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giovanni.a.misitano@jyu.fi

Abstract—Many real life problems can be modelled as multi-
objective optimization problems. Such problems often consist of
multiple conflicting objectives to be optimized simultaneously.
Multiple optimal solutions exist to these problems, and a single
solution cannot be said to be the best without preferences
given by a domain expert. Preferences can be used to find
satisfying solutions: optimal solutions, which best match the
expert’s preferences. To model the preferences of the expert,
and aid him/her in finding satisfying solutions, a novel method is
proposed. The method utilizes machine learning combined with
belief-rule based systems to adaptively train a belief-rule based
system to learn a domain expert’s preferences using preference
information gathered during an interactive process. Belief-rule
based systems are explainable generalized expert systems, which
have not been used before in the manner described in this paper
to model preferences of a domain expert for a multi-objective
optimization problem. In the case study conducted, the satisfying
solutions found using learned preferences are concluded to be
compatible with the preferences of the expert, which support the
proposed method’s viability as a decision making support tool.

Index Terms—multiple objective optimization, belief-rule
based systems, machine learning, Python, preference modelling,
decision making

I. INTRODUCTION

Many real-life problems can be modelled as multi-objective
optimization problems with multiple conflicting objectives.
Such problems can emerge in health care [1] and engineering
[2], for example. No single solution exists to these problems
and the aid of a domain expert, a decision maker, is involved.
The decision maker can give preferences, which can be used
to identify satisfying optimal solutions matching the given
preferences. To model the preferences of a decision maker,
a value function can be used [3]. The value function is not
explicitly known and must be inferred from the preferences
of the decision maker. If the value function is known, it
would allow finding the most satisfying solutions according
to the preferences of a decision maker, therefore aiding the
decision maker in finding satisfying solutions to a multi-
objective optimization problem.

In this paper, a novel method is proposed which utilizes ma-
chine learning and belief-rule based systems to learn the value
function of a decision maker. Belief-rule based systems are

generalized expert systems able to model non-linear systems.
Adaptive training is utilized in the proposed method, where
preferences given by a decision maker during an interactive
process are utilized to adaptively train a belief-rule based
system to model the value function of the decision maker.
Belief-rule based systems have been chosen to be utilized
in modelling the value function because they can be used
to build explainable models [4]. Explainability increases the
trust humans have in predictions made by computational
models [5]. However, the explainability of the method is not
explored in this work, and is left for future research.

Some recent works, where the value function of a decision
maker is inferred using machine learning can be found in
[6] and [7], for example. For more details on modelling
preferences for multi-objective optimization problems, see [8].

This paper is structured in the following manner: in Sec-
tion II the necessary background is given for understanding
how the proposed method works, in Section III the pro-
posed method – the INFRINGER method – is presented, in
Section IV the software implementation of the INFRINGER
method is briefly discussed, in Section V a case study in
forest landscape planning is conducted using the INFRINGER
method, and in Section VI the results of the case study
are discussed. Finally, in Section VII conclusions are made
regarding the feasibility of INFINGER as a method for solving
multi-objective optimization problems, and how successful the
method is in learning the preferences of a decision maker. This
paper ends with suggestions for future research topics related
to the INFRINGER method.

II. BACKGROUND

A. Multi-objective optimization

A multi-objective optimization problem consists of multiple
objective functions, which are to be optimized simultaneously
under certain constraints. Such a problem can be defined as

max
x∈X

f(x) = {fi(x) | i ∈ [1,m]}, (1)

where f is a vector of m objective functions fi to be max-
imized. Each fi expects a decision variable vector x as its



argument. The decision variable vectors x with n elements
belong to the feasible set X ⊂ Rn, which is defined by
constraints imposed on x.

The objective functions in (1) are assumed to be conflicting,
which means that no solution in X is able to optimize
simultaneously all objectives fi. Instead, multiple optimal
solutions x∗ ∈ X exist, which form a set of optimal objective
vectors f(x∗) = z ∈ Z for all existing optimal solutions x∗.
For two vectors z, z̃ ∈ Z, the vector z dominates z̃ if, and
only if, zi ≥ z̃i is true for all i ∈ [1,m], and zi > z̃i is
true for at least one i ∈ [1,m], where the index i is used
to denote the ith element in the vectors. The Pareto optimal
set ZPareto is then defined to be the set containing all the
vectors z, which are not dominated by any other vector in
Z. However, in a real world scenario, the whole extent of
the Pareto optimal set for a problem is often not known.
Therefore, subsets of the true Pareto optimal set ZPareto, known
as representations of the Pareto optimal set, are used instead.
From the definition of the Pareto optimal set, and as long
as all relevant objectives are included in the definition of the
multi-objective optimization problem, we can assume that the
decision maker is only interested in the vectors present in the
set ZPareto.

Additionally, the nadir point znad and the ideal point z∗ are
defined. The nadir point consists of the worst values of each
objective in ZPareto, and the ideal point consists of the best
values respectively. The nadir and ideal points are used to
convey information on the attainable objective values of (1).
It is worth noting that the ideal point is not feasible, that is,
it cannot be computed from a decision vector x ∈ X . On the
other hand, the nadir point might or might not be feasible. In
practice, the ideal point is trivial to calculate, but because the
nadir point depends on the whole extent of the Pareto optimal
set, it is often impossible to calculate the true nadir point,
which is why estimates of the nadir are often used. In this
paper, a payoff table was used in the case study to calculate
the nadir point of the forest landscape planning problem. The
payoff table alongside an alternative method for approximating
the nadir point are discussed in [9].

Methods for solving multi-objective optimization problems
can be divided into three categories based on how the methods
incorporate a decision maker’s preferences. Methods utilizing
preferences before solving the multi-objective optimization
problem are known as a priori methods. Methods that make
use of preference information after the optimization process
are known as a posteriori methods. In this paper, an interactive
method is developed. In interactive methods, the preference
information is used and updated during the optimization
process. This requires for the decision maker to actively
take part in the optimization process by expressing his/her
preferences based for example on candidate solutions, which
are computed and presented to him/her during the process. For
a more detailed introduction to multi-objective optimization
and multi-objective optimization methods, see [3], and for a
recent review discussing interactive multi-objective optimiza-
tion methods, see [10].

Fig. 1. The general structure of a BRB system and the relation between its
components.

B. The value function

To model the preferences of a decision maker, a value
function of the form

Rm → R : fval(z) (2)

is assumed to exist. The value function maps each objective
vector z to a scalar value. The higher the value of (2) is for
an objective vector z, the more preferred z is according to
the preferences of the decision maker. By maximizing (2), the
most preferred objective vector(s) according to the decision
maker’s preferences can be found.

Assuming that a decision maker will always prefer more
to less regarding the objectives in a problem (1), the value
function (2) can be regarded to be monotonically increasing
as a function of the elements zi. This means that when one of
the elements zi is varied and the others are kept constant, the
value of (2) should increase as zi is increased.

It is unrealistic to assume a decision maker to be able to tell
what his/her value function is explicitly. Therefore, the value
function is otherwise inferred utilizing preference information
given by the decision maker. In this paper, the value function
is inferred utilizing a belief-rule based system and pair-wise
comparisons of vectors in ZPareto conducted by a decision
maker. Pair-wise comparisons are chosen because they are a
relatively simple way for a human decision maker to convey
preference information.

C. Belief-rule based systems

Belief-rule based (BRB) systems presented in this subsec-
tion are based on the RIMER methodology discussed in [11]
and [12]. The BRB systems described in this paper consist
of a belief-rule base, an inference mechanism, and a way to
transform observed data into inputs used in the rules of the
rule base. The BRB system can be trained by formulating a
cost function, which is then minimized to find a set of optimal
parameters for the BRB system.

The general structure of a rule base is summarized in
Figure 1. Concluding this subsection, the cost function and its
minimization problem are discussed The reader is advised that
many of the symbols already used and defined in the previous
subsections are reused and redefined here. This has been a
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deliberate choice by the author as not to inflate the number of
different symbols used in this paper and to keep the notation
similar to the notation found in the source literature.

The rule-base in a BRB system consists of L IF...THEN...
rules Rk, where an expression follows the IF, and an action –
referred to as a consequent – follows the THEN. An input to a
rule is a vector x of attributes with T elements xi, i ∈ [1, T ].
The attribute values xi are restricted to the values present in
the antecedents of the rule base defined to be a set of T vectors
Ai, i ∈ [1, T ] with each vector consisting of referential values.
Then, Ai,j denotes the jth available referential values for the
ith attribute xi, where the number of these referential values
may vary from rule to rule. The vectors of referential values
are aggregated in a set of vectors A = {Ai | i ∈ [1, T ]} called
the packet antecedent of the rule base.

Similarly, the output of each rule is restricted to N referen-
tial values in a packet consequent D = {Di | i ∈ [1, N ]}. The
element Di indicates the ith available referential value for the
consequents in the rule base.

Each rule Rk is also associated to a vector of belief-degrees
βi,k, where the index k indicates to which rule the degrees
are associated to, and the index i indicates the belief-degree
associated to the ith referential value Di ∈ D. The value of
the belief-degree indicates the likelihood for a referential value
Di being the consequent of a rule when the expression of the
rule is true. Additionally, each rule Rk has an associated rule
weight θk indicating how important the rule is in the rule base,
and an associated set of attribute weights δi,k, indicating how
important the ith attribute is in the expression of the rule.

The ideas presented so far can be summarized in the
definition of a single belief-rule with the AND-connective ‘∧’
aggregating the expressions:

IF x1 is Ak1 ∧ x2 is Ak2 ∧ . . . ∧ xTk
is AkTk

,

Rk : THEN {(Di, βi,k) | i ∈ [1, N ]}, (6)
with an associated rule weight θk,
and attribute weights {δi,k | i ∈ [1, Tk]},

where Aki is an antecedent referential value vector, such that
Aki ∈ Ai, and Tk is the number of attributes in the input of
rule Rk. The parameters βi,k, θk, δi,k, and A, can be set by
an expert or learned.

Observed data H consisting of the elements hi, i ∈ [1, T ],
is transformed to a belief distribution before it can be utilized
in a BRB system. Given a packet antecedent A, hi can be
transformed into the belief distribution

αi =

{
min

(
max

(
Ai,j+1 − hi
Ai,j+1 −Ai,j

, 0

)
,

max

(
hi −Ai,j−1

Ai,j −Ai,j−1
, 0

)) ∣∣∣j ∈ [1, |Ai|]
}
, (7)

where |Ai| is the number of elements in Ai, Ai,0 = Ai,T ,
and Ai,|Ai| = Ai,1. That is to say, that the nth element in a
belief distribution αi denoted by αi,n indicates how well an
observed attribute hi matches the referential value Ai,n of a
rule base.

Once all hi have been transformed to a belief distribution
αi, an activation weight can be calculated for each rule as

wk = θk
∏Tk

i=1

(
αki,j
)δ̄i,k/∑L

l=1

[
θl
∏Tl

i=1

(
αli,j
)δ̄i,l], (8)

where δ̄i,k = (δi,k)/(maxi∈Tk
(δi,k)). The sub-indices j in

the expressions αk/li,j are determined by each belief-rule Rk

so that the values in αk/li,j convey the information on how the
observed input H matches to the rule’s antecedent values Ak.
Then, the activation weights indicate how important each rule
is given a certain input to the rule base.

Using the computed activation weights, the combined belief
degrees βn can be calculated using (5). A combined belief
degree βn conveys the likelihood for an input x to be mapped
to the consequent referential value Dn ∈ D in the rule base.
Using a function R→ R : u(Di), the combined belief degrees
can be transformed into a numerical output as

y =
∑N
i=1 u(Di)βi. (9)

The belief-degrees βi,k, the rule weights θk, the attribute
weights δi,k, and the antecedent referential values Ai, can be
denoted by P (βi,k, θk, δi,k, Ai). A minimization problem is
then defined

minP∈P ξ(P ), (10)

where ξ is a cost function used to train the BRB system, and
P denotes the set of feasible parameters P , which is defined
by the following constraints:∑L

i=1 θi = 1, (11)∑L
i=1 βi,k = 1, k ∈ [1, L], (12)

0 ≥ δi,k, i ∈ [1, T ] and k ∈ [1, L], (13)
Ai,n ≤ Ai,n+1, i ∈ [1, T ] and n ∈ [1, |Ai| − 1], (14)

where (11) and (12) are normalizations, (13) limits the attribute
weights to positive values to keep the multiplicand in (8)
less or equal to one, and (14) is used to keep the antecedent
referential values ordered, which is assumed in (7).

By formulating the cost function ξ to reflect a difference
between the numerical output (9) of the BRB system and a
desired output, an optimization problem defined in (10) can
be formed using the formulated cost function, and can then
be solved for a set of optimal parameters P̃ ∈ P, which are
then used to update the BRB system to better reflect a desired
output effectively training the BRB system.



III. METHOD

A. The INFRINGER method

An interactive method for solving multi-objective optimiza-
tion problems, the INFRINGER1 method, is proposed. The
method models a decision maker’s preferences as a value
function, which is learned utilizing a BRB system. The BRB
system in the method is adaptively trained using a cost
function, which is formulated based on preference information
gathered during an interactive process where a decision maker
is asked to conduct pair-wise comparisons of Pareto optimal
objective vectors.

As its input, the INFRINGER method requires: (i) a set of
objective vectors representing a Pareto optimal set ZPareto in
a multi-objective optimization problem; (ii) the ideal point z∗

and the nadir point znad of the set ZPareto; and (iii) a fitness
threshold γth ∈ [0, 1] used as a termination criterion. The
output of the method consists of: (i) a trained BRB system
able to model the decision maker’s preferences using a learned
value function; and (ii) the vector in ZPareto with the highest
value according to the learned value function. It is assumed
that the vectors in ZPareto consists of real valued objectives
scaled between [0, 1] using the nadir and ideal points, such
that the nadir point’s objectives are zero and the ideal point’s
objectives are one.

In the INFRINGER method, it is assumed that the given
set of objective vectors representing the Pareto optimal set
is sufficiently diverse and spread-out in such a way that the
set can be assumed to represent the whole extent of the
Pareto optimal set. This kind of input set is easily computed
for a discrete data-based multi-objective optimization problem
modelled after a small and limited data set. However, for
non-discrete problems or problems modelled using very large
amounts of data, it is not always possible to know if a
representation of the Pareto optimal set is comprehensive
enough to warrant the assumptions made in the INFRINGER
method. Therefore, the INFRINGER method may act more as
an a posteriori multi-objective optimization method instead of
an interactive method, if the given representation of the Pareto
optimal set is not comprehensive enough.

B. Initialization

The decision maker is shown the nadir and ideal points and
is then asked whether he/she would like to give a reference
point z̄, a vector consisting of desired objective values. If the
decision maker does not wish to give a reference point, the
reference point is set to be in the middle of the nadir and ideal
points.

Next, the decision maker is shown the approximation of the
Pareto optimal set alongside the reference, nadir, and ideal
points. This is done to give the decision maker an idea of the
available objective values.

A BRB system is then initialized with a packet antecedent
A with m referential value vectors. Each Ai corresponds to
the ith objective, and consists of three referential values: Ai =

1Which stands for Interactive inference of preferences using belief rules

{
znad
i , z̄i, z

∗
i

}
, where the index i refers to the ith component

in each of the vectors. The Cartesian product of the referential
value vectors in A is then taken resulting in 3m new vectors
labelled as Ak, where k ∈ [1, 3m]. These vectors are then used
to construct L = 3m belief-rules (6), where the rule Rk has
the antecedent referential values Ak.

The referential values for the consequent D in each rule are
chosen to be D = {0, 0.25, 0.5, 0.75, 1}, because it is assumed
that the numerical output of the BRB system modelling a value
function is limited to the continuous range [0, 1]. The choice
of five referential values in D has been a result of trial and
error – the choice has shown to yield a good balance between
computational efficiency and performance of the BRB system.

To define the belief-degrees βi for each rule Rk, an initial
value function (2) must be assumed. The value function is
assumed to be

fp(z) =
∑m
i=1 zi/m, (15)

which is chosen, because it is simple and clearly coherent with
the assumptions made in Section II-B. The initially assumed
value function (15) could also be chosen differently without
impairing the described method. Using the principle (15), and
an identity function u(Di) = Di in (9), a numerical output yk

can be computed for each Ak. This numerical output can then
be transformed into the belief degrees of each rule Rk using
(7) by substituting αi with βi, Ai,∗ with D∗, and hi with yk.
The rest of the parameters in the initial BRB system are set
to be θk = 1/L, and δi,k = 1, for all indices i, k, because no
further assumptions are made regarding the modelled value
function.

The initial belief-rule base has now been fully defined, and
a numerical output can be computed for an objective vector
z utilizing (7), (8), (5), and (9). This output represent a value
associated to z according to the value function modelled by
the BRB system. As a short hand notation

B(z) = ”value for z” (16)

is used to indicate the numerical output of the BRB system.

C. Pair-wise comparisons and fitness evaluation
Following the initialization of the BRB system, the decision

maker is shown pairs of vectors in ZPareto. Five pairs are
chosen to be shown, because it is a number of pairs low
enough to be grasped by the decision maker, and high enough
to still offer a decent representation of the available vectors. To
choose pairs with enough variety, the standard deviation and
mean are calculated from a distribution of values computed
using (16) to calculate a value for each vector in ZPareto. The
first three pairs are selected by finding two vectors, both being
a multiple of the standard deviation apart from each other,
centered on the mean. The multiples of the standard deviation
are one, two, and three, for the first three pairs selected,
respectively. The fourth pair consists of the vectors with the
highest and lowest values in ZPareto according to (16), and the
fifth pair consists of two random vectors in ZPareto.

The decision maker is then asked for each pair if he/she
prefers the first vector, the second, or if the vectors are equally



preferable. According to his/her answers, it is assumed that the
value function of the decision maker results in a higher value
for the preferred vector, and an identical value for two equally
preferred vectors. This idea is contrasted to the output of the
BRB system (16), based on which a fitness γ is calculated.
The maximum value of the fitness γ is 1, which indicates that
the values of B computed for both vectors in all the pairs
agree with the preferences of the decision maker. A fitness
value of 0 indicates the opposite. For example, in case of
five pair-wise comparisons conducted, a fitness value of 0.6
would indicate that the BRB system compares three out of five
pairs similarly to how the decision maker compared them. The
preference information gathered in the pair-wise comparisons
is also used in a cost function described in the next subsection.

D. Adaptive training and visualization

To adaptively train the BRB system to model the de-
cision maker’s preferences using a value function model,
a cost function is defined and minimized. Three important
assumptions can be made regarding the value function being
modelled by the BRB system: the value of the nadir point
should be worse than any other vector in ZPareto, the ideal
point should correspondingly have the highest possible value,
and the value function should be monotonically increasing
as a function of the objective values. Additionally, a fourth
assumption is also made: the modeled value function should
reflect the preferences of the decision maker according to the
pair-wise comparisons conducted in the manner described in
Section III-C. To reflect the assumptions made, a cost function
is defined for each assumption, which has a higher value the
greater the disagreement between the modelled value function
and the made assumption is. The cost function used in the
INFRINGER method is therefore defined as the aggregation
of four cost functions as

ξ(P → B) = ξnadir + ξideal + ξmono + ξpair, (17)

where the notation P → B indicates that the underlying
BRB system is updated with the parameters P before the
cost function is evaluated, ξnadir has a higher value the greater
the absolute difference between B(znad) and 0 is, ξideal has
a higher value the greater the absolute difference between
B(zideal) and 1 is, ξmono has a greater value the less monoton-
ically increasing B is, and ξpair is the reciprocal of the fitness
γ discussed in Section III-C.

After a cost function (17) is defined, a minimization prob-
lem (10) is solved to find the optimal parameters P̃ . Using
the optimal parameters P̃ in the BRB system will result in
a modelled value function B congruent with the assumptions
made regarding (17) in the previous paragraph. The modelled
value function should therefore reflect the preferences of the
decision maker based on the pair-wise comparisons conducted,
and abide the assumptions made regarding the general nature
of a value function discussed in Section II-B.

To further improve the modelled value function in its ability
to model the decision maker’s preferences, more pair-wise
comparisons can be conducted, and the cost function ξpair

Algorithm 1 The INFRINGER method
INPUT: A representation of the Pareto set ZPareto, the ideal
and nadir points znad, z∗, and a fitness threshold γth.
OUTPUT: A BRB system trained to model a decision
maker’s preferences using a value function, and a desired
number of the highest valued vectors in ZPareto according
to the value function modeled by the BRB system.
Step 1: Show the decision maker z∗ and znad, and ask
if he/she would like to supply a reference point z̄ with
objective values bound by znad and z∗.
Step 2: If z̄ was given in Step 1, continue to Step 3.
Otherwise define z̄ to be an objective vector in the middle
of znad and z∗.
Step 3: Initialize a BRB system as described in Sec-
tion III-B.
Step 4: Conduct pair-wise comparisons of the selected
vectors in ZPareto as described in Section III-C.
Step 5: Formulate the cost function and minimize it as
described in Section III-D. Update the BRB system with
the optimal parameters P̃ found.
Step 6: Visualize the ranked ZPareto to the decision maker as
described in Section III-D using the current value function
modelled by the BRB system.
Step 7: Conduct a new pair-wise comparisons of vectors in
ZPareto and compute a fitness γ value as described in Section
III-C.
Step 8: If the computed γ ≥ γth or the decision maker
wishes to stop, go to Step 11. Otherwise continue to Step
10.
Step 9: Update the cost function related to the pair-wise
comparisons ξpair in (17) and minimize it as described in
Section III-D. Update the BRB system with the optimal
parameters P̃ found and go to Step 7.
Step 10: Visualize the highest valued vectors in ZPareto as
described in Section III-E.

in (17) can be updated with the new preference information
gathered from the comparisons. Previously conducted pair-
wise comparisons are kept in the formulation of ξpair because
it is assumed that the preferences of the decision maker remain
constant.

To suggest the decision maker a best solution, and to give
him/her an idea of where their region of interest in ZPareto

might be according to their preferences learned by the BRB
system, the decision maker is shown a plot depicting a ranking
of the vectors in ZPareto according to the learned value function
B. The vector with the highest score in ZPareto is also indicated
in the plot. An example of such a plot can be seen in Figure 3,
where colors have been used to indicate the value of each
vector in a multi-objective optimization problem with three
objectives.

E. Termination

The pair-wise comparisons can be conducted again and the
BRB system can be adaptively trained multiple times. After



each adaptive training, the fitness γ of the value function
being modelled can be re-evaluated. If the calculated fitness
is equal or greater compared to the fitness threshold γth, the
INFRINGER method is terminated. Optionally, the method
can be terminated if the decision maker decides he/she does
not wish to continue – the decision maker gets tired, or is
happy with the solution(s) found. The decision maker is then
shown a desired number of the top valued vectors found in
the representation of ZPareto according to B.

As for the learned value function, the optimal parameter
P̃ found before termination can be saved for later use, for
example if the modelled value function of the decision maker
is needed later. The INFRINGER method is summarized in
Algorithm 1.

IV. SOFTWARE

A software framework to build and train BRB systems
discussed in Section II-C has been developed in Python [13].
Based on the aforementioned framework, the INFRINGER
method described in Section II-C has also been implemented.
The developed framework is a first of its kind. The source
code for the developed framework and method is available on
GitHub. 2.

V. CASE STUDY

In the case study described in this section, the developed
INFRINGER method, and its software implementation, were
used for solving a multi-objective optimization problem in a
forest landscape planning problem. A domain expert acted as
the decision maker in the case study.

A. The problem

The problem in the case study consisted of choosing dif-
ferent management strategies for different parts of a forest,
which are referred to as forest stands. A strategy could have
consisted of chopping down all the trees in the stand and
sell the timber, for example. Three indicators were chosen
to represent the consequences for the whole forest resulting
from choosing different strategies for each forest stand. These
indicators were: total average income, average stored carbon-
dioxide, and average combined habitat suitability index. The
listed indicators were chosen to be the three objectives of a
problem being solved and are to be maximized.

Simulated data were available in three CSV3-files, with
values for the three objectives for each forest stand. There
were 59 available managements strategies, with data for 1475
forest stands whose development over a one hundred year time
horizon was simulated for all the available strategies using
SIMO [14]. In the case study, only 20 out of the 59 available
strategies were considered to lower the computational time for
calculating a Pareto optimal objective vector set from the data.

A comprehensive representation of the Pareto optimal set
was calculated based on the available data. The nadir and
ideal points of the Pareto optimal set were also computed.

2https://github.com/gialmisi/desdeo-brb (November 26, 2020)
3Comma separated values.

The original data used and the source code to compute the
Pareto optimal set is available on GitHub4.

B. Solving the problem using INFRINGER

In what follows, each time a reference is made regarding
a Step followed by a number, it refers to a Step present in
Algorithm 1. Analyst refers to the author of this paper who
was in charge of operating the INFRINGER method since the
case study was conducted over a video call.

The fitness threshold γth required as one of the inputs to
the INFRINGER method was set to be 1 by the analyst. This
choice was made in an attempt to avoid premature termination
of the method and guarantee the BRB systems to be trained at
least a couple of times. This was done to improve the accuracy
of the modelled value function in modelling the preferences
of the decision maker.

According to Step 1, the decision maker was shown the
nadir and ideal points, and the Pareto optimal set. The decision
maker then wished to give a reference point, which was used
for initializing a BRB system according to Steps 2 and 3.
Then, pair-wise comparisons were conducted by the decision
maker according to Step 4. The interface shown to the decision
maker for conducting the pair-wise comparisons can be seen
in Figure 2. A spider plot was also available for each pair-
wise comparison to aid the decision maker in comparing the
two vectors in each pair. An example of a spider plot shown
can be seen in Figure 4. Based on the pair-wise comparisons
conducted, the cost function was formulated and minimized
according to Step 5. The BRB system was updated with the
optimal parameters P̃ found.

The decision maker was then shown the ranked Pareto
optimal set according to Step 6. A fitness was calculated
afterwards and compared to γth according to Step 8. The fitness
was less than the threshold, and the method was continued
according to Step 9. An additional five iterations of Steps 6
through 9 were conducted before the decision maker wished
to stop the method, and the highest valued vector was shown
to the decision maker as seen in Figure 3 according to Step
10.

C. General remarks

During the case study, the decision maker had made a couple
of important remarks that can be used to assess the potential
of the proposed INFINGER method as a tool to assist in
decision making: (i) the decision maker said to be happy with
the highest valued vectors shown in iterations of Step 6, and
he said that he felt that the objective values in the vectors
shown were closing to what he was aiming at; (ii) the decision
maker said that his preferences had changed during the case
study; (iii) the decision maker wished for a fourth preference
option to be available in the pair-wise comparisons – there
should have been an option of no preference indicating that
no preference can be given based on the two vectors shown in
a pair – and he had chosen the option for equal preference to

4https://github.com/gialmisi/forest-opt (November 26, 2020)
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Fig. 2. The interface presented to the decision maker for pair-wise comparison of vectors (candidates) in ZPareto. For each pair shown, the decision maker
may specify a candidate on the left to be either better, worse, or as good as the candidate on the right by choosing an appropriate option from the drop-down
menu in the middle. Each pair can be further investigated by clicking the ’Plot’ button next to each pair, which will produce a spider plot as shown in Figure 4

Fig. 3. The ranked Pareto optimal vectors. The highest valued vector,
according to the learned preferences, is indicated by the circle. Values are
normalized between 0 and 1 according to the limits imposed by the nadir and
ideal points. The value of each vector is indicated by the shown color scale.
Red tinted vectors have the highest values while blue tinted vectors have the
lowest.

indicate absence of preference instead. However, overall the
decision maker expressed to be happy in the highest valued
objective vectors shown.

Additional graphical and numerical data relevant the case
study is available. The material is available by request from
the author.

VI. DISCUSSION

The first remark in Section V-C, and the notion of the
decision maker being overall happy with the highest valued
Pareto optimal objective vectors shown, are clear indicators of
the INFRINGER method being able to aid a decision maker
to find satisfying solutions. The first remark indicates also that
the BRB system was able to learn a value function reflecting
the decision maker’s preferences in the case study.

However, the decision maker had also clearly stated that
his preferences had changed during the case study in the

Fig. 4. A spider plot of two vectors in ZPareto (candidates) shown to the
decision maker to aid him/her in comparing the two vectors. In the spider plot
shown, the ideal and nadir point’s values for each objective are also shown
(outer radius and inner radius for the ideal and nadir values, respectively).

second remark – a clear contradiction to the assumption made
regarding the preferences of the decision maker made at
the end of Section III-D. The change in preferences can be
attributed, for example to the decision maker learning about
the existing trade-offs between the Pareto optimal objective
vectors. This would indicate that incorporating the previously
gathered preference information regarding the cost function
ξpair is not correct, and it should be reconsidered whether
preference information gathered in previous iterations should
be used in training the BRB system in the following iterations
as well.

It was also evident from the third remark that an option of no
preference should be available in the pair-wise comparisons.
During the case study, the option for equal preference had
been used, when the decision maker wished to actually give



no preference at all. This has probably lead to some error in
the learned value function, and the absence of a no preference
option should be addressed in future research related to
INFRINGER.

Moreover, the comments made in Section III-A suggest
that the INFRINGER method can be improved to work as an
interactive method in cases where a comprehensive represen-
tation of the Pareto optimal set is not available. For example,
the INFRINGER method could be enhanced by replacing the
input consisting of a pre-computed set of objective vectors
representing the Pareto optimal set with an evolutionary search
method, which can be used to find a set of non-dominated
objective vectors according to the current preference model
learned in each iteration of the INFRINGER method.

Lastly, many of the choices regarding the INFINGER
method have been a result of trial and error, which has been
the method of choice for defining the parameters because of
the novel nature of the method – there is no existing literature
which would suggest choices for optimal parameters for the
method proposed in this paper. Some examples of such choices
are the number of vectors shown in the pair-wise comparisons,
the number of antecedent and consequent referential values in
the BRB system, and the choice of the initially assumed value
function (15). Additional research should be conducted to find
the optimal choices for these parameters.

VII. CONCLUSION

Based on the results of the case study discussed in Section
VI, it is concluded that the proposed novel INFRINGER
method is able to aid a decision maker in reaching satisfying
solutions in a multi-objective optimization problem, and that
the method is able to model the value function of the decision
maker. However, it is also evident that the method can be
improved further with additional research. Lastly, it must be
noted that the BRB system used in the proposed method
has the potential to offer explainable results regarding the
modelled preferences of the decision maker. The explainability
of the learned preferences should therefore also be considered
in future works, and may aid in the choosing of the internal
parameters of the BRB system.
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