
To be presented at IEEE Symposium on Computational Intelligence for Financial Engineering (CIFEr); 
Canberra, Australia, 1st-4th December 2020 

 

 

Automated Creation of a  
High-Performing Algorithmic Trader  

via Deep Learning  
on Level-2 Limit Order Book Data 

 

Aaron Wray  
Department of Computer Science 

University of Bristol 
Bristol BS8 1UB, U.K. 
wray1998@gmail.com  

 

Matthew Meades 
Department of Computer Science 

University of Bristol 
Bristol BS8 1UB, U.K. 

mm16507@bristol.ac.uk  
 

Dave Cliff 
Department of Computer Science 

University of Bristol 
Bristol BS8 1UB, U.K. 

csdtc@bristol.ac.uk 

Abstract— We present results demonstrating that an 
appropriately configured deep learning neural network (DLNN) 
can automatically learn to be a high-performing algorithmic 
trading system, operating purely from training-data inputs 
generated by passive observation of an existing successful trader 
T. That is, we can point our black-box DLNN system at trader T 
and successfully have it learn from T's trading activity, such that 
it trades at least as well as T. Our system, called DeepTrader, takes 
inputs derived from Level-2 market data, i.e. the market's Limit 
Order Book (LOB) or Ladder for a tradeable asset. Unusually, 
DeepTrader makes no explicit prediction of future prices. Instead, 
we train it purely on input-output pairs where in each pair the 
input is a snapshot S of Level-2 LOB data taken at the time when 
T issued a quote Q (i.e. a bid or an ask order) to the market; and 
DeepTrader's desired output is to produce Q when it is shown S. 
That is, we train our DLNN by showing it the LOB data S that T 
saw at the time when T issued quote Q, and in doing so our system 
comes to behave like T, acting as an algorithmic trader issuing 
specific quotes in response to specific LOB conditions. We train 
DeepTrader on large numbers of these S/Q snapshot/quote pairs, 
and then test it in a variety of market scenarios, evaluating it 
against other algorithmic trading systems in the public-domain 
literature, including two that have repeatedly been shown to 
outperform human traders. Our results demonstrate that 
DeepTrader learns to match or outperform such existing 
algorithmic trading systems. We analyse the successful 
DeepTrader network to identify what features it is relying on, and 
which features can be ignored. We propose that our methods can 
in principle create an explainable copy of an arbitrary trader T via 
"black-box" deep learning methods.  
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I. INTRODUCTION 
The motivation for our work is best explained by a brief 

sketch of where we hope to end up, a little two-paragraph story 
of a plausible near-future:  

Imagine a situation in which a highly skilled human trader 
operating in a major financial market has a device installed on 
her trading station, a small black box, with a single indicator 
lamp, that takes as input all data provided to the trader via her 
screen and audio/voice lines. The black box records a 
timestamped stream of all the market data that the trader is 
exposed to at her station, and also records a timestamped tape 
of all orders (quotes and cancellations) that she sends to the 
market: while it is doing this, the black box's indicator lamp 
glows orange, signaling that it is in Learning Mode.  

After a while, maybe a few weeks, the indicator lamp on the 
black box switches from orange to green, signaling that it is now 
in Active Mode. At this point, the box starts to automatically and 
autonomously issue a stream of orders to the market, trading in 
the style of the human trader whose activity it has been 
monitoring. The box has learnt purely by observation of the 
inputs to the trader (market data and other information) and her 
outputs (various order-types) and its trading performance 
matches or exceeds that of the human trader. At this point the 
services of the human trader are no longer required.    

In the language of research psychologists, our approach 
sketched in this story is a behaviorist one: we are concerned only 
with the "sensory inputs" and "motor outputs" of the human 
trader, we do not care about (or, at least, we make no pre-
commitment to) modelling her internal mental states, or her 
internal reasoning processes; we do not need to interview her in 
some "knowledge elicitation" process (cf. e.g. [6]) to find out 
what analysis she performs on the incoming data, what sequence 
of decisions leads her to issuing a particular order; we do not 
require our black box to internally compute a GARCH model, 
or even a MACD signal: all we ask is that when presented with 
a stream of specific market-data inputs, the outputs of our box is 
a stream of orders that lead to trading performance at least as 
good as the human trader that the box learned from.  



In this paper, we demonstrate a proof-of-concept of such a 
system, called DeepTrader. We have not yet put it in a metal box 
with a single indicator lamp, but we've got the software working. 

   At the heart of DeepTrader is a Deep-Learning Neural 
Network (DLNN: see e.g. [9][12][22][28]), a form of machine 
learning (ML) that has in recent years been demonstrated to be 
very powerful in a wide range of application domains. DLNNs 
are instances of supervised learning, where training the ML 
system involves presenting it with a large training-set of 'target' 
input/output pairs: initially, when presented with a specific 
input, the output of the DLNN will be a long way from the target 
output, but an algorithm (typically based on the back-
propagation of errors, or "backprop", introduced by [16]) adjusts 
the DLNN's internal parameters on the basis of the errors 
between the actual output for this specific input and the target 
output associated with that input, so that next time this input is 
presented, the difference between the actual and target outputs 
will hopefully be reduced. This process is iterated many times, 
often hundreds or thousands of cycles over training-sets 
involving many tens of thousands of target input/output pairs, 
and if all is well this leads to the errors reducing to acceptably 
small levels. Once the errors are small enough, the DLNN is 
hopefully not only producing close-to-target outputs for all of 
the input/output pairs in the training set, but it is also capable of 
generating appropriate outputs when presented with novel 
inputs that were not in the training set: i.e., it has generalized. 
For this reason, evaluating how well a DLNN has learned 
usually involves testing it post-training, on a test-set of 
input/output pairs that were not used in the training process. 

In the fictional story we opened this section with, the input-
output pairs in the training and test set would come from 
observing the human trader working her job in a real financial 
market: every time a significant event occurs in the market, an 
observable behavior of interest, that event or action is the desired 
output vector; and the associated input vector is some set of 
multivariate data that is believed to be necessary and sufficient 
for explaining the observable behavior of the trader – i.e. it is 
whatever data the trader is thought to have been exposed to and 
acting upon at the time the event occurred. In our work reported 
here, each input vector is calculated from a timestamped 
snapshot of a financial exchange's Limit Order Book (LOB) 
(also known as the Ladder in some trading circles), i.e. the array 
of currently active bids and offers at the exchange, represented 
as the prices at which there are limit orders currently resting, 
awaiting a counterparty, and the quantity (total size of orders) 
available at that price. The output vector, the action to be 
associated with each input, could be an order (a fresh quote, or 
a cancellation of a previous order) issued from the trader to the 
exchange, and/or it could be a trade executing on the exchange.    

More generally, as a source of input-data for DeepTrader, we 
need a market environment, which we'll denote by M; and to 
generate the target outputs used in the training-set we need a 
training trader, which we'll denote by T. We think it arguable 
whether we actually need a test-set, as a standalone collection of 
fresh input-output pairs: in principle, once DeepTrader's DLNN 
training process has produced an acceptable drop in error-levels 
on the training set, then it could just be set to work on live trading 
in the market M – whether it makes a profit or a loss in that 
trading would then be the final arbiter of whether the learning 

was successful or not. Such an approach would suit risk-seeking 
developers who have sufficient funds available to take the 
financial hit of whatever losses an under-generalized 
DeepTrader makes before it is switched off: for the risk-averse, 
positive results from a test-set could provide useful reassurance 
of generalization before DeepTrader goes live.  

Real professional human traders are typically very busy 
people who don't come cheap, and also there will most likely be 
some regulatory and internal-political hurdles to overcome if we 
did want to record the necessary amounts of data from a human 
trader, which would only serve to delay us. So, for our proof-of-
concept reported here, we have instead used high-performing 
algorithmic trading systems (or "algos" for short) as our T, our 
training trader. Specifically, the algos that we use include two 
that have been repeatedly shown to outperform human traders in 
experiments that evaluated the trading performance of humans 
and algos under controlled laboratory conditions. These two 
"super-human" algos are known by the acronyms AA (for 
Adaptive Aggressive: [25][26]) and ZIP (for Zero Intelligence 
Plus: [4]). Given that these out-perform human traders, we 
reason that if DeepTrader's DLNN can be trained to match or 
exceed the trading behavior of these algorithms in the role of T, 
then the likelihood is that it will also do very well when we 
deploy the same methods albeit using data from a human T – 
this is a topic we return to in the discussion section at the end of 
this paper. Another advantage conferred by using algo traders as 
T at this stage is replicability: the source-code for the traders is 
in the public domain, and so anyone who wishes to replicate or 
extend the work we report here can readily do so.      

Having identified a T to produce target outputs, we also need 
an M, a market environment to generate the inputs associated 
with each target output. Again, as this is a proof-of-concept 
study, instead of using data from a real financial market (with its 
associated nontrivial costs and licensing issues, and the 
difficulty of doing direct replication) we instead use a high-
fidelity simulation of a contemporary electronic exchange. For 
the T in this study we use the long-established public-domain 
market-simulator BSE [2][5] as our source of input data. BSE is 
an open-source GitHub project written in Python, which was 
first made public in 2012, and provides a faithful detailed 
simulation of a financial exchange where a variety of public-
domain automated trading algorithms interact via a Continuous 
Double Auction (CDA: the usual style of auction for all major 
financial exchanges, where buyers can issue bids at any time and 
sellers can issue asks/offers at any time) for a simulated asset: 
traders can issue a range of order-types (and cancellations), and 
BSE publishes a continuously-updated LOB to all market 
participants: it is timestamped snapshots of that LOB data that 
form the input data for training and testing the DLNN in 
DeepTrader. BSE includes a number of pre-defined algorithmic 
traders including AA and ZIP, so the Python source-code we 
used for our T traders can be found alongside the source-code 
we used for our M market, in the BSE GitHub repository [2].    

The rest of this paper, much of which is drawn from [27], is 
structured as follows. In Section II we summarize the 
background to this work. Section III then describes our methods. 
In Section IV we present results which demonstrate that 
DeepTrader learns to outperform pre-existing algo traders in 
BSE, and matches or exceeds the trading ability of the two 



"super-human" algorithms AA and ZIP. Section V (drawn from 
[15]) further analyses those results; we discuss our plans for 
further work in Section VI, and offer conclusions in Section VII. 

II. BACKGROUND 
Our work reported here uses a public-domain simulator of a 

contemporary electronic financial exchange running a CDA 
with a LOB, so in that sense our work is very much about AI in 
present-day and future financial trading systems, but the roots of 
our work, and of the simulator we use, lie in academic 
economics research that commenced more than 50 years ago. 

In 1962, Vernon Smith published an article in the prestigious 
Journal of Political Economy (JPE) on the experimental study 
of competitive market behaviour [19]. The article outlined a 
number of laboratory-style market simulation experiments 
where human subjects were given the job of trading in a simple 
open-outcry CDA where an arbitrary asset was traded, while the 
experimenters looked on and took down their observations. The 
supply and demand curves used in these experiments were 
realistic, but were predetermined by Smith, who allocated each 
trader a private limit price: the price that a buyer cannot pay 
more than, or the price that a seller cannot sell below. Different 
buyers might be given different limit prices, and the array or 
schedule of limit prices would determine the shape of the 
demand curve in the experimental market; ditto for the schedule 
of sellers' limit prices and the resultant market supply curve. In 
this sense, Smith's experimental subjects were like sales traders 
in a brokerage or bank, running customer orders: some external 
factor sets a limit price, and the trader's job is to do their best to 
buy or sell within that limit. If a buyer can get a deal for less than 
her limit price, the difference is a saving; if a seller can get a deal 
for more than her limit price, that's profit. Economists use 
'utility' or 'surplus' to refer to both the buyer's difference and the 
seller's difference, but as we're focused on applications in 
finance we'll use 'profit' for both.  

The experiments run by Smith demonstrated a rapid 
convergence of a market to its theoretical equilibrium price (the 
price where the quantity of goods supplied is equal to the 
quantity of goods demanded, where the supply curve intersects 
the demand curve) in a CDA, even with a small number of 
traders. This was measured by using Smith's 'a' metric, a 
measure of how well transactions in the market converge on the 
equilibrium price. In 2002, Smith received the Nobel Prize in 
Economics for his work establishing the field of experimental 
economics, and variations of his experiments have become de 
facto standards for test and comparison of trading algorithms. 

Winding forward roughly 30 years, in 1990 a competition 
was hosted at the Santa Fe Institute for designing the most 
profitable automated trading agent on a CDA [17]. Thirty 
contestants competed for cash prize incentives totaling $10,000. 
The prize money won by each contestant was in proportion to 
the profit that their agent received in a series of different market 
environments. The highest ranked algorithm, designed by Todd 
Kaplan, was a simple agent that would hide in the background 
and hold off from posting a bid/ask price whilst letting other 
traders engage in bidding negotiations. Once the bid/ask spread 
was within an adequate range, Kaplan's agent would enter and 
''steal the deal''. Aptly, Kaplan's program was named Sniper. If 

the market session was about to end, Sniper was programmed to 
rush to make a deal rather than not make one at all. 

Subsequent to this, in 1993 Gode & Sunder published a JPE 
paper investigating the intelligence of automated traders and 
their efficacy within markets [21]. They developed two 
automated trading agents for their experiments, the Zero-
Intelligence Unconstrained (ZIU) and the Zero-Intelligence 
Constrained (ZIC). The ZIU trader generates completely 
random quote prices, whereas the ZIC trader quotes random 
prices from a distribution bounded by the trader's given limit 
price, so the ZIC's are constrained to not enter loss-making 
deals. Gode & Sunder's series of experiments were performed in 
a similar style and spirit to Smith's: they ran some human-trader 
experiments to establish baseline data, and then ran very similar 
experiment with markets populated only by ZIU traders, and 
then only by ZIC. In each market they recorded three key 
metrics: allocative efficiency; single agent efficiency; and profit 
dispersion. The allocative efficiency is a measure of the 
efficiency of the market. It is the total profit earned by all traders 
divided by the maximum possible profit, expressed as a 
percentage. Gode & Sunder's key result was that the allocative 
efficiency of ZIC markets was statistically indistinguishable 
from that of human markets, and yet allocative efficiency had 
previously been thought to be the marker for intelligent trading 
activity. Ever since, ZICs are used as a de facto standard 
benchmark for a lower-bound on automated traders. 

Extending the work of Gode & Sunder, in 1997 Cliff [4] 
identified that there were certain market conditions where ZIC 
traders would fail to exhibit human-like market dynamics. This 
finding led Cliff to create an automated trading agent with some 
elementary added AI, one of the first adaptive automated traders, 
called Zero Intelligence Plus (ZIP). The ZIP trader calculates its 
own profit margin which, along with its given limit price, it uses 
to calculate its bid or ask price. The profit margin is determined 
by a simple machine-learning rule and is adjusted depending on 
the conditions of the market. If trades are occurring above the 
calculated price, the profit margin is increased/decreased 
depending on whether the trader is a buyer/seller. 

At roughly the same time as Cliff was publishing ZIP, in 
1998 Gjerstadt & Dickhaut co-authored a paper that approached 
the sales trader problem from a new perspective [16]. They 
developed a price formation strategy in a CDA that analyzed 
recent market activity to form a belief function. The frequencies 
of bids, asks, accepted bid and accepted asks, from a set number 
of the most recent trades were used to estimate the belief or 
probability that an ask or bid would be accepted at any particular 
price. With this trading strategy, which came to be widely 
referred to as the GD strategy, the function selects an ask/offer 
price that would maximize a trader's expected gain based on the 
data. The strategy produced efficient allocations and was found 
to achieve competitive equilibrium within markets.  

Then in 2001 a team of IBM researchers modified GD by 
interpolating the belief function to smooth the function for prices 
that did not occur in the selected number of recent trades, and 
they named the new trading agent MGD (Modified GD) and 
published results in a paper at the prestigious International Joint 
Conference on AI (IJCAI) that generated worldwide media 
coverage [7]: the IBM team was the first to explore the direct 



interaction between automated trading agents and human traders 
in a methodical manner, using LOB-based CDA markets that 
were close to ones implemented in financial exchanges across 
the world, where the traders in the market were a mix of human 
traders and automated algorithmic traders (specifically: IBM's 
MGD, Kaplan's Sniper, Gode & Sunder's ZIC, and Cliff's ZIP). 
Famously, the IBM team demonstrated that MGD and ZIP could 
consistently outperform human traders in these realistic market 
scenarios – that is, MGD and ZIP are ̀ super-human' traders. And 
the rest, as they say, is history: the IBM work got the attention 
of many investment banks and fund-managmenet companies, 
and in following years the world of finance started to see ever 
increasing levels of automation, with more and more human 
traders replaced by machines.    

Academic and industrial R&D continued after the landmark 
IBM study, and two significant subsequent developments were 
the extension of MGD into GDX, and a new ZIP-related trading 
algorithm called AA. Details of GDX were published in 2002 by 
Tesauro & Bredin [23]: GDX exploits dynamic programming to 
learn functions that better incorporate long term reward, and at 
the time it was published IBM claimed it as the world's best-
performing public-domain trading strategy. Details of AA were 
published by Vytelingum in his PhD thesis [25] and subsequent 
article in the prestigious Artificial Intelligence journal [26]. The 
key element of AA is aggressiveness: a more aggressive trader 
places a bid/ask that is more likely to be accepted, while a less 
aggressive trader will aim to seek a larger gain. This trading 
strategy estimates the market's equilibrium price by using a 
weighted moving average and estimates the volatility of the 
market by using Smith's a metric.  

Inspired by the IBM experiments pitting human traders 
against robot traders, a decade later in 2011 De Luca and Cliff 
ran a series of experiments, reported at IJCAI in [8], which 
suggested that AA dominates all known trading strategies and 
also outperforms humans, making AA the third trading strategy 
to be demonstrated as super-human. However, recently Snashall 
and Cliff [20] performed a brute-force exhaustive search of all 
possible ratios or permutations of different trading strategies for 
markets populated by a specific number of traders, consisting of 
over 1,000,000 market sessions, in order to show that AA doesn't 
always outperform GDX or ZIP: there are some circumstances 
in which AA can be dominated by GDX, or by ZIP. 

While AA, GD, GDX, MGD, and ZIP were all early 
instances of AI in finance, in virtue of their use of machine 
learning (ML) to adapt to circumstances and outperform human 
traders, they all used relatively simple and traditional forms of 
ML. In the past decade there has been an explosion of interest in 
Deep Learning, the field that concentrates on solving complex 
problems through the use of ''deep'' (many-layered) neural 
networks, i.e. DLNNs.  

It is commonplace to implement recurrent DLNNs for time 
series forecasting and a vast amount of research has been 
completed in this area particularly in spot markets where traders 
attempt to predict the price of a resource in the future. 
Predictions are often made to assist in generating a signal on 
whether a trader should buy, hold or sell the resource that they 
are trading. Although this project employs a DLNN, there is a 
clear distinction on how it is being used. Rather than being used 

to predict a future price, this DLNN will be applied to the sales 
trader problem directly: a DLNN (specifically, a Long Short 
Term Memory, or LSTM DLNN: see [12]) is created that 
receives a limit price from customer orders, considers the 
conditions in the market by extracting information from the 
LOB, and finally given all of this information produces a price 
to quote in the next order, a desired price to transact at.  

To the best of our knowledge, there are only two pieces of 
work that are closely related enough to discuss here. The first is 
DeepLOB [28] which uses a form of DLNN traditionally used 
in image processing, to capture the spatial structure of a LOB, 
coupled with an additional recurrent DLNN that incorporates 
information gathered over long periods of time. The second is 
by Le Calvez and Cliff [14] which demonstrates preliminary 
results from the use of a DLNN to successfully replicate the 
behavior of a ZIP trader, but which used only the best bid and 
ask prices. As Sirignano and Cont [18] have recently and 
elegantly demonstrated, deeper (Level-2) LOB data can be 
highly informative about short-term market trends, so a natural 
question to explore given Sirignano and Cont's result is: can we 
extend the methods reported by Le Calvez and Cliff to instead 
use Level-2 LOB data? That is what we explore in this paper.  

III. METHODS 
Comparing the performance of trading strategies is not a 

straightforward task. As previously mentioned, the performance 
of a strategy is reliant upon the other traders within the market 
and in real-world financial markets, it is implausible to know 
what algorithms other traders are using, as this information is 
confidential. Traders tend not to disclose their strategies in order 
to remain profitable, for obvious reasons. Nevertheless, there are 
well-established experiment-methods which can be used to 
compare trading agents. IBM's Tesauro and Das [24] present 
three separate experiment designs for comparing trading agents, 
two of which will be used here: in one-in-many tests (OMTs), 
one trader is using a different strategy to the all rest -- this test is 
used to explore a trading strategy's vulnerability to invasion and 
defection at the population level; and in balanced-group tests 
(BGTs) buyers and sellers are split evenly across two types of 
strategy, and for every trader using strategy A is matched with a 
trader using strategy B, with the matched-pair ech being given 
the same limit price. BGTs are generally considered to be the 
fairest way to directly compare two strategies. 

BSE was used to generate and collect all of the data required 
to train the LSTM network for DeepTrader and then test its 
performance against existing trading strategies. BSE allows 
control of the supply and demand schedules for a market 
session: we specified a range of schedules with varying shapes 
to both the supply and the demand curves, to generate data from 
a wide range of market conditions.  

BSE produces a rich flow of data throughout a market 
session, including a record of the profit accumulated by each 
trader: when we present our results in Section 4, we focus on 
average profit per trader (APPT) because this is metric is 
reassuringly close to the profit and loss (P&L) figure that real-
world traders (humans or machines) are judged by.  

The LOB maintained by BSE is updated and published to all 
traders in the market whenever a new limit order is added to it, 



whenever a market order executes, or whenever an order is 
cancelled (thereby taking liquidity off the LOB). The published 
LOB is represented within BSE by a data-structure made up of 
an order-book for bids, and an order-book for asks. Each of these 
two order-books contains a list of the prices at which orders are 
currently resting on the book, and the quantity/size available at 
each such price. From this LOB data, it is possible to calculate 
various derived values such as the bid-ask spread, the mid-price, 
and so on. BSE also publishes a 'tape" showing a time-ordered 
list of timestamped market events such as orders being filled 
(i.e., transactions being consummated) or being cancelled. The 
clock in BSE is usually set to zero at the start of a market session, 
so the time t shows how much time has elapsed since the current 
market session began.  

DeepTrader takes as input 14 numeric values that are either 
directly available on BSE's LOB or tape outputs, or directly 
derivable from them: these 14 values make up the 'snapshot' that 
is fed as input to DeepTrader's LSTM network for each trade 
that occurred within a market session. The 14 values are as 
follows (the +/– prefixes on input values are used in Section V): 

1. – The time t the trade took place. 
2. + Flag: did this trade hit the LOB's best bid or a lift the 

best ask? 
3. + The price of the customer order that triggered the 

quote that initiated this trade. 
4. + The LOB's bid-ask spread at time t. 
5. + The LOB's midprice at time t. 
6. + The LOB's microprice at time t. 
7. + The best (highest) bid-price on the LOB at time t. 
8. – The best (lowest) ask-price on the LOB at time t. 
9. – The time elapsed since the previous trade. 
10. – The LOB imbalance at time t. 
11. – The total quantity of all quotes on the LOB at time t. 
12. – An estimate P* of the competitive equilibrium price 

at time t, using the method reported in [25][26]. 
13. – Smith's a metric [19], calculated from P* at time t. 
14. The price of the trade. 

 
The first 13 items in the list are the inputs to the network: if 

any of them is undefined at time t then zero is used. Item 14 is 
the output (target) variable that the network is training toward: 
this is the price that DeepTrader will quote for an order. With 
respect to Item 3 on this list, it is important to note that when 
DeepTrader is trading live in the market, it only has access to 
the limit-prices of its own customer orders.  

Each of these 13 input variates can have values within 
differing ranges. As a single input consists of 13 different 
features and the contribution of one feature depends on its 
variability relative to other features within the input. If for 
example, one feature has a range of 0 to 1, while another feature 
has a range of 0 to 1,000, the second feature will have a much 
larger effect on the output. Additionally, values in a more limited 
range (e.g. 0 to 1) will result in faster learning. Therefore, when 
training a multivariate neural network such as in DeepTrader, it 
is common practice to normalize all features in the training 
dataset such that all values are within the same scale. We used 
min-max normalization: for further details see [25]. 

The BSE GitHub repository [2] includes source code for 
seven different trading strategies, four of which (AA, GDX, 
ZIC, & ZIP) have already been introduced. The remaining three 
are SNPR, a trader directly inspired by (but not identical to) 
Kaplan's Sniper; GVWY, a "giveway" trader that simply quotes 
at its own limit price, giving away all potential profit; and 
SHVR, a "shaver" trader whose strategy is simply always to 
undercut the current best ask by one penny, and/or to always beat 
the current best bid by one penny – this strategy is intended as a 
minimal model of a pesky high-frequency trader.  

To create a large dataset to train the model, many market-
session configurations were devised where the proportions and 
types of traders were varied. Each market session had 80 traders 
(40 buyers and 40 sellers). Additionally, each market session 
involved four different trading strategies. For each trading 
strategy, the number of buyers and sellers was always the same 
but there were five different proportion-groups of traders used. 
These proportion-group were: (20, 10, 5, 5), (10, 10, 10, 10), 
(15, 10, 10, 5), (15, 15, 5, 5), and (25, 5, 5, 5). Each number 
within a group denotes the number of buyers and sellers for a 
specific trading strategy within a market session. For example, 
the (20, 10, 5, 5) proportion group, indicates that there were 20 
buyers and sellers of trading strategy 1; 10 buyers and sellers of 
trading strategy 2; 5 buyers and sellers of trading strategy 3; and 
5 buyers and sellers of trading strategy 4 within this group. 

Given that there are four trading strategies in each session 
selected from a total pool of 7 available strategies, there is a total 
of 35 different combinations (i.e. 7 combined 4). 

Furthermore, there are 35 different permutations for each of 
the proportion groups listed. This led to a total of 1225 (=35x35) 
different market configurations where the proportions and types 
of traders were varied. Each market configuration was executed 
32 times with different random-number sequences for additional 
variability giving a total of 39,200 different market sessions that 
were run to create the training data for DeepTrader. 

Each individual market session takes approximately 30 
seconds to complete, so running all 39,200 on a single computer 
would take approximately 13.5 days. For this reason, the 
decision was made to use Amazon's Elastic Compute Cloud 
(EC2) service to parallelize data generation and collection 
processes amongst 32 virtual machines (VMs). The Python 
library Boto3 v.1.13.3 [10] was used to create, manage and 
terminate the VMs. Work was automatically split amongst the 
VMs by making every VM run each market configuration once 
and via a separate custom utility, created for this project. 

Typically, neural networks have training, validation and test 
datasets. The training set is used to train the model, it is the data 
that a neural network learns from; whilst the validation dataset 
is used for tuning a model's hyperparameters, and the test dataset 
is used to evaluate a model's final performance. For this project, 
as the performance of the neural network is determined by how 
well it trades during a market session, the test data is generated 
dynamically as the trader interacts with the simulated market.  

The LSTM network created consists of three distinct hidden 
layers. The first hidden layer is an LSTM layer containing 10 
neurons. The final two hidden layers are both fully connected 
layers containing 5 and 3 neurons respectively. Each hidden 



layer uses the Rectified Linear Unit (Relu) as an activation 
function: further details are given in [27].  

The training process is limited by the size of memory on the 
machine used to train the network: the training dataset was so 
large that using all data points at once is not practicable because 
it exceeds the memory limits of conventional commodity 
servers, and we did not have a national-scale supercomputer 
readily available. Therefore, was training was executed in 
batches. Each batch consisted of 16,384 data points and the 
Adam optimizer [13] is used to train the network. As is common 
in DLNN applications, the network's learning rates require 
careful selection, and Adam uses an adaptive learning rate 
method that calculates different learning rates based on the 
weights in the network, with the intention of finding a workable 
tradeoff between overfitting (if the learning rate is set too high) 
and long processing times (if it is set too low).  

The function that was used to calculate the error (loss) within 
the network was the mean squared error (MSE), as described in 
more detail in [25]. An epoch in training is the network being 
presented with each data-point within the training dataset once. 
We trained DeepTrader's LSTM network for 20 epochs, and the 
error measure typically fell rapidly in the first 10 epochs and was 
thereafter asymptotic approaching a very low value for the 
remainder of the training process. So, in total, DeepTrader 
would be trained via exposure to LOB data from 20 x 39,200 = 
784,000 individual market sessions, and each of those sessions 
would typically involve roughly 20 LOB snapshots, so the total 
number of snapshots used in training was around 15 million.   

IV. RESULTS 
Figures 1 to 4 show box-plots summarizing results from our 

experiments. Each experiment involves n=100 independent and 
identically distributed trials in the particular market, with a 
different sequence of random numbers generated for each trial. 
In all these figures, the vertical axis is average profit per trader 
(APPT) and the box is plotted such that distance between the 
upper and lower edges is twice the inter-quartile range (IQR); 
the horizontal line within the box is the median, and any data-
points that are more than 1.5 times the IQR from the upper or 
lower quartiles are regarded as outliers and plotted individually. 
Figures 1 and 2 show results from the balanced group tests 
(BGTs), while Figures 3 and 4 show results from the one-in-
many tests (OMTs). As is described in detail in Chapter 4 of 
[25], as a test of the significance of the differences observed 
between the APPT for DeepTrader and the APPT for whatever 
pre-existing algorithm it is being tested against, we calculated 
90% confidence intervals (CIs) around the mean and judged the 
difference in distributions to be significant if the CIs of the two 
trading strategies were non-overlapping.  

Fig. 1a shows BGT comparison of APPT scores between 
DeepTrader and ZIP, and Fig. 1b shows BGT comparison of 
APPT scores between DeepTrader and AA. Comparison of 90% 
confidence intervals around the mean APPT scores for the two 
trading strategies in each graph indicates that in this case there 
is no significant difference between ZIP and DeepTrader, but 
AA does significantly outperform DeepTrader. However, as we 
will see in Fig. 3, when AA is pitted against DeepTrader in one-
in-many tests, AA is outperformed by DeeTrader: we discuss 
these AA results later in this section.  

 

 

 

 

 

 

 

 

 

 
Fig. 1. Box-plots showing average profit per trader (APPT) from balanced-
group tests (BGTs) for DeepTrader vs ZIP algorithmic traders (left: Fig1a) and 
AA algorithmic traders (right: Fig1b). 

Fig. 2a shows BGT comparison of APPT scores between 
DeepTrader and GDX, and Fig. 2b shows BGT comparison of 
APPT scores between DeepTrader and ZIC. Comparison of 90% 
confidence intervals around the mean APPT scores for the two 
trading strategies in each graph indicates that in this case 
DeepTrader significantly outperforms GDX, and ZIC too.  

Fig. 3a shows OMT comparison of APPT scores between 
DeepTrader and ZIP, and Fig. 3b shows OMT comparison of 
APPT scores between DeepTrader and AA. Comparison of 90% 
confidence intervals around the mean APPT scores for the two 
trading strategies in each graph indicates that DeepTrader 
significantly outperforms both ZIP and AA, although from 
visual inspection of the graphs it is also obvious that DeepTrader 
has much more variability of response than either ZIP or AA. 

Fig. 4a shows OMT comparison of APPT scores between 
DeepTrader and GDX, and Fig. 4b shows OMT comparison of 
APPT scores between DeepTrader and ZIC. Comparison of 90% 
confidence intervals around the mean APPT scores for the two 
trading strategies in each graph indicates that DeepTrader 
significantly outperforms both GDX and ZIC, although again 
from visual inspection of the graphs it is also obvious that 
DeepTrader has much more variability of response than either 
GDX or SHVR. 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Box-plots showing APPT from BGTs for DeepTrader vs GDX 
algorithmic traders (left: Fig.2a) and ZIC algorithmic traders (right: Fig.2b).  

 

 



 

 

 

 

 

 

 

 

 

 
Fig. 3. Box-plots showing APPT from one-in-many tests (OMTs) for 
DeepTrader vs ZIP traders (left: Fig3a) and vs AA traders (right: Fig3b).  

The results presented here demonstrate that DeepTrader 
achieves what we set out to do: when trained on a series of orders 
issued by a trader T, where each order is associated with a 
snapshot of the Level2 market data available to T at the instant 
that the order was issued, the DLNN in can be trained such that 
DeepTrader learns a mapping from the inputs (Level 2 market 
data inputs to DeepTrader) to outputs (quotes issued by 
DeepTrader) that result in superior trading performance when 
the final trained DeepTrader system is evaluated by allowing it 
to live-trade in the market environment M that the original trader 
T was operating in.  

DeepTrader equals or outperforms the following trading 
algorithms in both the balanced group tests and the one-in-many 
tests: GDX, SHVR, SNPR, ZIC, and ZIP. Space limitations 
prevent us from including here further results, presented in [27], 
which show DeepTrader similarly learning to equal or 
outperform the rest of BSE's built-in algorithmic traders, i.e. 
GVWY, SHVR, and SNPR, thereby taking the total number of 
trading algos that DeepTrader outperforms to six. The most 
notable aspect of DeepTrader learning to trade at least as well 
as, or better than, this list of six different algorithms is that it 
includes ZIP, one of the two "super-human" algo traders for 
which code is already available in BSE. 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Box-plots showing APPT from OMTs for DeepTrader vs GDX (left: 
Fig4a) and vs ZIC (right: Fig4b).  

The results for DeepTrader when learning from (and then 
pitted against) the final algo studied here, Vytelingum's AA, the 
other super-human algo trader in BSE is somewhat less clear-
cut: in the balanced group test, AA gets the better of 
DeepTrader; but in the one-in-many tests, DeepTrader roundly 
outperforms AA. As these two sets of tests result in a 1-1 tie, it 
seems fair to call it a draw.  

So, in summary the results presented here (which are 
expanded upon in [27] and [15]) collectively show DeepTrader 
having six clear wins and one draw. While seven straight wins 
would naturally be preferable, these results nevertheless clearly 
demonstrate that the approach we have developed here has 
merit, and warrants further exploration. 

In particular, having successfully used deep learning to 
create such a successful trader, the success provokes a natural 
question: how does DeepTrader work? That is, in what way does 
it use the 13 input features when trading? This is a question that 
we start to answer in the next section. 

V. ANALYSIS 
Thus far our focus has been on ablation studies: that is, 

removing, disabling or masking specific aspects of the 
DeepTrader network and then noting the effects of that ablation. 
In general terms, we perform a sequence of ablation studies and 
the results from such a sequence can prompt us to hypothesise 
about how we could increase the efficiency of DeepTrader; we 
then test such hypotheses by studying the market performance 
of edited versions of DeepTrader, ones that have been altered to 
reflect our hypotheses – and this process can be iterated in an 
attempt at reducing the DeepTrader network to a minimally 
complex version that retains the ability to produce the desired 
level of trading behavior.  

As is described in more detail in [15] we ran a set of 13 
experiments where in each experiment one of the 13 input 
features was "ablated" by having the values in that column of the 
training data-set randomly shuffled (so the frequency-
distribution of values in that column was unaltered, but any 
correlation between the value in that column and the other 12 
features was very heavily disrupted); this gave us 13 sets of 
results where we could record the performance hit, the increase 
in error rate, when a specific one of the 13 features was ablated. 
A relatively large performance hit for a specific feature is an 
indication that DeepTrader's good trading behavior is indeed to  
reliant on that feature, whereas if the performance hit was 
sufficiently low then we considered that as an indication that the 
feature in question was, to a first approximation, irrelevant (or, 
at least, of sufficiently limited significance that it could be safely 
ignored) – that is, a low performance hit for ablating a feature 
led us to hypothesize that DeepTrader could operate 
successfully without access to that feature as an input; to check 
this, we re-ran our experiments with the feature (and its 
associated neurons within DeepTrader) absent, to check that the 
behavior of the resultant trader was consistent with our belief.  

  Via this method, we eliminated 7 of the 13 features (those 
prefixed with a – character in this enumerated list of 13 features 
in Section III), leaving a 6-input DeepTrader network which, 
when re-trained and tested, proved to show a slim improvement 
in its validation loss result: i.e. eliminating the seven features 

 

 



identified by ablation studies and using only the remaining six 
did not cause any loss of performance, and actually gave a very 
slight improvement. Thus we conclude this paper with the 
observation that only the six features prefixed with a + symbol 
in the enumerated list in Section III are required to trade as well 
as the 'super-human' trading agents ZIP and GDX.  

VI. FURTHER WORK 
Although at the start of this paper we characterized our 

approach to the use of learning in DeepTrader as behaviorist, 
because we concentrate only on the observable inputs and 
resultant trading behavior of the system, our next phase of work 
will be devoted to further analysing the internal mechanisms that 
make a trained DeepTrader so successful. In particular, we will 
investigate the extent to which each of the key inputs identified 
in Section V contribute to the behavior of DeepTrader in a 
variety of market conditions: it is possible that some of those 
inputs play a much more significant role than others, and it is 
possible that which inputs are most significant varies across all 
market conditions: we will report on our findings in this respect 
in a future publication; there is much to explore. And, given the 
story that we opened this paper with, an obvious next step is to 
attempt to repeat the methods used here, with the source data 
coming from human traders rather than from trading agents.  

VII. DISCUSSION AND CONCLUSIONS 
We have explored here the problem of using machine 

learning to automatically create high-performance algorithmic 
traders that are fit to operate profitably in a contemporary 
financial exchange based (as are all current major electronic 
exchanges) on a CDA process mediated by a continuously 
updated limit order book showing Level 2 market data. Our 
approach to this problem is behaviorist, in the sense that we seek 
to use machine learning to replicate or exceed the trading 
behavior of an existing high-performance trader, and we do this 
purely by specifying a set of desired outputs for particular 
inputs: we have made no commitment to any particular approach 
being incorporated within the trader's internal processing that 
maps from externally observable inputs to outputs; instead we 
treat DeepTrader as an opaque black-box.  

The novel results presented in this paper demonstrate for the 
first time this approach being used successfully against a range 
of pre-existing algorithms, including both AA and ZIP which 
had previously been shown to outperform human traders. Given 
that AA and ZIP are already known to exceed the capabilities of 
human traders in LOB-based CDA markets, it seems plausible 
to conjecture that the methods used here could in principle be 
extended to operate on training data that comes from observation 
of a human trader rather than an algorithmic trader. The basic 
approach, of associating snapshots of the LOB with orders 
issued by the trader, should work independently of whether the 
trader issuing the order is a person or a machine. And, in that 
sense, the little story that we started this paper with may not be 
fiction for much longer. 
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