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Abstract—Multi-fidelity meta-modelling has become a popular
means of efficiently distributing computational resource across
various levels of simulation fidelity to obtain numerically accurate
predictions of an expensive function. Such techniques have
significant potential within an engineering design paradigm incor-
porating either many-query analyses or outer-loop applications.

This paper presents a hybrid parametric/non-parametric infor-
mation correction method incorporating the sequential applica-
tion of several distinct stages within an artificial neural network
based surrogate framework. The proposed methodology may be
used to correct any domain encompassing set of low-fidelity
input/output correspondence using a small subset of high-fidelity
samples. A global surrogate can then be generated via a double-
loop ANN hyper-parameter selection and training procedure.

To demonstrate the effectiveness of the proposed meta-
modelling approach, the aerodynamic response prediction of a
parametrized waverider-based re-entry vehicle is examined. Re-
sults suggest that the incorporation of multiple corrective stages
leveraging low-fidelity data can offer significant improvements
in computational efficiency when modelling the expensive high-
fidelity function compared with single stage correction. The costs
to achieve global accuracy are examined and compared across
single/multi-stage variants, with consideration given to surrogate
construction and evaluation. Results are compared both with
the low-fidelity approximation and a surrogate of the ’true’
response built using only the high-fidelity samples available to
the corrective method.

Index Terms—multi-fidelity, surrogate, correction, ANN

I. INTRODUCTION

The advancement of computational processing capability
has significant implications for the design of complex mul-
tidisciplinary systems [1]. The ability to simulate physical
processes to an increasingly high degree of fidelity, coupled
with an upwards trend in system performance requirements,
has promoted a widespread desire to include high-fidelity (HF)
subsystem analyses at earlier stages in the design process [2],
[3]. Such practice, in departure from the traditional methodol-
ogy of upgrading modelling fidelity at a rate proportional to
high-level developmental progress [4], [3], has the potential
to identify complex subsystem interactions at a sufficiently
early stage as to mitigate the economic implications of late
stage alterations and ultimately achieve previously unattainable
levels of performance [3].
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Cause for concern is the high dependence on reliable
simulation of individual subsystems. Indeed, the consequences
of completing a formal multidisciplinary design study with
inaccurate or misleading models may eradicate any develop-
mental/financial savings gained by including such analyses in
the first place [5]. Unfortunately, the benefits of advancing
computational power (commonly cited in relation to Moore’s
law, see [6]) are inexorably tempered by increasing simulation
complexity [7], [1]. Many advanced numerical methods, such
as Computational Fluid Dynamics (CFD) and Finite Element
Analysis (FEA), still typically require significant computa-
tional resource, even for isolated analyses. Such costs limit
their use within numerical optimisation studies, for which
subsystem models may be evaluated many thousands of times.

A traditional strategy to mitigate this incompatibility is to
approximate the expensive simulation with a cheap to evaluate
surrogate model (or meta-model). This simple conjecture has
prompted a wide range of developmental areas across science
and engineering [5], [8], [9]. Indeed, Simpson argues (in
defence of Moore’s law) that the decreasing cost ratio of
surrogate generation relative to the cost of the required HF
analyses has promoted the development and application of
increasingly sophisticated meta-modelling techniques [1].

Directly constructing such surrogates with HF sampling can
nonetheless remain prohibitively expensive [10], especially
when underlying non-linearities or multi-modality necessitate
a higher number of samples for a useful approximation. A
method that has received considerable attention in recent years
is the use of multi-fidelity (or variable fidelity) surrogates.
That is, models leveraging the response trends of one or more
inexpensive, lower quality models in conjunction with a small
number of HF evaluations to accurately mimic the expensive
function response at a fraction of the cost.

This paper presents an automated multi-fidelity (MF) model
generation method intended for use within many-query/outer-
loop applications. The method utilises the sequential ap-
plication of three individual response correction techniques:
parametric scaling, relative response mapping and additive dis-
crepancy modelling within an artificial-neural-network (ANN)
surrogate based framework. The method is found to outper-
form selected single and 2-stage variants in terms of attainable
prediction accuracy relative to the number of HF samples.



The remainder of this paper is organised as follows. Section
IT briefly reviews MF model management and ANN appli-
cations. Section III introduces the mathematical basis behind
the ANN fitting technique employed in this paper. Section IV
presents the proposed MF meta-modelling approach, including
overall concept and mathematical formulation. In sections V
and VI, this approach is applied to the aerodynamic prediction
of a parametrized waverider-based re-entry vehicle. Section
VII presents the associated cost savings, and finally section
VIII presents the author’s conclusions and recommendations.

II. BACKGROUND
A. Multi-fidelity model management

MF modelling assumes that for an accurate yet computa-
tionally expensive model there exists at least one alternative
model that for a significantly reduced cost can represent
features of interest and/or general trends of the underlying
physical process [11]. Two key applications can be described
via the distinction between many-query analyses, in which
global accuracy is promoted across constituent subsystem
models, and outer-loop applications, in which local accuracy is
promoted within the vicinity of the desired/expected solution
[11]. A MF process is conducted via two distinct stages:

1) The selection/generation of appropriate low-fidelity (LF)
models (or surrogates thereof).

2) The implementation of an appropriate model man-
agement strategy that distributes computational power
amongst information sources to establish numerical ac-
curacy or guide an outer-loop towards convergence.

Given the inherent reliance of correction quality on the
correlation between the LF and HF approximations [12], it
becomes important to examine the LF modelling approaches
available for a given physical process. LF models may be
derived according to three high-level classifications [11];
simplification, projection and data-fit. Simplification refers
to models constructed via simplifying assumptions relative
to a HF counterpart. For example, simplifying the analysis
model (e.g. coarse instead of refined mesh discretization [13],
neglected non-linearities or an early stopping criteria [14]),
simplifying the domain/level of abstraction (e.g. 2D versus 3D
[4], additional boundary conditions [15] or simplified geome-
try [16]) or simplifying the mathematical/physical description
(e.g. Euler non-cohesive instead of viscous Navier—Stokes
[17]). Projection based models take advantage of problem
structure, as opposed to expert domain knowledge [11] to
"project’ the input/output relationship of the HF model onto
a lower-dimensional subspace, thus exploiting general trends
and features. Methods include Proper Orthagonal Decompo-
sition (POD), Reduced Basis Modelling, Centroidal Voronoi
Tessellation (CVT) and Krylov Subspace methods [8], [11].
Finally, data-fit models are derived directly from a finite set of
input/output correspondence. An advantage here is that there
is no need for any additional formulation, samples may be col-
lected directly using the existing simulation/model. Naturally
then, traditional interpolation or meta-modelling techniques

such as Polynomial Response Surface Modelling (RSM),
Radial Basis Functions, Kriging, Support Vector Regression
and Artificial Neural Networks may be employed [18], [9]
(assuming sufficient samples are available).

MF methods differ in their approach to combine distinct
levels of fidelity. Adaptive methods directly correct/enhance
an existing LF model (or set of models) using selective
HF samples [19], fusion methods combine separate levels of
fidelity into a single surrogate response, without any explicit
correction [20], and filtering methods employ a hierarchical
management of separate models, typically dependant on ac-
ceptable relative accuracy or related criteria [21]. Each of
the preceding techniques may be applied to an optimisation
problem via an appropriate model management framework.
Common approaches include utilising one or more LF/MF
models to accelerate the search for the global optimum [22],
leveraging an adaptively corrected MF model within a trust
region model management scheme [23], or directly optimising
an MF approximation of the objective function [10]. Recent
progress includes the work of Han et al [24] to extend the
Hierarchical Kriging methodology to a *multi-level’ case in-
corporating an arbitrary number of model fidelities, the hybrid
additive/multiplicative bridge function applied by Fischer et
al [2] for which a weighted combination of two discrepancy
functions is determined via a Bayesian update technique
implemented within a trust-region model management optimi-
sation framework, and the work of Zhou et al [25], in which
their two-stage adaptive MF surrogate generation method
incorporating a linear parameter extraction is integrated into a
Multi-Objective Genetic Algorithm (MOGA).

Various software implementations of established MF surro-
gate modelling methods are available, such as the MATLAB
SUrrogate MOdelling (SUMO) toolbox [26] and Automated
Learning of Algebraic Models for Optimisation (ALAMO)
[27]. Less prevalent are packages tailored to MF conceptual
aircraft design. A notable example is the Stanford University
Aerospace Vehicle Environment (SUAVE) [28].

B. Artificial Neural Networks

An Artificial Neural Network (ANN) is a collection of
simple computational units (neurons) arranged into an inter-
connecting parallel processing structure [29]. A network may
be ’trained’ according to a finite set of corresponding in-
put/target vectors. A suitably trained ANN may perform
tasks such as pattern recognition, identification, classifica-
tion, system control and function approximation (non-linear
regression)[29]. In aerospace, ANNs have been used for the
estimation of aerodynamic coefficients [30], space vehicle
design and trajectory optimisation [31], [32], turbo-machinery
blade optimisation [33], wing design [34], flow control, aeroe-
lasticity, and interpolation of wind tunnel data [18].

Despite wide applicability, a recent study found that
ANNs account for only 4% of peer-reviewed MF modelling
studies[8]. Bakr et al [35] present a space-mapping based
neuro-modelling optimisation technique in which the HF opti-
mum is found by replacing the LF model at each iteration with



an adaptively-sized ANN trained using the HF samples from
the previous iteration. Leary [36] introduced the "knowledge-
based-neural-network’ (KBNN) technique as a means of incor-
porating LF data into the training procedure of a limited set of
HF samples via scaling/translation based parameter mapping.
Minisci and Vasile [32] estimate aerodynamic coefficients
using a MF ANN first trained on a global set of samples given
by a simplified analytical model, then iteratively refined with
CFD data scheduled via evolution control. LF samples are
sequentially discarded should they fall outwith a predefined
applicability region relative to new HF points.

III. DOUBLE-LOOP TRAINING

This paper employs a generic training methodology for
multi-layer feed-forward networks, largely adapted from the
recommendations of Heath [37]. The method is an attempt
to automatically determine the optimal parameters of a stan-
dard MLP architecture implied by the Kolmogorov theorem
[38]. The method utilises both Bayesian Regularization and
an early-stopping criteria implemented using the MATLAB®
Neural Network Toolbox [29]. The number of samples allo-
cated to the training, validation and testing sets, 74y, Nyq; and
nist, are determined via the default data division ratios:

Ntrn ¢trn 07
Nyal =MNs d)val =MNs 0.15 (1)
Nist st 0.15

where the number of samples n, for an input vector of
dimension d;,, is chosen such that:

10d;n, < ngpp < 30dss, 2

The initialization process allocates random initial weights
and biases to the network and divides the available input
data into training, validation and testing sets according to
(1). Random initialization coupled with a gradient-based back-
propagation training algorithm cannot guarantee convergence
to the optimal parameters [29], introducing a degree of vari-
ability in the network solution. While some authors advocate
re-training the network multiple times, or averaging the re-
sponse from multiple networks, these methods still ultimately
rely on a certain degree of user discretion. The number of
unknown parameters (weights and biases) IV, is given by:

Ny = H(dzn + 1) + dout(H + ]-) 3)

where H is the number of neurons in the hidden layer. The
number of training equations required for a given training set
is given by:

Ntrneq = Ngrp * dout (4)

where the number of samples in the training set ng., is
consistent with (1). To avoid over-fitting,

Nw S Ntrneq (5)
From equations (3) and (4) it is clear that (5) will always be
true provided the number of neurons H is less than or equal
to an upper bound H,;:
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dout (ntrn - 1)-‘ (6)

din + dout +1

To reduce the risk of poor generalisation, it is of interest
to minimise the number of hidden layer neurons. A double-
loop strategy for network training and parameter selection is
therefore employed. In the outer loop, the number of neurons
H is varied in 10 near-equally spaced divisions between a
lower bound of O (representing a linear response) and the upper
bound H,;,. The inner loop performs 10 random initializations
of the network weights, biases and data divisions, before se-
quentially training each network to convergence. The objective
is to determine the network parameters that yield an acceptable
ratio of mean-square-error to mean-target-variance for random
subsets of non-training data [37]. A normalized performance
criteria relating predictions « to targets t is utilised:

R2—1_ % Zé\;(ti —)” %
% 21]21 (ti - {)2

A minimum performance criteria is defined as the successful
modelling of 99% of the target subset variance (R? > 0.99).
Therefore, the network that achieves this criteria for a mini-
mum number of hidden layer neurons is selected.

IV. PROPOSED APPROACH
A. Motivation

This section presents the decomposition of a direct infor-
mation correction process into three fundamental stages, each
leveraging an alternate aspect of a correlated LF response.
Each stage may be applied individually or sequentially to cor-
rect a domain encompassing set of LF responses with a small
number of HF samples. A globally approximating surrogate
suitable for many-query/outer-loop applications can then be
constructed via the automated hyper-parameter selection and
training procedure detailed in section III.

The aim is to provide a global representation of the HF
response meeting the requirements of zero- and first-order
consistency [23] to an acceptable degree with a significantly
reduced computational cost compared with constructing a
surrogate of similar accuracy using exclusive HF sampling.

B. Formulation

A generic model is defined as a function f : X — Y that
for a given input x € X produces an output y € Y where
X C RYn js the input domain with dimension d;,, C N and
Y C Réut i the output domain with dimension d,,; C N:

xW oy = f(x), i=1,2,... n, (8)

In this context, f(x) may represent the direct evaluation of a
subsystem model or the evaluation of an appropriate surrogate
approximation. Thus HF and LF models are notated simply as
frr: X — Yand fr : X — Y, and a generic surrogate model
(SM) as fg : X — Y. Let x(9, 4 = 1,..., M denote the set
of M design points. Directly collocated LF/HF samples are
assumed, although such a correspondence may be obtained via
surrogate estimation [39]. Therefore the set of N HF samples
is defined as xg}), 1=1,..., N where xy € x.



For ease of notation, the following discussion is limited to
the case of correcting an unspecified LF function f;, via selec-
tive samples of a HF counterpart fz;. In reality, the sequential
application of stages necessitates that the LF function for each
subsequent stage is of course the MF output from the previous
stage.

C. Parameter extraction

An approximate relationship between an LF and HF re-
sponse (of dimension d,,;) is defined as a quantifiable set of
scaling parameters of the linear form [9]:

fs(x,p) = af,(x) +b )

where a and b are vectors of d,,; unbounded scaling co-
efficients, and p(a,b) is found by formulating (9) into a
parameter extraction problem:

N
e L | L ®) g -t (x)]’
p=srgmin 2y 5 3 [fs(4 )~ fu() | 10)

where o is the standard deviation of the HF samples.

D. Relative response mapping

An alternate approach is to quantify the change in LF
response between each pair-wise combination of M design
points x and N HF samples xz. The resulting translation
matrix t is notated as:

i ] Z = 1, ey M
ti; = f(x) — . (xi7) {

j=1,...,N an

The HF response at each design point x(*) is predicted via:

SI(Er (x5 + i) * Wigli=1,n
2Wigli=1..n

The weight factor w; ; is defined by the euclidean norm

between each design point and each HF sample:

fs(x() = (12)

in

u

. . 2
wi =1 {ﬁ(“k) - ggm] (13)

>
Il

1

where d;, is the dimension of the input and X denotes the
scaled form of input x conforming to X% € [0,1] for all
k =1,...,ds. The weight factor is constrained to w; ; €
[0, 1] to negate the influence of a design point lying far from
a particular HF sample point.

E. Neural Network bridge function

The final stage constructs an ANN surrogate of the additive
discrepancy between responses, defined as a matrix of trans-
lation vectors t:

t; = fLxj7) — fu (x7),

To mitigate the implications of an insufficient input set of
N samples on training performance, an augmented dataset of
translation vectors t may be defined as:

j=1,...,N (14)

t=[t,a], a;=b, +wb;, (15)

J=1,... ngug

where b C t, w is a scalar weighting factor (default 1%),
0 is a vector of random values @ € [—1,1] and the number
of augments ngugy = Ndesired — IN. The minimum input set
size Ngesired = 30din/dtrn, Where ¢y, is consistent with
(1). The resulting set of translation vectors is mapped to a
continuous function via the double-loop training procedure
detailed in Section III. Performance is additionally examined
by evaluating the prediction accuracy obtained by applying
the translation network across the original LF response data.
The network exhibiting the strongest correction quality and
training accuracy is therefore selected.

V. TEST

This section considers the aerodynamic response of a
waverider-based re-entry vehicle. The proposed MF meta-
modelling approach is used to generate approximations of lift
and drag coefficients, C;, and Cp, as functions of several
independent design variables describing vehicle shape and
operational conditions at two distinct levels of fidelity.

A. Geometry parametrization

A waverider may be parametrized according to the 2D
power law equations [40] shown in Fig. 1. The curvatures
of the planform p and the upper surface u are given by:

yp = A" (16)

1
Yu'\ n
y (2u)" = 2 i
where the exponent n € [0,1] and the positive scaling
coefficients A and B are given by:
A=w/2"
B = a/tan"(B)

a7

(18)
19)

The curvature of the lower surface with an attached shock
is given by:

2 = xtanf + (y/A)/"(tan § — tan 0) (20)

Vehicle height h and reference surface area S,..¢ are given by:

h = ltan 8 Q1)
Sref =wl/(n+1) (22)

The geometric design vector d(I, w, n,#) is defined via the
variable bounds given in table I [32]. By parametrising in this
manner, small variations in d can correspond to significant
change in the resulting geometry [40]. Three representative
examples, the maximum, mean and minimum values of d, are
shown in Fig. 1.

TABLE I: Waverider parameters

Parameter Bounds
Length, [ [m] [2.9, 4.2]
Width, w [m] [1, 2]
Exponent, n [0.2, 0.7]
Wedge angle, 6 [deg] | [7, 11]
Shock angle, 8 [deg] 12
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Fig. 1: Waverider geometry parameterization

1) GMSH: The open source meshing tool GMSH (v4.6.0)
[41] is selected for geometry generation. Equations (16), (17)
and (20) are used to define 10 equally spaced cross sections
along the longitudinal axis of the vehicle according to the user
input vector d. Cross sections are combined into a coherent
volume using the ThruSections command included within
the OpenCascade kernel. A solid surface mesh may then be
exported as a stereolitographic (.stl) file.

To produce a volume mesh suitable for CFD analyses, a
half-cylindrical far-field of length lc = 20m, radius r = 10m
and spherical input/output caps each of radius » = 10m is
created around the surface mesh, with the y-symmetry plane
bisecting the vehicle geometry along the longitudinal axis,
see Fig. 2. A single volume mesh containing the vehicle
half surface is created via Boolean subtraction. A simplified
boundary mesh definition is incorporated by specifying a
rectangular vehicle-centered bounding box with an internal
mesh element size of 0.075m, external mesh element size of
2m and a transition gradient layer of thickness ¢ = 10m. The
vehicle surface mesh is comprised of between 2,000 and 3,200
vertices and between 3,500 and 6,000 triangular elements.
Likewise, the CFD volume mesh of around 275,000 elements
and 46,000 nodes. Input, output, far-field and vehicle surface
are labelled accordingly and the volume mesh is exported in
the native SU2 format.

B. Low-fidelity aerodynamics

LF aerodynamics are computed using the Free Open Source
Tool for Re-Entry of Asteroids and Debris (FOSTRAD) de-
veloped by the University of Strathclyde [42]. FOSTRAD is
an LSI based aerodynamic/aerothermodynamic computation
tool for arbitrary geometries in hypersonic continuum or free-
molecular flow, intended for use within trajectory propagators
and uncertainty analyses tools for re-entry scenarios [43], [44].

FOSTRAD considers solid surface meshes of triangular
elements (panels). Modified Newtonian Theory and the Schaaf
and Chambre analytic model are used to approximate contin-
uum and free-molecular aerodynamic coefficients respectively
[42]. Transitional regime aerodynamics, defined in [42] as
107* < Kn < 100, are approximated using a sigmoid
(base 10) bridging function. FOSTRAD contains a vectorized
occlusion culling algorithm for panel shadowing determination
[44], used to detect and remove panels hidden relative to the
oncoming flow.

C. High-fidelity aerodynamics

HF simulations are conducted using the Stanford University
Unstructured Code (SU2) [45]. The 3-dimensional RANS
equations are employed with a standard SST turbulence model
and a FVM discretization. The JST scheme is used in con-
junction with a second-order scalar upwind discretization and
Venkatakrishnan’s limiter to model convective fluxes. The
gradients of the spatial flow variables, required to evaluate
viscous fluxes, are calculated using the Green-Gauss method
with a CFL number of 1. The linear system is solved using
the GMRES method with an error tolerance of 1e~'° and
the steady state solution is achieved using the Euler implicit
method for time integration. A Cauchy convergence criteria is
applied to the Drag function after iteration 10. Convergence
is defined as the reduction of the residuals by five orders
of magnitude with respect to their initial values, within a
maximum number of iterations fixed at 5,000.

D. Method

The coefficients of lift and drag, C, and Cp, for the vehicle
defined by design vector d(l,w,n,f) are predicted for an
operational range given by Mach number 2 < Ma < 30,
angle of attack 0° < o < 20° and altitude 10>m < h < 10°m.
An independent HF sample set is gradually increased from 2
to 20 samples, approximately corresponding to MF response
convergence. The LF sample set is fixed at M = 30d;,
given the general assumption that the cost of the LF model is
negligible in comparison to that of the HF model. All samples
are selected via LHS.

‘(N
x

Fig. 2: CFD far-field [ = 40m,r = 10m



VI. RESULTS

To demonstrate cross-domain applicability, eight boundary
configurations of d(l,w,n, ) are examined in addition to the
complete domain x(Ma, a, h,d). Corrective stages are organ-
ised into sequential combinations according to applicability
constraints relating to the type of information each may utilise.
Accuracy metrics are determined via an independent set of HF
responses. Results are averaged over 100 separate analyses.

Tables II and IIT show the average values of N required
to achieve MFSM accuracies of R? > 90% and R? > 95%
for each geometric case (normalised to [0,1]). The parametric
(P) stage consistently achieves R? > 90% for Cp in relatively
few samples, suggesting a high correlation amenable to simple
linear scaling/positioning. While the addition of successive
stages merely preserves rather than improves this performance,
the benefits are clear when considering the P-stage prediction
of C',, by contrast initially quite poor. For example, the relative
(R) stage is mostly unable to produce an effective correction
given it considers only the shaping of the response rather than
it’s direct correction. Yet, preconditioning with the P-stage
(thus PR) largely eliminates the observed instability in Cp,
while preserving Cp. This can be seen to a further extent
with the parametric/additive (PA) method. In this case, not
only is Cp preserved, but Cf, reaches comparable levels, thus
stronger overall than either stage individually. In fact, table
IT shows PA and PRA to be very similar, achieving identical
results for 15/18 cases, PRA improving only the remaining 3.
Greater variation can be seen in table III, in which PRA offers
an improvement over PA in 9/18 cases, identical performance
in 8 and only a marginal decrease in the remaining case.

This can be accounted for by considering the A-stage pre-
conditioning. In table II, the P-stage achieves global minimum
values for 9/18 cases. PR retains these minima and improves
the remaining 9 cases, 3 of which become global minima
themselves. In table III, the P-stage achieves global minima in
only 4/18 cases. Again, PR retains these minima and similarly
improves a further 10 cases, 3 reaching global minimum
values. This marginal increase in improvement could be due to
the greater resolution of the R-stage correction given a larger
N. The A-stage is the only stage that aims to fully eliminate
sample point discrepancy in a non-destructive manner (i.e.
zero correction at points of zero discrepancy), thus particularly

TABLE II: N required for R? > 90% [CL,Cp)]

d P R A PR | RA | PA | PRA | HFSM
0000 | 63 4,4 5,7 43 45 | 33 33 5,7
0011 42 -\ 4,7 42 48 | 42 42 5,6
0110 -4 18,- 9,9 104 | 69 | 55 54 8,7
0101 | 193 -\ 5,8 43 58 | 43 43 5,6
1010 | 53 5,- 4.8 43 4,7 | 33 33 5,6
1001 43 11,- 4,7 33 48 | 33 33 5,6
1100 -5 9,14 | 8,10 | 84 54 | 55 55 78
1111 -3 - 6,7 53 59 | 53 43 6,6

X -3 -,- 16,- 9,3 10,- | 9,3 6,3 10,14

TABLE III: N required for R? > 95% [Cr,Cp]

d P R A PR RA PA PRA | HFSM
0000 | -10 | -- | 6,13 85 6,11 6,6 55 6,9
0011 -3 | .- | 6,10 6,3 7,12 43 43 6,7
0110 - -- | 17,16 | -,10 | 18,16 | 119 11,8 17,13
0101 -4 | -- | 12,10 | 154 | 10,12 55 6,5 9,9
1010 | -4 | --| 511 7.4 6,11 55 44 6,8
1001 -3 | .- | 510 6,3 7,11 43 43 6,8
1100 - .- | 1516 | -15 | 17,16 | 12,13 | 12,10 17,12
1111 S5 | - | 14,11 -4 14,14 6,6 6,4 10,9

X - -, - -,14 - 16,- 14,14 17,20

effective here as a final stage'. In table II, PA improves upon
P-stage performance in 8/18 cases (6 reaching global minimum
values) while retaining the 9 minima. However, applied to
PR, only 6 cases are improved, the other 12 having already
reached minimum values. In III, PA improves upon the P-stage
in 12/18 cases (6 reaching global minimum values) although
only retaining 2 minima, the other 2 marginally worsened.
Finally, PRA improves upon PR in 11/18 cases (10 becoming
global minima), retaining 6 global minima and providing the
strongest performance overall. Thus it can be taken that PR is
the more effective pre-conditioner to the final A-stage.

Tables IV and V show the logarithmic convergence of Rel-
ative Root Mean Square Error (RRMSE), Relative Maximum
Absolute Error (RMAE) and R? values with increasing N for
each method across the design domain x. It can be seen that
any associated cost benefit relative to the HFSM decreases
in proportion to NN, the HFSM eventually approaching su-
periority at around 20HF (although note the exponentially
worse performance at lower N given the lack of LF trend
data). It is likely then that for each case, there exists a
critical value of N, above which the HFSM will always
offer the superior approximation. However, this value is likely
dependant on the sampling strategy employed. For example, an
adaptive sampling strategy that refines the MF approximation
by exploiting areas of predicted improvement and/or maximum
discrepancy to improve local accuracy may further increase the
attainable prediction quality relative to the overall number of
samples. Thus the decline in cost advantage relative to pure
HF meta-modelling may be tempered.

VII. CosT

This section presents a brief cost report based on the
recommendations of [47]. Results were obtained over 100
independent runs using a 2.5GHz Intel(R) Core(TM) i5-7200
CPU with 8GB RAM. Table VI displays model costs and
error ratios. Average run-times recorded for FOSTRAD and
SU2 were 9.65s and 3110s respectively. Geometry generation
accounts for an additional 0.83s for a 2D surface mesh and
17.64s for a 3D volume mesh. The average run-time of a
trained ANN surrogate was found to be 1.9951e-4s. Fig. 3
shows the average time required to perform the MF correction

! Additive correction quality is inversely proportional to discrepancy vari-
ation [46]. A poorly scaled LF response is unlikely to correct well given a
limited HF sample budget (e.g. RA offers little improvement over A).



TABLE IV: x domain prediction accuracy at fixed costs [CL,Cp]

SHF 10HF 15HF 20HF
RRMSE RMAE RRMSE RMAE RRMSE RMAE RRMSE RMAE
P 0.3681, 0.2784 | 1.440, 1.229 | 0.3414, 0.2556 1.422, 1.151 0.3284, 0.2317 1.416, 1.107 0.3222, 0.2337 1.414, 1.102
R 0.6898, 0.9099 | 1.908, 3.152 | 0.6521, 0.8573 1.794, 3.080 | 0.6179, 0.8035 1.668, 2.847 0.5927, 0.7735 1.558, 2.721
A 0.6412, 0.9756 | 1.874, 3.172 | 0.3694, 0.7309 1.272, 2.360 | 0.3238, 0.5026 1.145, 1.844 0.2750, 0.3753 1.091, 1.465
PR 0.3428, 0.2806 | 1.391, 1.228 | 0.3070, 0.2459 | 1.347, 1.1340 | 0.2839, 0.2194 1.312, 1.074 0.2740, 0.2151 1.293, 1.055
RA 0.6432, 0.8894 | 1.845, 3.115 | 0.3669, 0.7073 1.218, 2.553 0.3124, 0.5008 1.150, 1.944 0.2682, 0.3936 1.071, 1.590
PA 0.3419, 0.3126 | 1.311, 1.221 | 0.2664, 0.3052 1.081, 1.125 0.2242, 0.2698 | 0.9929, 1.020 | 0.2057, 0.2410 | 0.9306, 0.9648
PRA 0.3302, 0.2856 | 1.339, 1.216 | 0.2377, 0.2635 1.120, 1.087 | 0.2077, 0.2347 | 1.017, 0.9792 | 0.1880, 0.2301 | 0.9458, 0.9690
HFSM | 0.6653, 0.7166 | 1.896, 2.148 | 0.2917, 0.4247 1.120, 1.440 | 0.2365, 0.2808 1.003, 1.126 0.2007, 0.2056 | 0.9191, 0.9730
TABLE VI: Cost/accuracy report
35 Y ——— 30 Property Value
e HESM e Hos RRMSE LF/HF [C,Cp] | 1.564, 1.328
—=—MFSM 25 RMAE LF/HF [C,Cp] 3.581, 4.397
= R? LF/HF [Cr,,Cp] 17.35%, 55.94%
=30 " Cost LF/HF 0.0031
o g Cost SM/LF 2.0671e-05
o} 5 Cost SM/HF 6.4151e-08
5 2
o 25 “
o (o]
e} . .
g 4 for sample sizes lower than a problem-dependant critical
=20 value. Unsurprisingly, correction quality is found to be largely
influenced by model correlation. Further work will aim to
. quantify the capabilities of each stage relative to types of
0 5 10 15 200 geometric discrepancy observable in function responses. Di-

No. of HF samples

Fig. 3: Surrogate generation resource

and generate the HFSM/MFSM, including the average value
of H determined by the double-loop training procedure.

VIII. CONCLUSION

This paper presents a MFSM generation method intended
to provide global approximations of an expensive function for
use within many-query/outer-loop applications. The method is
examined with respect to individual and sequential application
of three constituent corrective stages. The method is used to
predict the aerodynamic response of a parametrized waverider-
based re-entry vehicle. The 3-stage (PRA) configuration is
found to provide an accurate and stable representation of
the vehicle lift and drag coefficients in fewer HF samples
compared to selected single and 2-stage methods. Furthermore,
the method is found to outperform pure HF meta-modelling

TABLE V: R? [%] at fixed costs [Cr, Cp]

Method SHF 10HF 15SHF 20HF
P 84.56, 92.05 | 86.90, 93.41 | 87.33,94.10 | 87.47, 94.07
R 79.68, 74.05 | 81.60, 76.46 | 82.77,78.14 | 83.66, 79.08
A 78.54, 66.00 | 87.16, 69.21 | 89.44, 80.82 | 92.34, 87.46
PR 87.19, 92.15 | 89.75, 93.99 | 90.71, 94.79 | 91.24, 95.00
RA 80.53, 72.84 | 90.46, 76.01 | 91.77, 84.12 | 93.79, 88.91
PA 87.56, 90.42 | 92.20, 90.61 | 94.62, 92.66 | 95.49, 94.30
PRA 88.39, 92.06 | 94.00, 93.26 | 95.38, 94.33 | 96.22, 94.71
HFSM | -5.12, -15.44 | 89.75, 78.76 | 93.33, 90.89 | 95.62, 95.20

minishing performance gains with increasing samples suggests
the need for an adaptive sampling procedure to preserve cost
benefits until the desired local accuracy is achieved. This
may be accomplished via iterative refinement within regions
of interest/expected improvement following the generation
of an acceptable global approximation. The incorporation of
the proposed methodology into a MF model management
framework and the application to a multi-objective design
optimisation problem will be presented in a future work.
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