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Abstract—Homeowners, first-time buyers, banks, governments
and construction companies are highly interested in following the
state of the property market. Currently, property price indexes
are published several months out of date and hence do not offer
the up-to-date information which housing market stakeholders
need in order to make informed decisions. In this article, we
present an updated version of a central-price tendency based
property price index which uses geospatial property data and
stratification in order to compare similar houses. The expansion
of the algorithm to include additional parameters owing to a
new data structure implementation and a richer dataset allows
for the construction of a far smoother and more robust index
than the original algorithm produced.

I. INTRODUCTION

House price indexes provide vital information to the po-
litical, financial and sales markets, affecting the operation
and services of lending institutions greatly and influencing
important governmental decisions [1]. As one of the largest
asset classes, house prices can even offer insight regarding the
overall state of the economy of a nation [2]. Property value
trends can predict near-future inflation or deflation and also
have a considerable effect on the gross domestic product and
the financial markets [3], [4].

There are a multitude of stakeholders interested in the
development and availability of an algorithm which can offer
an accurate picture of the current state of the housing market,
including home buyers, construction companies, governments,
banks and homeowners [3], [6]].

Due to the recent global financial crisis, house price indexes
and forecasting models play a more crucial role than ever. The
key to providing a more robust and up-to-date overview of the
housing market lies in machine learning and statistical analysis
on set of big data [7]. The primary aim is the improvement
of currently popular algorithms for calculating and forecasting
price changes, while making such indexes faster to compute
and more regularly updated. Such advances could potentially
play a key role in identifying price bubbles and preventing
future collapses in the housing market [8]], [9].

Hedging against market risk has been shown to be po-
tentially beneficial to all stakeholders, however, it relies on
having up-to-date and reliable price change information which
is generally not publicly available [7l], [10]. This restricts
the possibility of this tool becoming a mainstream option to
homeowners and small businesses.

In this article, we will expand upon previous work by [3]
on a stratified, mix-adjusted median property price model
by applying that algorithm to a larger and richer dataset of
property listings and explore the enhancements in smoothness
offered by evolving the original algorithm enabled by the use
of a new data structure [[11]].

II. PROPERTY PRICE INDEX MODELS

In this section we will detail the three main classes of
existing property price indexes. These consist of the hedonic
regression, repeat-sales and central-price tendency methods.

A. Hedonic Regression

Hedonic regression [12] is a method which considers all
of the characteristics of a house (eg. bedrooms, bathrooms,
land size, location etc.) and calculates how much weight each
of these attributes have in relation to the overall price of the
house. While it has been shown to be the most robust measure
in general by [13], outperforming the repeat-sales and mix-
adjusted median methods, it requires a vast amount of detailed
data and the interpretation of an experienced statistician in
order to produce a result S]], [[14].

As hedonic regression rests on the assumption that the
price of a property can be broken down into its integral at-
tributes, the algorithm in theory should consider every possible
characteristic of the house. However, it would be impractical
to obtain all of this information. As a result, specifying a
complete set of regressors is extremely difficult [15].

The great number of free parameters which require tuning
in hedonic regression also leads to a high chance of overfitting
the model [5].

B. Repeat-sales

The repeat-sales method [16] is the most commonly used
method of reporting housing sales in the United States and uses
repeated sales of the same property over long periods of time
to calculate change. An enhanced, weighted version of this
algorithm was explored by [17]. The advantage of this method
comes in the simplicity of constructing and understanding the
index; historical sales of the same property are compared with
each other and thus the attributes of each house need not be
known nor considered. The trade-off for this simplicity comes
at the cost of requiring enormous amounts of data stretched
across long periods of time [18]].

(© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.




It has also been theorised that the sample of repeat sales
is not representative of the housing market as a whole. For
example, in a study by [19]], only 7% of detached homes
were resold in the study period, while 30% of apartments
had multiple sales in the same dataset. It is argued that this
phenomenon occurs due to the ’starter home hypothesis’:
houses which are cheaper and in worse condition generally sell
more frequently due to young homeowners upgrading [19],
[20], [21]. This leads to over-representation of inexpensive
and poorer quality property in the repeat-sales method. Cheap
houses are also sometimes purchased for renovation or are
sold quickly if the homeowner becomes unsatisfied with them,
which contributes to this selection bias [[19]]. Furthermore,
newly constructed houses are under-represented in the repeat-
sales model as a brand new property cannot be a repeat sale
unless it is immediately sold on to a second buyer [20].

As a result of the low number of repeat transactions, an
overwhelming amount of data is discarded [22]]. This leads to
great inefficiency of the index and its use of the data available
to it. In the commonly used repeat-sales algorithm by [17],
almost 96% of the property transactions are disregarded due
to incompatibility with the method [15].

C. Central Price Tendency

Central-price tendency models have been explored as an
alternative to the more commonly used methods detailed
previously. The model relies on the principle that large sets
of clustered data tend to exhibit a noise-cancelling effect and
result in a stable, smooth output [5]]. Furthermore, central price
tendency models offer a greater level of simplicity than the
highly-theoretical hedonic regression model. When compared
to the repeat sales method, central tendency models offer more
efficient use of their dataset, both in the sense of quantity and
time period spread [5], [23]].

According to a study of house price index models by [13]],
the central-tendency method employed by [23] significantly
outperforms the repeat-sales method despite utilising much
smaller dataset. However, the method is criticised as it does
not consider the constituent properties of a house and is thus
more prone to inaccurate fluctuations due to a differing mix of
sample properties between time periods [[13]]. For this reason,
[13] finds that the hedonic regression model still outperforms
the mix-adjusted median model used by [23]. Despite this, the
simplicity and data utilisation that the method offers deserve
credit were argued to justify these drawbacks [23[], [13].

An enhancement to the mix-adjusted median algorithm by
[23] was later shown to outperform the robustness of the
hedonic regression model used by the Irish Central Statistics
Office [3], [24)]. The primary drawback of this algorithm was
long execution time and high algorithmic complexity due
to brute-force geospatial search, limiting the algorithm from
being further expanded, both in terms of algorithmic features
and the size of the dataset [11]].

D. Improvement Attempts

With an aim to overcome the issue of algorithmic com-
plexity in the method described by [5], a niche data structure
was designed primarily for the purpose of greatly speeding
up the geospatial proximity search with the aim of sacri-
ficing minimal algorithmic precision. The GeoTree offers a
substantial performance improvement when applied to the
original algorithm while producing an almost identical index
[L1]. Through application of the GeoTree, the restrictions
on the original algorithm have been lifted and we can now
explore the performance of an evolved implementation of the
algorithm on a richer, alternative dataset while introducing
further parameters.

III. CASE STUDY: MYHOME PROPERTY LISTING DATA

MyHome [235]] are a major player in property sale listings in
Ireland. With data on property asking prices being collected
since 2011, MyHome have a rich database of detailed data
regarding houses which have been listed for sale. MyHome
have provided access to their dataset for the purposes of this
research.

A. Dataset Overview

The data provided by MyHome includes verified GPS co-
ordinates, the number of bedrooms, the type of dwelling and
further information for most of its listings. It is important to
note, however, that this dataset consists of asking prices, rather
than the sale prices featured in the less detailed Irish Property
Price Register Data (used in the original algorithm) [5].

The dataset consists of a total of 718,351 property listing
records over the period February 2011 to March 2019 (inclu-
sive). This results in 7,330 mean listings per month (with a
standard deviation of 1,689), however, this raw data requires
some filtering for errors and outliers.

B. Data Filtration

As with the majority of human collected data, some pruning
must be done to the MyHome dataset in order to remove
outliers and erroneous data. Firstly, not all transactions in
the dataset include verified GPS co-ordinates or include data
on the number of bedrooms. These records will be instantly
discarded for the purpose of the enhanced version of the al-
gorithm. They account for 16.5% of the dataset. Furthermore,
any property listed with greater than six bedrooms will not
be considered. These properties are not representative of a
standard house on the market as the number of such listings
amounts to just 1% of the entire dataset.

Any data entries which do not include an asking price
cannot be used for house price index calculation and must
be excluded. Such records amount to 3.6% of the dataset.
Additionally, asking price records which have a price of less
than € 10,000 or more than € 1,000,000 are also excluded,
as these generally consist of data entry errors (eg. wrong
number of zeroes in user-entered asking price), abandoned or
dilapidated properties in listings below the lower bound and
mansions or commercial property in the entries exceeding the



upper bound. Properties which meet these exclusion criteria
based on their price amount to only 2% of the dataset and
thus are not representative of the market overall.

In summation, 77% of the dataset survives the pruning
process. This leaves us with 5,646 filtered mean listings per
month.

C. Comparison with PPR Dataset

The mean number of filtered monthly listings available in
our dataset represents a 157% increase on the 2,200 mean
monthly records used in the original algorithm’s index compu-
tation [3]]. Furthermore, the dataset in question is significantly
more precise and accurate than the PPR dataset, owing to the
ability to more effectively prune the dataset. The PPR dataset
consists of address data entered by hand from written docu-
ments and does not use the Irish postcode system, meaning that
addresses are often vague or ambiguous. This results in some
erroneous data being factored into the model computation as
there is no effective way to prune this data [S]. The MyHome
dataset has been filtered to include verified addresses only, as
described previously.

The PPR dataset has no information on the number of
bedrooms or any key characteristics of the property. This can
result in dilapidated properties, apartment blocks, inherited
properties (which have an inaccurate sale value which is used
for taxation purposes) and mansions mistakenly being counted
as houses [5)]. Our dataset consists of only single properties
and the filtration process described previously greatly reduces
the number of such unrepresentative samples making their way
into the index calculation.

The “sparse and frugal” PPR dataset was capable of out-
performing the CSQO’s hedonic regression model with a mix-
adjusted median model [5]]. With the larger, richer and more
well-pruned MyHome dataset, further algorithmic enhance-
ments to this model are possible.

IV. PERFORMANCE MEASURES

Property prices are generally assumed to change in a
smooth, calm manner over time [26] [27]]. According to [S],
the smoothest index is, in practice, the most robust index.
As a result of this, smoothness is considered to be one of
the strong indicators of reliability for an index. However,
the ’smoothness’ of a time series is not well defined nor
immediately intuitive to measure mathematically.

The standard deviation of the time series will offer some
insight into the spread of the index around the mean index
value. A high standard deviation indicates that the index
changes tend to be large in magnitude. While this is useful
in investigating the “calmness” of the index (how dramatic its
changes tend to be), it is not a reliable smoothness measure,
as it is possible to have a very smooth graph with sizeable
changes.

The standard deviation of the differences is a much more
reliable measure of smoothness. A high standard deviation of
the differences indicates that there is a high degree of variance
among the differences ie. the change from point to point is

unpredictable and somewhat wild. A low value for this metric
would indicate that the changes in the graph behave in a more
calm manner.

Finally, we present a metric which we have defined, the
mean spike magnitude jiax (MSM) of a time series X. This
is intended to measure the mean value of the contrast between
changes each time the trend direction of the graph flips. In
other words, it is designed to measure the average size of the
’spikes’ in the graph.

Given Dx = {di,...,d,} is the set of differences in the
time series X, we say that the pair (d;,d;+1) is a spike if d;
and d;;, have different signs. Then S; = |d;+1 — d;] is the
spike magnitude of the spike (d;,d;y1).

The mean spike magnitude of X is defined as:

where:
Sx = {951,852, ...,5:} is the set of all spike magnitudes of X

V. ALGORITHMIC EVOLUTION
A. Original Price Index Algorithm

The central price tendency algorithm introduced by [5]
was designed around a key limitation; extremely frugal data.
The only data available for each property was location, sale
date and sale price. The core concept of the algorithm relies
on using geographical proximity in order to match similar
properties historically for the purpose of comparing sale
prices. While this method is likely to match certain properties
inaccurately, the key concept of central price tendency is that
these mismatches should average out over large datasets and
cancel noise.

The first major component of the algorithm is the voting
stage. The aim of this is to remove properties from the
dataset which are geographically isolated. The index relies on
matching historical property sales which are close in location
to a property in question. As a result, isolated properties will
perform poorly as it will not be possible to make sufficiently
near property matches for them.

In order to filter out such properties, each property in the
dataset gives one vote to its closest neighbour, or a certain,
set number of nearest neighbours. Once all of these votes
have been casted, the total number of votes per property is
enumerated and a segment of properties with the lowest votes
is removed. In the implementation of the algorithm used in
[S], this amounted to ten percent of the dataset.

Once the voting stage of the algorithm is complete, the
next major component is the stratification stage. This is the
core of the algorithm and involves stratifying average property
changes on a month by month comparative basis which then
serve as multiple points of reference when computing the over-
all monthly change. The following is a detailed explanation of
the original algorithm’s implementation.



First, take a particular month in the dataset which will serve
as the stratification base, my. Then we iterate through each
house sale record in my, represented by h,,,. We must now
find the nearest neighbour of h,,, in each preceding month in
the dataset, through a proximity search. For each prior month
my to my, refer to the nearest neighbour in my to A, in
question as h,,, . Now we are able to compute the change
between the sale price of h,,, and the nearest sold neighbour
to h in each of the months {m,...,m,} as a ratio of h,,, to
hm, for z € {1,...,n}. Once this is done for every property
in my, we will have a scenario such that there is a catalogue
of sale price ratios for every month prior to m and thus we
can look at the median price difference between m and each
historic month.

However, this is only stratification with one base, referred
to as stage three in the original article [S]]. We then expand the
algorithm by using every month in the dataset as a stratification
base. The result of this is that every month in the dataset now
has price reference points to every month which preceded it
and we can now use these reference points as a way to compare
month to month.

Assume that m, and m,y; are consecutive months in
the dataset and thus we have two sets of median ratios
{re(mi),...,re(mz—1)} and {rpp1(ma),...,re11(my)}
where r,(m,) represents the median property sale ratio be-
tween months m, and m, where m, is the chosen stratifica-
tion base. In order to compute the property price index change
from m, to m,1, we look at the difference between 7, (m;)
and r,1(m;) for each ¢ € 1,...,2 — 1 and take the mean
of those differences. As such, we are not directly comparing
each month, rather we are contrasting the relationship of both
months in question to each historical month and taking an
averaging of those comparisons.

This results in a central price tendency based property index
that outperformed the national Irish hedonic regression based
index while using a far more frugal set of data to do so.

B. GeoTree

The largest drawback of the original index lies in the
computational complexity; it is extremely slow to run. This is
due to the performance impact of requiring repeated search for
neighbours to each data point. This limitation was responsible
for preventing the algorithm scaling to larger datasets, more
refined time periods and more regular updating. A custom data
structure, the GeoTree, was developed in order to trade off a
small amount of accuracy in return for the ability to retrieve a
cluster of neighbours to any property in constant time [11].
This data structure relies on representing the geographical
location of properties as geohash strings.

The GeoTree data structure functions by placing the geohash
character by character into a tree-structure where each branch
at each level represents an alphanumeric character. Under each
branch of the tree there is also a list node which caches all of
the property records which exist as an entry in that subtree,
allowing the O (1) retrieval of those records. The number of
sequential characters in common from the start of a pair of

geohashes puts a bound on the distance between those two
geohashes. Thus, by traversing down the tree and querying
the list nodes, the GeoTree can return a list of approximate
nearest neighbours in O (1) time [L1].

As can be seen in [[11| Table I], the performance improve-
ment to the index offered by the GeoTree is profound and
sacrifices very little in terms of precision, with the resulting
indexes proving close to identical. This development allows
the scope of the index algorithm to be widened, including the
introduction of larger datasets with richer data, more frequent
updating and the development of new algorithmic features,
some of which will be explored in this article.

C. Geohash*

Extended geohashes, which we will refer to as geohash®,
are geohashes which have been modified to encode additional
information regarding the property at that location. Additional
parameters are encoded by adding a character in front of
the geohash. The value of the character at that position
corresponds to the value of the parameter which that character
represents. demonstrates the structure of a geohash*
with two additional parameters, p; and ps.

geohash*: p1pox1... 2y
S ——

+ geohash
Fig. 1: geohash™ format

Any number of parameters can be prepended to the geohash.
In the context of properties, this includes the number of
bedrooms, the number of bathrooms, an indicator of the type
of property (detached house, semi-detached house, apartment
etc.), a parameter representing floor size ranges and any other
attribute desired for comparison.

Alternative applications of geohash™ could include a situa-
tion where a rapid survey of nearby live vehicles of a certain
type is required. If we prepend a parameter to the geohash
locations of vehicles representing that vehicle’s type, eg: 1 for
cars, 2 for vans, 3 for motorcycles and so forth, we can use
the GeoTree data structure to rapidly survey the SCBs around
a particular vehicle, with separate SCBs generated for each
type automatically.

D. GeoTree Performance with geohash*

Due to the design of the GeoTree data structure, a geohash*
will be inserted into the tree in exactly the same manner
as a regular geohash [11]. If the original GeoTree had a
height of h for a dataset with h-length geohashes, then the
GeoTree accepting that geohash extended to a geohash* with
p additional parameters prepended should have a height of
h~+p. However, both of these are fixed, constant, user-specified
parameters which are independent of the number of data
points, and hence do not affect the constant-time performance
of the GeoTree.

The major benefit of this design is that the ranged proximity
search will interpret the additional parameters as regular



geohash characters when constructing the common buckets
upon insertion, and also when finding the SCB in any search,
without introducing additional performance and complexity
drawbacks.

E. Enhanced Price Index

In order to enhance our price index model, we prepend a
parameter to the geohash of each property representing the
number of bedrooms present within that property. As a result,
when the GeoTree is performing the SCB computation, it will
now only match properties which are both nearby and share
the same number of bedrooms. This allows the index model to
compare the price of properties which are more similar across
the time series and thus should result in a smoother, more
accurate measure of the change in prices over time.

The technical implementation of this algorithmic enhance-
ment is handled almost entirely by the GeoTree automatically,
due to its design. As described previously, the GeoTree sees
the additional parameter no differently to any other character
in the geohash and due to its placement at the start of
the geohash, the search space will be instantly narrowed to
properties with matching number of bedrooms, z, by taking
the z branch in the tree at the first step of traversal.

VI. RESULTS

We ran the algorithm on the MyHome data without factoring
any additional parameters as a control step. We then created
a GeoTree with geohash® entries consisting of the number
of bedrooms in the house prepended to the geohash for the
property.

A. Comparison of Time Series

Table I| shows the performance metrics previously described
applied to the algorithms discussed in this paper: Original
PPR, PPR with GeoTree, MyHome without bedroom factoring
and MyHome with bedroom factoring. While both the standard
deviation of the differences and the MSM show that some
smoothness is sacrificed by the GeoTree implementation of the
PPR algorithm, the index running on MyHome’s data without
bedroom factoring approximately matches the smoothness of
the original algorithm. Furthermore, when bedroom factoring
is introduced, the algorithm produces by far the smoothest
index, with the standard deviation of the differences being
26.2% lower than the PPR (original) algorithm presented in
[5], while the MSM sits at 58.2% lower.

If we compare the MyHome results in isolation, we can
clearly observe that the addition of bedroom matching makes
a very significant impact on the index performance. While
the trend of each graph is observably similar,
demonstrates that month to month changes are less erratic
and appear less prone to large, spontaneous dips. Considering
the smoothness metrics, the introduction of bedroom factoring
generates a decrease of 26.8% in the standard deviation of
the differences and a decrease of approximately 48.4% in the
MSM. These results show a clear improvement by tightening
the accuracy of property matching and are promising for the

potential future inclusion of additional parameters such as
bedroom matching should such data become available.

Figure 2| corresponds with the results of these metrics, with
the MyHome data (bedrooms factored) index appearing the
smoothest time series of the four which are compared. It is
important to note that the PPR data is based upon actual sale
prices, while the MyHome data is based on listed asking prices
of properties which are up for sale and as such, may produce
somewhat different results.

It is a well known fact that properties sell extremely well
in spring and towards the end of the year, the former being
the most popular period for property sales. Furthermore, the
months towards late summer and shortly after tend to be the
least busy periods in the year for selling property [28]. These
phenomena can be observed in where there is a
dramatic increase in the listed asking prices of properties in
the spring months and towards the end of each year, while
the less popular months tend to experience a slump in price
movement. As such, the two PPR graphs and the MyHome
data (bedrooms not factored) graph are following more or
less the same trend in price action and their graphs tend to
meet often, however, the majority of the price action in the
MyHome data graphs tends to wait for the popular selling
months. The PPR graph does not experience these phenomena
as selling property can be a long, protracted process and due
to a myriad of factors such as price bidding, paperwork, legal
hurdles, mortgage applications and delays in reporting, final
sale notifications can happen outside of the time period in
which the sale price is agreed between buyer and seller.

VII. CONCLUSION

The introduction of bedroom factoring as an additional
parameter in the pairing of nearby properties has been shown
to have a profound impact on the smoothness of the mix-
adjusted median property price index, which was already
shown to outperform a popularly used implementation of
the hedonic regression model. This improvement was made
possible due to the acquisition of a richer data set and the
development of the GeoTree structure, which greatly increased
the performance of the algorithm. There is future potential for
the introduction of further property characteristics (such as
the number of bedrooms, property type etc.) in the proximity
matching part of the algorithm, should such data be acquired.

Furthermore, the design of the data structure used en-
sures that minimal computational complexity is added when
considering the technical implementation of this algorithmic
adjustment. As a result of this, the index can be computed
quickly enough that it would be possible to have real-time
updates (eg. up to every 5 minutes) to the price index, if a
sufficiently rich stream of continuous data was available to
the algorithm. Large property listing websites, such as Zillow,
likely have enough live, incoming data that such an index
would be feasible to compute at this frequency, however, this
volume of data is not publicly available for testing.



TABLE I: Index Comparison Statistics

Algorithm St. Dev Sitffgzrlc()ei; MSM
PPR (original) 16.524 2.191 23.30
PPR (GeoTree) 16.378 2.518 29.78

Mylgg(rﬁz(gghout 12.898 2.209 18.91
M{)Eé’rrggn(lzv)ith 12.985 1.617 9.75
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Fig. 2: Comparison of index on PPR and MyHome data sets, from 02-2011 to 03-2019 [data limited to 09-2018 for PPR]
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