of strings (generally up to 20
strings), based on their highest scores to maintain a reasonable
operational speed. This tool generates two types of rules basic
rules and super rules depending on the malware sample types,
where basic rules can generally target a specific malware and
super rules can target a set of malware or malware family.

import "pe"

rule
WannaCry_697158bcade7373ccc9e52eal171d780988fc845d2b696898654e18954578920
{
meta:
description = " Specific WannaCry Signature -
697158bcade7373ccc9e52eal171d780988fc845d2b696898654e18954578920"
author = "yarGen Rule Generator"
date = ""2018-06-01"
reference =" https://github.com/Neo23x0/yarGen "
hash =
"697158bcade7373ccc9e52eal171d780988fc845d2b696898654e18954578920"
strings:
$s1 = "Tor/libevent_core-2-0-5.dIl" fullword ascii /* score: '23.00'*/
$s2 = "Tor/libevent_extra-2-0-5.dIl" fullword ascii /* score: '23.00'*/
$s3 = "Tor/libgec_s_sjlj-1.dl" fullword ascii /* score: '22.00'*/
$s4 = "Tor/libevent-2-0-5.dIl" fullword ascii /* score: '22.00'*/
$s5 = "Tor/libeay32.dIl" fullword ascii /* score: '22.00"*/
$s6 = "j GethSSk" fullword ascii /* score: '10.00'*/
$s7 = "RIVt%Rt%_t" fullword ascii /* score: '9.00'*/
$s8 = "\\\\%s\\CS\\%s" fullword ascii /* score: '8.50'*/
$59 = "kM:\\}kU t)" fullword ascii /* score: '8.42'*/
$s10 = "%/, I\"I*1&LIIIMB" fullword ascii /* score: '8.42'*/
$511 = "%X7x:\\" fullword ascii /* score: '7.00'*/
$512 = "bv7.YCB" fullword ascii /* score: '7.00'*/
$513 = "I\\Y&=" fullword ascii /* score: '7.00'*/
$s14 = "LUCEKYC" fullword ascii /* score: '6.50'*/
$515 = "jeF&[Y+ " fullword ascii /* score: '6.42'*/
$516 = "lj[*?qw- " fullword ascii /* score: '6.42'*/
$s17 = "S}5iSeSQSMSIS5S!S" fullword ascii /* score: '6.00™*/
$518 = "G@@LUIFFIIEECCO" fullword ascii /* score: '6.00'*/
$519 = "XnL4;* 3T" fullword ascii /* score: '6.00"*/
$520 = "ippOcN" fullword ascii /* score: '6.00'*/
condition:
uint16(0) == Ox5a4d and filesize < 10000KB and
(pe.imphash() == "c80a2354fd8e096ab6fd6b843b9a69f4" or 10 of them)

}

Fig. 4. yarGen Generated YARA Rule

1) Advantages- yarGen Tool:

« It allows generation of YARA rule based on both opcodes
and strings.

« It supports the use of PE (portable executable) modules,
which are used by the Windows operating system for
executables such as DLL and COM files.

« It can be integrated with other anti-malware software for
its more effective use.

o It reduces false positives by checking all strings against
strings of goodware databases.

o Python script is simple and easy to use through command
line interface.

2) Drawbacks- yarGen Tool:

o It requires post-processing of rules for increasing their
effectiveness.

rule
WannaCry_0e663b46bf75806da90902174010a2074910c07814a8ec863b7fb733a9%eafa8
{
meta:

description = " Specific WannaCry Signature -
0e663b46bf75806da90902174010a2074f910c07814a8ec863b7fb733a%eafa8"

author = "yarGenerator Rule Generator "

date = "2018-06-01"

yaraGenerator = " https://github.com/XenOphOn/YARAGenerator "

hash = "2f10e1fa578735fee822feb0b8f8a75b"

strings:

S$string0 = "}2lch3"

$stringl = "(x(B(((B((("

$string2 = " documentation on asserts."

Sstring3 = "Client hook re-allocation failure."

Sstring4 = "else's kettle Clinque "

Sstring5 = "7%8,82888G8P8US"

Sstring6 = "(e(S([(H("

Sstring7 = "BBN profile "

$string8 = "(((8((((("

Sstring9 = "string = NULL && sizeInWords > 0" wide

S$string10 = "Lavasoft" wide

Sstring11 = "7¢GDi d)"

$string12 = "CreateDialogParamA"

Sstring13 = "(d(8(,("

Sstring14 = " new[]"

$stringl15 = "InsertMenultemA"

Sstring16 = "TLOSS error"

Sstring17 = "strcpy_s(szOutMessage, 4096, szLineMessage)" wide

Sstring18 = "f:\\dd\\vctools\\crt_bld\\self_x86\\crt\\src\\output.c"
condition:

10 of them

}

Fig. 5. yaraGenerator Generated YARA Rule

« It requires significant resources for opcodes-based rules
and loading goodware files.

o The rule generation process is slow.

o The creation of super rules could cause duplication of
rules and redundancy.

« It requires installation of all dependencies and built-in
databases for working successfully.

B. yaraGenerator Tool

It is a Python-based tool used for the generation of YARA
rules, which is developed by Chris Clark [25]. It generates
YARA rules with a completely different signature for different
types of files such as EXEs, PDFs and Emails utilising string
prioritization logic and code refactoring [25]. The generated
YARA rules consist of strings only, including those strings
from malware which do not match with the provided blacklist
of strings [25]. It uses a database of 30,000 blacklisted strings
divided based on different file formats. These YARA rules
contain a large number of strings (depending on the types of
samples) selected randomly as it does not compute a score or
weighting for strings.

1) Advantages- yaraGenerator Tool:

o It can generate specialised rules of a specific file format.

o It supports the use of PE (portable executable) modules,
which are used by Windows operating system for exe-
cutables such as DLL and COM files.

o It reduces false positives by checking all strings against
strings of blacklist files.

« Python script is simple and easy to use through command
line interface.

2) Drawbacks- yaraGenerator Tool:

o It requires post-processing of rules for increasing their
effectiveness.

o It generates YARA rules based on random selection of
strings which may not select the most appropriate strings
in many cases.

o It does not support the inclusion of opcodes.

« The project was developed as a work in progress and not
updated afterwards.

C. yabin Tool

It is another Python-based tool used for generating YARA
rules, which is developed by Alien Vault Open Threat Ex-
change (OTX) community [26]. It generates YARA rules
by finding rare functions in a certain malware samples or
families [26]. It recognises functions by checking function
prologues which define the start of functions, for example,
55 8B EC mostly specifies the start of a function in programs
compiled by Microsoft Visual Studio. The generated YARA
rules include those strings from malware which do not match
with the provided whitelist of common library functions [26].
It uses a whitelist obtained from 100 Gb of non-malicious
software to omit common library functions [26]. These YARA
rules contain a list of hexadecimal strings to compare against
suspected malware files for finding the similarity in their byte-
sequences.

rule

WannaCry_1be0b96d502¢268cb40da97a16952d89674a9329cb60bac81a96e01cf7356830

{

strings:
$a_2 = { 558baad804000081fd000400005d7705 }
$a_3 = { 558bec6aff680072001068b660b001064 }
Sa_4 = { 558bac24e40200005683fd0457894c24 }
$a_5 = {558be9896c24188a450484c0751e68cc }
$a_6 = { 558bec6aff683072001068b66b001064 }
$a_7 = { 558becbaff681072001068b66b001064 }
$a_8 = {558be956578a450484c0751e68ccd800 }
$a_9 = {558b2d9c70001056576a00ffd38b0dc4 }
$a_10 = { 558b6c242833db563beb8bf10f843201 }
$Sa_11 ={558bac2438020000894424088b84243c }
$a_12 = {558b2dc070001057eb048b7424106aff }
$a_13 = { 558bcee81adfffff8b066a018bceff10 }
$a_14 = { 558bfbf3abb98100000033c08d7¢c2432 }
$a_15 = { 558bec6aff682072001068b66b001064 }

condition:
10 of them

}

Fig. 6. yabin Generated YARA Rule

1) Advantages- yabin Tool:

o It can be used to cluster malware samples based on the
reuse of their code.

o The search patterns can be extended during the post-
processing operation.

« It provides a large whitelist obtained from numerous non-
malicious software to omit common library functions.

« Python script is simple and easy to use through command
line interface.

2) Drawbacks- yabin Tool:

« It requires post-processing of rules to make them more
effective.

« It may not work on some specific file formats.

o It only uses functions and does not use other types of
strings.

« It can only work with unpacked executables.

« It is not designed to work on .NET executables, Java files
and Microsoft documents.

o It is mainly developed for the testing purpose and not for
the production.

IV. COLLECTION OF MALWARE AND GOODWARE
SAMPLES

In this implementation, one of the most prevalent malware,
ransomware was selected to perform all analysis and evalu-
ation of the effectiveness and performance of the proposed
techniques. Ransomware was selected for the experiment as it
is one of the most relevant and damaging examples of malware
that exploits victims for financial gain, business disruption and
market share. Numerous types of ransomware were created
and used in cyberattacks, though, some ransomware cate-
gories were worthy of greater focus due to their historical
significance, severity of attack and financial loss. Based on
primary research, four ransomware categories were targeted
for this work WannaCry/WannaCryptor, Locky, Cerber and
CryptoWall [27], [28], [29]. Thousands of malware samples
were acquired from the two sources Hybrid Analysis [30]
and Malshare [31]. Later, these samples were verified for
their credibility as numerous samples were simply bogus
samples. It was critical to select only credible samples of a
specific category as a reference to test all selected malware
analysis methods and the proposed techniques successfully.
These samples were investigated based on the information
available on VirusTotal [32]. To determine that every sample
was indeed genuine malware or ransomware and they were
members of a specific ransomware category, the criterion
was set that it must be identified as malware by at least
40 or more detection engines on VirusTotal. To check the
ransomware category of collected samples, their category from
WannaCry/WannaCryptor, Locky, Cerber and CryptoWall was
verified manually on the recognized detection engines on
VirusTotal. This sample collection and verification process was
both lengthy and time consuming, leading to 1000 ransomware
samples being selected out of several thousand samples, these
were equally divided into 250 samples of four ransomware
categories WannaCry/WannaCryptor, Locky, Cerber and Cryp-
toWall. The four different categories of ransomware were
chosen to evaluate how each employed YARA tool and its
corresponding enhanced method works on the different cate-
gories of ransomware.

In addition to the collection of malware (ransomware)
samples, equal numbers of goodware samples were collected
to balance this analysis. These 1000 goodware samples were
the files collected from ten commonly used software: JAVA,
MS OFFICE, Google Chrome, MySQL, R, NMAP, McAFee,

MATLAB, Python and Snort. These 10 different software
samples were chosen in such a way that it could encompass
a wide range of benign programs and to evaluate how each
employed YARA tool and its corresponding enhanced method
functions on the different types of benign program. Finally, a
total 2000 samples were utilised to perform all the experiments
applying all employed YARA tools and their corresponding
enhanced methods.

V. EVALUATING AUTOMATICALLY GENERATED YARA
RULES USING YARA TooLs

In this section, three selected tools that automatically
generate YARA rules yarGen, yaraGenerator and yabin are
evaluated. All the tools are applied on the collected and
verified ransomware samples of four ransomware corpora
WannaCry/WannaCryptor, Locky, Cerber and CryptoWall to
generate YARA rules. The generated YARA rules from each
tool are used to perform malware analysis and determine
their malware detection success rate as explained later in
the subsections. The experiment is aimed to illustrate the
similarity detection success rate of each YARA tool for each
ransomware category separately and collectively. It is expected
and most probably that each sample of the same category holds
some similarity to other samples in that category. Therefore,
experiments evaluate how many samples within one category
are matched with at least one other sample of the same
category by the generated YARA rules through each tool.

A. Evaluation Procedure of Automatically Generated YARA
Rules

All the three tools yarGen, yaraGenerator and yabin are
Python-based tools, therefore the YARA rules generation
procedure for all the tools was quite similar by using the
command line interface. However, the generated YARA rules
are quite different as they are based on different methodolo-
gies. Utilising all three tools with their default settings and
databases, YARA rules are generated for all four ransomware
corpora WannaCry/WannaCryptor, Locky, Cerber and Cryp-
toWall separately. Evidently, if the default settings are changed
and the number of strings and attributes are increased or
decreased then the same tool may produce different YARA
rules. Furthermore, the automatically generated rules require
post-processing to make them more effective. However, for the
rational evaluation of three YARA tools, the generated YARA
rules were evaluated without any post-processing operation.

B. Evaluation Results of Automatically Generated YARA Rules

Once the YARA rules are generated utilising all three
tools for all four ransomware categories separately, they are
used to detect the similarity for each ransomware category.
The detection results for all four ransomware categories for
all three YARA tools are shown in Table I. The detection
results show that YARA rules generated by yarGen tool
outperformed the YARA rules generated by the other two
tools yaraGenerator and yabin. This result indicates that for
the same malware samples, different tools generate different

rules which produce very different results. This result is based
on the default settings of each tool, however, if the default
settings are changed and number of strings and attributes
are increased or decreased then the same tool may produce
different analysis results. Importantly, if the number of strings
and attributes are significantly increased then it adversely
affects the performance of YARA rules as malware analysis
is always performed on a large sample size.

These three tools are further evaluated based on the values
of False Positives and False Negatives. This evaluation is based
on four standard evaluation metrics (Accuracy, Precision,
Recall and F1-Score), which are calculated as shown in Table
II. Here, the overall result of YARA rules generated by yarGen
tool is better than the result of YARA rules generated by two
other selected tools yaraGenerator and yabin. Moreover, to
evaluate the efficiency of any tool decisively, a balance of
Precision and Recall is very important, therefore, F1-Score
consisting of both may be more helpful in determining a
relatively better tool. Here, F1-Score of YARA rules generated
by yarGen tool is 75.49%, which is better than the F1-Score
of YARA rules generated by the other two selected tools.
This shows that YARA rules generated by yarGen are more
efficient as compared to YARA rules generated by the other
tools yaraGenerator and yabin. Despite the relatively better
result of YARA rules generated by yarGen tool, its result is
not sufficient to consider it as a generic method for analysis in
this particular case. Therefore, further investigation is required
to improve the efficiency of these YARA rules.

TABLE 1
DETECTION RESULTS OF AUTOMATICALLY GENERATED YARA RULES
USING TOOLS YARGEN, YARAGENERATOR AND YABIN FOR WANNACRY,
LOCKY, CERBER AND CRYPTOWALL RANSOMWARE SAMPLES

Ransomware | yarGen- yaraGenerator- | yabin-
Category YARA Rules | YARA Rules | YARA Rules

Detection Rate | Detection Rate | Detection Rate
WannaCry 89.6% 28.8% 44.8%
Ransomware
Locky 54.4% 6.8% 11.2%
Ransomware
Cerber 77.2% 10.4% 17.2%
Ransomware
CryptoWall 27.6% 5.2% 9.6%
Ransomware

TABLE 11

EVALUATION METRICS FOR AUTOMATICALLY GENERATED YARA RULES
USING TOOLS YARGEN, YARAGENERATOR AND YABIN

Evaluation | yarGen- yarGenerator- | yabin-
Metric YARA Rules YARA Rules YARA Rules
Accuracy | 79.80% 56.4% 60.35%
Precision | 95.99% 78.53% 88.09%
Recall 62.20% 12.8% 20.7%
F1-Score |75.49% 22.01% 33.52%

VI. ENHANCING THE EFFECTIVENESS OF
AUTOMATICALLY GENERATED YARA RULES WITH Fuzzy
HASHING METHOD

A. Enhancing Procedure of Automatically Generated YARA
Rules

Irrespective of the selected YARA rule generation tool,
all YARA rules contain strings which are matched against
strings of examined malware samples. The number and types
of strings determine the success of generated YARA rules.
Nonetheless, threat actors are equally intelligent and under-
stand such mechanisms, and they frequently attempt evasion
by using intelligent modifications in their malware. If only
few or none of the selected strings are found in the examined
samples then YARA rules do not flag samples as malware even
though they may be malware. To enhance the effectiveness of
YARA rules, the number of strings in YARA rules can be
increased, however, adding a large number of strings in rules
may increase the computational complexity and overheads
affecting the performance of YARA rules significantly. Addi-
tionally, in order to write such complex YARA rules or modify
automatically generated rules, a high degree of expertise is
required in cyber security [2], [6], [33]. Consequently, it is
essential to find a simpler solution to make YARA rules more
effective without incurring the complexities stated earlier.

Therefore, the requirement is to explore alternative mech-
anisms other than strings to enhance YARA rules. Fuzzy
hashing is a compact, fast and resource-optimised malware
analysis method, which may not be effective on its own,
nonetheless it can complement YARA rules enhancing its
effectiveness without affecting complexity significantly [22].
Fuzzy hashing attempts to find structural similarity between
the two entire files in circumstances where the selected strings
cannot be found in the sample [34]. Therefore, they can
complement each other in finding a missed opportunity by one
of the mechanisms. Additionally, fuzzy hashing can provide
the degree of similarity of each matched sample alongside the
outcome of YARA rules which is not achievable in YARA
rules alone. Thus, the combined search result can increase
the accuracy and confidence level of the malware analysis.
The operational flow of this proposed fuzzy hashing aided
enhanced YARA rules is shown in Fig. 7

B. Enhancing Results of Automatically Generated YARA Rules

The generated YARA rules using three selected tools
yarGen, yaraGenerator and yabin are adapted to incorporate
fuzzy hashing method SSDEEP to evaluate their effectiveness
on all four ransomware corpora WannaCry/WannaCryptor,
Locky, Cerber and CryptoWall. The reason for the selection
of a particular SSDEEP fuzzy hashing method over other
fuzzy hashing methods (e.g., SDHASH and mvHASH-B) is
explained in detail in the paper [8], [14], where SSDEEP is
more compact, faster and a resource-optimised fuzzy hashing
method in comparison to the other fuzzy hashing methods
[35]. Here, the SSDEEP fuzzy similarity scores greater than
30% are utilised for all the three YARA tools [8]. The detec-
tion results of enhanced YARA rules utilising SSDEEP fuzzy

Finds loC Strings

in Malware
Automatically

Generated)

YARA Rules
Suspicious Fuzzy Hashing Analysis
Malware Method — Result with
Samples Degree of

Similarity

Finds Structural
Similarity in Malware

Fig. 7. Fuzzy Hashing Aided Enhanced YARA Rules

hashing method for all three tools on the four ransomware
categories are shown in Table III. Noticeably, enhanced YARA
rules generated by all three tools (yarGen, yaraGenerator and
yabin) have indicated an improvement in the detection result as
compared to the original YARA rules generated by these three
tools. The detection results show that enhanced YARA rules
generated by yarGen tool again outperformed the enhanced
YARA rules generated by other two tools yaraGenerator and
yabin.

The enhanced YARA rules generated using fuzzy hashing
and three tools are further evaluated based on the values of
False Positives and False Negatives. Similarly, this evaluation
is based on four standard evaluation metrics (Accuracy, Preci-
sion, Recall and F1-Score), which are calculated as shown
in Table IV. Here, the overall result of enhanced YARA
rules generated by yarGen tool is again better than the result
of enhanced YARA rules generated by the other two tools
yaraGenerator and yabin. Moreover, to evaluate the efficiency
of any tool decisively, a balance of Precision and Recall is very
important, therefore, the F1-Score consisting of both may be
more helpful in determining a relatively better tool. Here, the
F1-Score of enhanced YARA rules is 79.08%, which is better
than the F1-Score of enhanced YARA rules generated by other
two tools yaraGenerator and yabin. This shows that enhanced
YARA rules generated by yarGen are again more efficient as
compared to enhanced YARA rules generated by other two
tools yaraGenerator and yabin.

Finally, the selected three tools yarGen, yaraGenerator and
yabin are compared based on their operational and functional
parameters as shown in Table V. This shows yarGen is rela-
tively better tool in terms of various features, functionalities
and accuracy, however, due to its comprehensive features and
functionality, it requires greater resources and computational
overheads, resulting in its slower performance.

TABLE IIT
DETECTION RESULTS OF ENHANCED YARA RULES GENERATED USING
Fuzzy HASHING AND TOOLS YARGEN, YARAGENERATOR AND YABIN
FOR WANNACRY, LOCKY, CERBER AND CRYPTOWALL RANSOMWARE

SAMPLES
Ransomware | yarGen- yaraGenerator- |yabin-
Category Fuzzy Hash | Fuzzy Hash | Fuzzy Hash
Enhanced YARA | Enhanced YARA | Enhanced YARA
Rules Detection | Rules Detection | Rules Detection
Rate Rate Rate
WannaCry 93.2% 90.8% 90.8%
Ransomware
Locky 59.6% 41.6% 41.6%
Ransomware
Cerber 77.2% 33.6% 33.6%
Ransomware
CryptoWall 38.4% 28% 28%
Ransomware
TABLE IV

EVALUATION METRICS FOR ENHANCED YARA RULES GENERATED

USING Fuzzy HASHING AND TOOLS YARGEN, YARAGENERATOR AND

YABIN
Evaluation | yarGen- yaraGenerator- | yabin-
Metric Fuzzy Hash | Fuzzy Hash | Fuzzy Hash
Enhanced YARA | Enhanced YARA | Enhanced YARA
Rules Rules Rules
Accuracy | 83.55% 74.25% 74.25%
Precision | 96.27% 93.27% 94.54%
Recall 67.10% 48.5% 48.5%
F1-Score |79.08% 63.81% 64.11%
TABLE V

COMPARISON OF OPERATIONAL AND FUNCTIONAL PARAMETERS OF
YARGEN, YARAGENERATOR AND YABIN TOOLS

Operational yarGen yaraGenerator |yabin

and Functional

Parameters

ToC Strings Text, Hex, Regu-|Text, Hex, Regu- | Function
lar Expressions, lar Expressions | Prologues
Opcodes

Weighing Scores of | Yes No No

IoC Strings

Portable Yes Yes No

Executable (PE)

Module

Use of Machine | Yes No No

Learning Methods

Underlying Fuzzy Regular | String Prioritiza- | Finding rare

Methods Expressions, Naive |tion Logic and | functions
Bayes Classifier and | Code Refactoring | by checking
Gibberish Detector function

prologues

Language Python Python Python

Databases good-exports.db, blacklist.txt, whitelist
good-imphashes.db, | regexblacklist.txt | database
good-opcodes.db, (db.db)
good-strings.db

Malware Yes No Yes

Clustering

Resource Highest Lower Lowest

Requirement

Speed Slowest Slower Fastest

Accuracy Most Accurate Least Accurate | Less Accurate

Open-Source Yes Yes Yes

VII. ADVANTAGES AND LIMITATIONS OF YARA RULES
A. Advantages of YARA Rules

YARA rules offers several advantages over other malware
analysis techniques, here are some of the most notable advan-
tages:

YARA rules offer an easy and efficient way of writing
flexible and custom rules according to the requirements
of a specific security domain.

YARA rules are an open standard and work on most of
the major platforms such as Windows, Linux and Mac
OS.

YARA rules can be easily integrated into Python and
C/C++ programming languages.

YARA rules can be used for both static and dynamic
malware analysis.

Several tools are available to generate YARA rules easily
and efficiently.

Several public repositories of YARA rules offer readily
available rules for malware analysis.

B. Limitations of YARA Rules

YARA rules are one of the most established malware
analysis techniques, however, they have some limitations, here
some of the most notable:

YARA rules are commonly written based on IoC strings,
however, attackers can easily manipulate, replace or en-
crypt these IoC strings to evade them, which could make
these rules less effective.

IoC strings are extracted from existing malware and their
families through a reverse engineering process, which re-
quires a highly-specialized skill-set in a specific security
domain.

The success of YARA rules is dependent on the types
and number of IoC strings included in rules, however,
achieving the balance of both is a challenging task as an
ineffective and inappropriate number of IoC strings could
affect the performance of YARA rules adversely.

YARA rules can be automatically generated using tools,
however, they may require post-processing for their op-
timisation, and may not be as effective as manually
generated YARA rules.

YARA rules are effective in detecting malware which
resemble similarity with the existing malware and their
families, however, it may miss out new and unique
malware variants.

VIII. CONCLUSION

This paper presented an evaluation of automatically gen-
erated YARA rules using three YARA tools yarGen, yara-
Generator and yabin, including a technique to enhance their
effectiveness using a fuzzy hashing method. These three tools
are applied on the collected ransomware samples of four
ransomware corpora WannaCry/WannaCryptor, Locky, Cerber
and CryptoWall to generate YARA rules. The generated YARA
rules from each tool are used to perform malware analysis

and determine their malware detection success rate. Here,
the yarGen tool provided relatively better detection results as
compared to other two tools yaraGenerator and yabin. Later,
the generated YARA rules using three selected tools yarGen,
yaraGenerator and yabin are enhanced by incorporating the
fuzzy hashing method SSDEEP and their effectiveness on
all four ransomware corpora is re-evaluated. This proposed
enhancement improved detection results for all three tools,
however, yarGen performed relatively better as compared to
the other two tools yaraGenerator and yabin. In the future, two
important analyses should be performed: generating YARA
rules by adapting various parameters of each tool and eval-
uation of additional YARA tools and their generated YARA
rules.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of Hybrid-
Analysis.com, Malshare.com and VirusTotal.com for this re-
search work.

(1]
(2]

(3]

(4]

(51

(6]

(7]

(8]

(9]
[10]

(1]
[12]
[13]

[14]

[15]

[16]

REFERENCES

K. Baker. (2020) Malware Analysis. [Online]. Available:
/Iwww.crowdstrike.com/epp- 101/malware-analysis/

C. S. Culling. (2018) Which YARA Rules : Basic or Advanced?
[Online]. Available: https://vt-gtm-wp-media.storage.googleapis.com/
2.0-Which- YARA-Rules-Rule-Basic-or- Advanced- 1.pdf

N. Naik, P. Jenkins, N. Savage, L. Yang, K. Naik, and J. Song, “Em-
bedding fuzzy rules with YARA rules for performance optimisation of
malware analysis,” in IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE). IEEE, 2020.

D. French. (2012) Writing effective YARA signatures to identify
malware. [Online]. Available: https://insights.sei.cmu.edu/sei_blog/
2012/11/writing-effective- yara-signatures- to-identify-malware.html
Intezer.com. (2019) Generate advanced YARA rules based on code
reuse. [Online]. Available: https://intezer.com/wp-content/uploads/
2019/06/Intezer_YARA_White_Paper.pdf

V. Alvarez. (2019) YARA Documentation, Release 3.10. 0.
[Online]. Available: https://buildmedia.readthedocs.org/media/pdf/yara/
latest/yara.pdf

F. Roth. (2019) YARA performance guidelines. [Online]. Available:
https://gist.github.com/Neo23x0/e3d4e316d7441d9143c7

N. Naik, P. Jenkins, N. Savage, L. Yang, K. Naik, J. Song, T. Boongoen,
and N. Iam-On, “Fuzzy hashing aided enhanced YARA rules for mal-
ware triaging,” in IEEE Symposium Series on Computational Intelligence
(SSCI). IEEE, 2020.

VirusTotal. (2019) YARA in a nutshell. [Online]. Available:
/Ivirustotal.github.io/yara/

N. Naik, P. Jenkins, N. Savage, L. Yang, K. Naik, and J. Song,
“Augmented YARA rules fused with fuzzy hashing in ransomware
triaging,” in IEEE Symposium Series on Computational Intelligence
(8SCI), 2019.

https:

https:

V. Alvarez. (2019) Writing YARA rules. [Online]. Available:
https://yara.readthedocs.io/en/v3.4.0/writingrules.html
Readthedocs. (2019) Writing YARA rules. [Online]. Available:

https://yara.readthedocs.io/en/v3.5.0/writingrules.html

J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digital investigation, vol. 3, pp. 91-97, 2006.

N. Naik, P. Jenkins, and N. Savage, “A ransomware detection method
using fuzzy hashing for mitigating the risk of occlusion of information
systems,” in 2019 IEEE International Symposium on Systems Engineer-
ing (ISSE), 2019.

A. Tridgell, “Efficient algorithms for sorting and synchronization,” Ph.D.
dissertation, Australian National University Canberra, 1999.

F. Breitinger and H. Baier, “A fuzzy hashing approach based on random
sequences and hamming distance,” in Annual ADFSL Conference on
Digital Forensics, Security and Law. 15, 2012. [Online]. Available:
https://commons.erau.edu/adfsl/2012/wednesday/15

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]
[30]

(311

[32]

(33]

(34]

[35]

C. Sadowski and G. Levin, “Simhash: Hash-based similarity detection,”
2007. [Online]. Available: www.webrankinfo.com/dossiers/wp-content/
uploads/simhash.pdff

V. Gayoso Martinez, F. Herndndez Alvarez, and L. Hernandez Encinas,
“State of the art in similarity preserving hashing functions,” 2014.
[Online]. Available: http://digital.csic.es/bitstream/10261/135120/1/
Similarity_preserving_Hashing_functions.pdf

N. Naik, C. Shang, P. Jenkins, and Q. Shen, “D-FRI-Honeypot: A
secure sting operation for hacking the hackers using dynamic fuzzy rule
interpolation,” IEEE Transactions on Emerging Topics in Computational
Intelligence, 2020.

N. Naik, P. Jenkins, N. Savage, and L. Yang, “A computational intel-
ligence enabled honeypot for chasing ghosts in the wires,” Complex &
Intelligent Systems, 2020.

——, “Cyberthreat Hunting- Part 2: Tracking Ransomware Threat
Actors using Fuzzy Hashing and Fuzzy C-Means Clustering,” in /EEE
International Conference on Fuzzy Systems (FUZZ-IEEE). 1EEE, 2019.
, “Cyberthreat Hunting- Part 1: Triaging Ransomware using Fuzzy
Hashing, Import Hashing and YARA Rules,” in [EEE International
Conference on Fuzzy Systems (FUZZ-IEEE). 1EEE, 2019.

F. Roth. (2018) yarGen is a generator for YARA rules. [Online].
Available: https://github.com/Neo023x0/yarGen

(2017) How to post-process YARA rules generated
by yarGen. [Online]. Available: https://medium.com/@cyb3rops/
how-to-post-process-yara-rules- generated-by-yargen-121d29322282

C. Clark. (2013) yaraGenerator: Automatic YARA rule generation.
[Online]. Available: https://github.com/XenOphOn/YaraGenerator

C. Doman. (2018) yabin: A YARA rule generator for finding
related samples and hunting. [Online]. Available: https://github.com/
AlienVault-OTX/yabin

K. Savage, P. Coogan, and H. Lau, “The evolution of ransomware -
Symantec,” pp. 1-57, 2015.

Y. Klijnsma. (2019) The history of Cryptowall:
cryptographic ransomware threat. [Online]. Available:
cryptowalltracker.org/

a large scale
https://www.

Malwarebytes. (2019) Ransomware. [Online]. Available: https:
/Iwww.malwarebytes.com/ransomware/
Hybrid-Analysis. (2019) Hybrid Analysis. [Online]. Available: https:

/Iwww.hybrid-analysis.com/

Malshare. (2019) A free Malware repository providing researchers
access to samples, malicious feeds, and YARA results. [Online].
Available: https://malshare.com/index.php
VirusTotal. (2019) Virustotal. [Online].
virustotal.com/#/home/upload

R. Dias. (2014) Intelligence-Driven Incident Response with YARA.
[Online]. Available: https://www.sans.org/reading-room/whitepapers/
forensics/intelligence-driven-incident-response-yara-35542

N. Naik, P. Jenkins, N. Savage, L. Yang, T. Boongoen, and N. Iam-
On, “Fuzzy-Import Hashing: A malware analysis approach,” in IEEE
International Conference on Fuzzy Systems (FUZZ-1IEEE). 1EEE, 2020.
N. Naik, P. Jenkins, J. Gillett, H. Mouratidis, K. Naik, and J. Song,
“Lockout-Tagout Ransomware: A detection method for ransomware
using fuzzy hashing and clustering,” in IEEE Symposium Series on
Computational Intelligence (SSCI), 2019.

Available: https://www.

