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Abstract—Accurate wind speed forecasting is of great impor-
tance for many economic, business and management sectors. This
paper introduces a new model based on convolutional neural
networks (CNNs) for wind speed prediction tasks. In partic-
ular, we show that compared to classical CNN-based models,
the proposed model is able to better characterise the spatio-
temporal evolution of the wind data by learning the underlying
complex input-output relationships from multiple dimensions
(views) of the input data. The proposed model exploits the
spatio-temporal multivariate multidimensional historical weather
data for learning new representations used for wind forecasting.
We conduct experiments on two real-life weather datasets. The
datasets are measurements from cities in Denmark and in the
Netherlands. The proposed model is compared with traditional
2- and 3-dimensional CNN models, a 2D-CNN model with an
attention layer and a 2D-CNN model equipped with upscaling
and depthwise separable convolutions.

Index Terms—Deep learning, Wind speed prediction, Convolu-
tional neural networks, Feature learning, Short-term forecasting

I. INTRODUCTION

Weather conditions undeniably affect many aspects of life
in modern societies. Adverse weather conditions and events
can have both direct and indirect effects on a large number
of economic and business sectors, such as transport, logistics
and agriculture. Accurate and timely weather forecasts are
therefore important for a variety of applications by facilitating
planning and management in response to weather conditions.
Weather forecasts are crucial to predict natural disasters such
as extreme rainfalls, floods, hurricanes and heat waves. With
wind power gaining importance as a source of renewable
energy in recent years, wind speed forecasting has become
an important tool for efficient and adaptive management of
wind parks [1].

To date, weather forecasting typically relies on numerical
weather prediction (NWP) models to solve complex mathe-
matical equations that simulate the real world’s atmosphere,
fluid- and thermodynamics as closely as possible [2]. This
approach requires immense computing power and, even with
current technological equipment and tools, can take several
hours to process [3]. Due to their extensive computational
requirements, the applicability of NWP models is, in practice,
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restricted to more long-term predictions. That is, NWP models
can be used to predict for instance three hours ahead, however,
as the time to process this prediction takes longer than three
hours, the practical utility of this approach becomes limited
[3]. This results in an important gap for short-term weather
predictions that could enable short-term planning.

One way this gap has been addressed so far is through
data-driven machine learning models that have been able to
significantly reduce the processing time compared to NWP
models (e.g. [3], [4]). Machine learning-based models have
been successfully applied in various application domains [5]–
[8]. In particular, the literature has witnessed the use of
different classes of machine learning models for time-series
prediction tasks. They range from kernel-based models such
as support vector machines [9], Least squares support vector
machines [10] as well as deep artificial neural networks-
based models among others [11]–[13]. Machine learning-based
models for weather forecasting can potentially reduce the need
for large computing power relative to the requirements of
current NWP models. A crucial difference between the two
approaches to weather forecasting lies in what they base their
predictions on. Unlike conventional NWP models, data-driven
approaches often do not make any assumptions about the
underlying physical factors influencing weather. Instead, they
use historical weather observations to train a machine learning
model to map the exogenous input to a target output [14].

In recent years, convolutional neural networks (CNNs) and
their variants have emerged as a powerful computational
architecture for addressing a range of challenging tasks [15],
[16]. Convolutions are kernel-based operations that employ a
sliding window approach over a matrix or tensor. The use of
kernels allows to capture local invariant features and utilising
weight sharing decreases the number of trainable parameters
of the network significantly [15].

The advancement of modern deep learning techniques has
inspired many researchers to explore the available massive
amount of weather data. The prediction performance of deep
learning architectures for the purpose of weather forecasting
have been studied in [17]. The authors in [18] combined pre-
dictive models with a deep neural network to model the joint
statistics of a set of weather-related variables. In this work,
we propose a novel convolutional neural network architecture
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to model the underlying complex nonlinear dynamics of wind
speed in multiple Danish and Dutch cities over the course
of up to 24 hours. This is achieved by reshaping the data
in a way that allows the use of convolutions over multiple
input dimensions and fusing the obtained feature maps per
dimension. We show that our model is able to predict multiple
steps ahead with smaller error in comparison to the other
examined models.

This paper is organised as follows. A brief overview of
related research works for weather forecasting is given in
section II. The proposed deep CNN-based architecture for
wind speed forecasting together with the models that we
used for comparison are presented in section III. Section IV
describes the conducted experiments and the obtained results.
A discussion on models performance is given in section V.
We end with some conclusive remarks in section VI.

II. RELATED WORK

A number of different machine learning models have been
proposed for weather forecasting. One of the most widely
adopted approaches has seen Multilayer Perceptron (MLP) as
main model for this purpose [1], [19]–[21]. An MLP is a
rather simple neural network that consists of at least three
layers: an input layer, a hidden layer and an output layer.
Although MLPs were shown to be useful for a large range
of applications, recently more sophisticated models such as
convolutional neural networks have been applied to more
challenging and complex tasks. Initially, CNNs have been
used for image applications due to their aptness at capturing
spatial relations [15]. However, since then, CNNs have also
been successfully applied to time-series tasks. For instance, the
authors in [22] utilised a CNN-based model to achieve high
classification accuracy for a time-series task for detecting hu-
man transportation mode. The input to their model consists of
1-D data because they only have access to one sensor reading.
Weather data, in contrast, often has multiple sensor readings
resulting in multi-dimensional data, thus presenting a more
complex time-series task that requires a more sophisticated
model.

For weather prediction tasks, convolutions are often used in
conjunction with long short-term memory (LSTM). An LSTM
is a particular type of recurrent neural network which, un-
like standard feedforward neural networks, includes feedback
connections which provide the network with some kind of
memory of previous signals, making it adept at learning from
experience and well-suited for predictions using time series
data [23]. Taking advantage of this, the authors in their seminal
work in [24] were the first to combine convolutions with
an LSTM to create the ConvLSTM model for precipitation
forecasting. An important challenge in machine learning-based
precipitation forecasting is that the rain maps that are typically
used as input are high-dimensional data which requires the
model to make efficient use of the available information.
Extending on the idea of [24], the authors in [25] therefore
stacked multiple convolutional LSTMs while also adding extra

memory connections in order to enable efficient flow of spatial
information, resulting in their PredRNN model.

In the field of precipitation forecasting, the authors in [3]
employed a U-net architecture [26] to predict rainfall one hour
ahead using the last hour of rain maps. A U-net is a type
of CNN that employs an encoder-decoder structure which at
first applies several iterations of downsampling followed by
several iterations of upsampling. In addition, the upsampling
integrates the output from previous layers through so-called
skip-connections. This particular architecture combining up-
and downsampling enables a synergistic learning of both low-
and high-level features. An interesting aspect of [3] is that they
predict four discrete classes of rainfall based on millimetres
of rain per hour, rather than predicting exact values of rainfall
as has predominantly been done in previous models. This
classification approach has recently been extended by [4] who
map their output onto 512 bins, thereby resulting in a much
finer resolution.

A frequently used baseline in data-driven weather forecast-
ing is the ‘Naı̈ve Predictor’ which predicts for time t + ∆t
the same value as at time t [2]. This method is also called
‘Persistence’ because it is based on the assumption that the
weather persists from one time window to the next. Although
this prediction method is rather simple, it proved to be very
accurate for very-short and short forecasts as described by [2].
In the next section we describe the models that we use and
explain our proposed model architecture that was applied to
real-life data for the wind speed prediction task.

III. METHODS

A. Proposed multidimensional model

The present study builds upon and extends the work of [14]
who introduced different CNN architectures, including 1-D,
2-D and 3-D convolutions, to accurately predict wind speed
in the next 6 to 12 hours. In particular, for our new model,
we apply depthwise-separable convolutions (DSCs) [27] to
all three input tensor dimensions (channel, width, height).
In this way, the kernels of the three convolutions go over
the height-and-width, channel-and-height and channel-and-
width dimensions, respectively. For the studied wind speed
prediction task, this corresponds to time steps-features, cities-
features, cities-time steps. The output of the three DSCs are
then concatenated and fed into a fully connected layer. Thanks
to the proposed architecture, the underlying information within
each view of the input are learnt jointly in an end-to-end
fashion.

Depthwise-separable convolutions have their convolution
operation split up into two convolutions: a depthwise and a
pointwise convolution. The advantage of using DSCs over nor-
mal convolutions is that they require a significant amount less
parameters while keeping a similar accuracy [28]. Here, we
train our model to predict the wind speed multiple steps ahead.
As the prediction time ahead increases, the prediction task
becomes increasingly complex for the model. After applying
DSCs to all three dimensions we flatten the resulting feature
maps to feed it into a fully connected layer followed by the



output layer. In order to be able to apply a convolution to other
dimensions, the input tensor needs to be permuted. A visual
interpretation of this approach can be found in Fig. 1. In our
approach we set the number of feature maps per channel to
16 and the number of hidden neurons of the fully connected
layer to 128. Following every pointwise convolution we apply
a batch normalisation. A rectified linear (ReLu) activation
function [29] is used after batch normalisation as well as after
the dense layer.

B. Alternative convolutional models

We have compared the performance of our proposed model
with four alternative CNN-based models. This includes the 2D
and 3D convolutional models from [14]. A 2D convolutional
approach using attention [30] and a 2D convolution with a
transposed convolution of the original input followed by a
double convolution as it is used in a U-net structure [26], but
instead of normal convolutions we used depthwise-separable
convolutions. A transposed convolution is used for upscaling
the input dimensions. It has a similar effect than upsampling,
but with a transposed convolution the network can adjust
the kernels for the upsampling as well, allowing it to better
adapt to the underlying data. The models with their respective
trainable parameters can be found in Table I. The amount of
parameters differed for the two datasets, because their input
dimensions were of different size.

TABLE I: The number of parameters of the five models that
were compared in the experiments.

Model # Feature maps Parameters
Denmark Netherlands

2D 32 46,115 112,167
2D + Attention 32 47,059 113,367
2D + Upscaling 32 27,974 77,568

3D 10 54,749 200,929
Multidimensional 16 37,258 102,832

It can be seen from Table I that there is a large difference
between the number of parameters in the models of the Dutch
and Danish dataset. This difference arises from different input
sizes of the dataset. The Danish dataset has an input shape of
5×4×4 and the Dutch dataset has an input shape of 7×6×6
(see section IV for a more detailed description of the datasets).
Since we are flattening the output of the convolutional layers
and feed it to a dense layer, the number of parameters increase
dramatically. The architectures of the alternative models used
for comparison are shown in Fig. 2.

The number of feature maps for the 2D and 3D CNN-based
models are set to 32 and 10, respectively. For our proposed
model the number of feature maps is set to 16 for every
dimension. We train the models for a maximum of 150 epochs
with a batch size of 64. An early stopping is used to track the
validation error and if it does not decrease after 20 epochs
the training will stop. We use the Adam optimiser [31] with
default values and a learning rate of 0.001 for updating the
model parameters. The code of our proposed model and the

other trained models along with the datasets can be found on
Github1.

IV. EXPERIMENTS

We evaluate our model together with the other discussed
four models on two different real-life datasets from Denmark
and the Netherlands. The cities from which the weather mea-
surements have been recorded and used in our experiments are
shown in Fig. 3. The performance of the models is measured
by their mean absolute error (MAE) and mean squared error
(MSE) on the test set. MAE calculates the mean of the
difference between the predicted values and true values and is
calculated as follows:

MAE =

∑n
i=1 |yi − ŷi|

n
, (1)

where n is the number of samples and yi and ŷi is the true
and predicted value, respectively. MSE calculates the mean
of the squared difference between the predicted values and
the true values. As a result, larger differences between y and
ŷ contribute more to the error term than smaller differences.
MSE is calculated as follows:

MSE =

∑n
i=1(yi − ŷi)

2

n
. (2)

MAE was chosen to be able to quantitatively compare the
results with those in [14] and MSE was chosen to have an
indicator how reasonable the predictions of the models are.
In what follows, the two used datasets are described in more
detail.

A. Dataset Denmark

This is the same dataset as used in [14] and available
online2. It contains hourly measurements of temperature, pres-
sure, wind speed and wind direction of five cities in Denmark
(see Fig. 3a) from 2000-2010. The dataset is split into training
and validation (years 2000-2009) and test set (year 2010). The
dataset is normalised using a min-max scaler that was trained
on the training set. Furthermore, the dataset is arranged in
a way that a sample contains the last four measurements in
all the five cities and the target is the wind speed in three of
the cities (Esbjerg, Odense and Roskilde). Therefore, the input
dimensions have the shape C × T × F where C = #cities,
T = #timesteps and F = #features (resulting in a shape
of size 5 × 4 × 4). Those are the three input dimensions
of the left-most cube in Fig. 1. We trained all five models
multiple times to predict the wind speed multiple steps ahead
which corresponds to 6, 12, 18 and 24 hours ahead in the
Danish dataset. Additionally, we created a persistence model
as baseline that uses the last wind speed measurement of each
city as the prediction.

The average of the obtained MAEs and MSEs, correspond-
ing to different models, over three target cities in Denmark are
tabulated in Table II. The best MAE and MSE are underlined
for each tested prediction time in Table II. Our model performs

1https://github.com/HansBambel/multidim conv
2https://sites.google.com/view/siamak-mehrkanoon/code-data

https://github.com/HansBambel/multidim_conv
https://sites.google.com/view/siamak-mehrkanoon/code-data


Fig. 1: Using depthwise-separable convolutions to go over different dimensions of the input tensor. The resulting three tensors
are concatenated along the city-dimension and then flattened and fed into a dense layer with 128 hidden neurons. Lastly, a
dense layer with three neurons calculates the final output.

best or second best for all of the tested prediction time. In
particular, one can observe that our proposed multidimensional
architecture has the smallest overall MAE in the 6h and 24h
prediction and the smallest MSE in the 6h and 24h prediction.
The error increases in all models the further ahead into the
future the model needs to predict. This makes sense because
values in the near future are less likely to change than those
further away, therefore they are easier to predict. Furthermore,
one can note that the error increases less in the proposed
multidimensional model than in the other models. This is an
indicator that our model has better generalisation capabilities
and can adapt better to different kinds of data. The baseline
model is outperformed by a large margin in all step ahead
predictions.

In Fig. 4 the MAE of the models for each of the three
target cities in all four prediction times are shown. The plots
show that our model has, for almost all time steps, the lowest
or second lowest error in each city. The differences in the
performance of the models get larger the further they have
to predict into the future. To illustrate further how well the
models are performing across all time steps we calculated the
mean of the MAEs for each city across the time steps (see
Fig. 5). We can observe that our model is performing best for
each of the three cities.

B. Dataset Netherlands

The second dataset for this study was acquired from
the Royal Netherlands Meteorological Institute. It contains
hourly weather measurements from 7 cities in the Netherlands
(Fig. 3b) from January 1, 2011 until March 29, 2020 resulting
in 81.000 data points. The measured weather features are wind
speed, wind direction, temperature, dew point, air pressure and
rain amount. We split the dataset into training (January 2011
- December 2018) and testing (January 2019 - March 2020).
The arrangement of the dataset is the same as the Denmark
dataset: C×T ×F . We choose to use the last 6 measurements
as input and predict the wind speed 1-, 2-, 3- and 4-steps
ahead (corresponding to 1h, 2h, 3h and 4h ahead, respectively),
which results in an input tensor of shape 7×6×6. Additionally,

we create a persistence baseline by predicting the last given
input values.

The performance of the models trained on this dataset can
be found in Table III. From Table III, one can observe that our
model has the best performance in the 2h and 3h prediction
when looking at the MAE and outperforms the other models
in the 2h, 3h and 4h ahead predictions when using MSE. The
baseline is outperformed by every model by a big margin.

For this dataset we also calculated the mean of the MAEs
for each individual city across the four different time steps.
The results are shown in Fig. 6. It can be seen that our
multidimensional model performs best or second best in five
out of the seven cities. An example of a 1 hour and 4 hour
prediction from our model is shown in Fig. 7. For this, we used
a subset of the data and plotted the wind speed prediction for
the cities of Eindhoven and Maastricht at each time step. Note
that the MAE reported is for the whole test set. The Fig. 7
shows that 1-hour ahead prediction of our model more closely
follows the real measurements compared to that of the 4-hours
ahead predictions.

V. DISCUSSION

In this study, we propose a new convolution neural network
for short-term wind speed predictions using weather datasets
from Denmark and the Netherlands. Specifically, our new
model applies depthwise-separable convolutions to three di-
mensions of the input tensor. To assess the model performance,
we compare it to four previously described CNNs, including
a 2D model, a 3D model, a 2D model with attention and a 2D
model with transposed convolution.

Using MAE and MSE as performance indicators, the anal-
ysis of our experiments shows that our model outperforms
previous prediction approaches for most time steps on both of
the tested datasets. We hypothesise that these performance im-
provements can be attributed to our novel approach of applying
convolutions separately over different input dimensions, rather
than applying them to only the height and width dimensions
as done by standard convolutional approaches. The proposed
architecture enables the network to more efficiently exploit
information from all dimensions.



(a)

(b)

(c)

(d)

Fig. 2: The model architecture of the models that were tested. (a) 2D convolutional neural network. (b) 2D convolutional neural
network with attention. (c) 2D convolutional neural network with transposed convolution (upscaling). (d) 3D convolutional
neural network. The input dimensions and number of output neurons are adjusted to the dataset. Here, the models for the DK
dataset are shown.



(a) Danish weather stations (b) Dutch weather stations

Fig. 3: The cities where the wind data was taken: (a) Aalborg, Aarhus, Esbjerg, Odense and Roskilde. (b) Schiphol, De Bilt,
Leeuwarden, Eelde, Rotterdam, Eindhoven, Maastricht.

TABLE II: The average MAEs and MSEs of different models over target cities in Denmark dataset.

Model MAE MSE
6h 12h 18h 24h 6h 12h 18h 24h

Persistence 1.649 2.210 2.309 2.313 4.608 7.929 8.702 8.812
2D 1.304 1.746 1.930 2.004 2.824 5.088 6.120 6.610

2D+Attention 1.313 1.715 1.905 1.950 2.885 4.896 5.933 6.201
2D+Upscaling 1.307 1.723 1.858 1.985 2.826 4.931 5.639 6.474

3D 1.311 1.677 1.908 1.957 2.855 4.595 5.958 6.238
Multidimensional 1.302 1.706 1.873 1.925 2.804 4.779 5.773 6.066

TABLE III: The average MAEs and MSEs of different models over target cities in the Netherlands dataset.

Model MAE MSE
1h 2h 3h 4h 1h 2h 3h 4h

Persistence 9.55 11.34 12.90 14.37 183.61 246.95 310.38 375.36
2D 8.11 9.17 10.15 11.12 116.89 149.01 181.78 218.49

2D+Attention 8.08 9.10 10.11 11.00 115.96 147.75 180.66 213.23
2D+Upscaling 8.16 9.07 10.14 10.85 117.80 147.21 182.44 208.96

3D 8.17 9.26 10.15 10.93 118.35 151.51 181.35 211.19
Multidimensional 8.12 9.05 9.95 10.94 116.78 144.51 174.07 208.73

Our findings of the 2D and 3D models are consistent with
the results of [14]. They showed that a 3D-convolutional
approach outperforms a 2D-convolutional approach on the
Danish dataset. Likewise, in our study, the 3D-convolution
model performed better than the regular 2D-convolution model
for all time steps on the Danish dataset except for the 6-
hour prediction and thus, overall, performed better than the
2D-convolution model (see Table II). Interestingly, the 2D-
convolutional models with attention and upscaling are able to
achieve better results than the regular 2D- and 3D-models.

We did not find the same high performance of the 3D-
convolutional model for the Dutch dataset when looking at
different time steps. Indeed, when disregarding the baseline
model, the 3D model showed the worst or second worst MAE
and MSE for most time steps as can be seen in Table III.
Interestingly, the 3D model performs well when comparing
the mean of the time steps for each individual city (see
Fig. 5 and 6). Our multidimensional model performed better
than the other models in the later time step prediction when
considering MSE as performance indicator. As previously

mentioned, a smaller MSE is an indicator of how reasonable
the model predicts. Overall, the high performance of our model
generalises better across time steps and the two used datasets
(see Fig. 5 and 6), largely providing better predictions than
previously described standard based convolutional approaches.

An important limitation of our study concerns the compa-
rability of the five models. We used number of parameters as
main indicator for model comparability, rather than optimising
every model individually which was beyond the scope of the
present study. Thus, we sought to keep the number of param-
eters approximately similar in all models without modifying
too many other configurations. To this end, we set the number
of feature maps for the three 2D models to 32, for the 3D
model to 10, and to 16 per dimension in our model (see Table
I). The number of feature maps for the different models was
based on the input dimensions of the Danish dataset and were
subsequently also applied to the Dutch dataset that has larger
input dimensions than the Danish dataset. This explains the
greater range in number of parameters of the models when
applied to the Dutch dataset (77,568 - 200,929 parameters)
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Fig. 4: The models performance for different time steps ahead for each cities forecast of the Denmark dataset.
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Fig. 5: Mean of the models performance across different time
steps for each city in the Danish dataset.

compared to the Danish dataset (27,974 - 54,749 parameters),
as shown in Table I. We also trained the 2D models with less
feature maps (10 feature maps, as in [14]), but observed no
performance increase.

VI. CONCLUSION AND FUTURE WORK

In this paper a new multidimensional CNN based model
is introduced for wind speed prediction. We showed that
applying convolutions to multiple dimensions helps to capture
more modalities of the data. Using real weather datasets we
tested our approach against conventional 2D- and 3D-CNNs
and showed that our proposed model is able to more accu-
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Fig. 6: Mean of the models performance across different time
steps for each city in the Dutch dataset.

rately predict wind speeds multiple steps ahead. Furthermore,
our proposed multidimensional model performed best across
different time steps compared to the other tested models.
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