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Abstract—From an enactive approach, some previous studies
have demonstrated that social interaction plays a fundamental
role in the dynamics of neural and behavioral complexity of
embodied agents. In particular, it has been shown that agents
with a limited internal structure (2-neuron brains) that evolve
in interaction can overcome this limitation and exhibit chaotic
neural activity, typically associated with more complex dynamical
systems (at least 3-dimensional). In the present paper we make
two contributions to this line of work. First, we propose a
conceptual distinction in levels of coupling between agents that
could have an effect on neural and behavioral complexity. Second,
we test the generalizability of previous results by testing agents
with richer internal structure and evolving them in a richer, yet
non-social, environment. We demonstrate that such agents can
achieve levels of complexity comparable to agents that evolve in
interactive settings. We discuss the significance of this result for
the study of interaction.

Index Terms—agent-based modeling, social interaction, cou-
pling, neural entropy, evolutionary robotics, continuous-time
recurrent neural network, minimal cognition, dyad.

I. INTRODUCTION

Recent years have seen an increase in efforts to understand
the role of social interaction in social cognition from an
embodied perspective [1]–[7]. It has been argued that rather
than being merely an outcome of the dynamics of individ-
ual cognitive agents, social interaction can itself constitute
cognition and have an effect on the individuals that partake
in it1. According to one specific embodied cognition account
– enactivism – social interaction is defined as an active co-
regulated coupling between two or more autonomous agents,
where their role of interactors co-emerges with the interaction
itself and their individual cognitive capacities can be reduced
or augmented [1]–[3]. In this paper we focus on how differ-
ent levels of coupling can influence the agent’s neural and
behavioral complexity.

1This is admittedly a contentious claim, cf. [8].

The types of couplings distinguished in this and previous
work are inspired by a well-known experiment from develop-
mental psychology: the “double TV monitor” paradigm [9].
In this experiment, 2-month-old infants interact with their
mothers through a live video link. When the live video is
replaced with a recorded replay of the previous actions of the
mother, the infants become distressed, distracted and upset,
suggesting that the reciprocity of the interaction makes a
difference. That is, passive social input that is not sensitive
to one’s own response is not sufficient for a positive social
experience. Simulation studies described here show that it
might also not be sufficient for individual cognition.

Based on the previous approaches, we propose to distinguish
the following levels of coupling in dyadic interaction:

• 2-way or bidirectional coupling: Both agents are mutually
interacting, e.g. normal interaction as a mother playing
with her infant. Other examples are conversations, danc-
ing, collaborative work, etc. [3].

• 1-way or unidirectional coupling: Active agent is in the
presence of a non-interactive agent, which is showing pre-
recorded behavior, e.g. “double TV monitor” experiment.

• 0-way or no-way coupling: Active agent is not in the
presence of a social partner, i.e. is alone.

This distinction is not meant to be exhaustive and future
adjustments might be required. For instance, a case in which
one agent is fully interactive while the other is present but
staying still might fall somewhere between a 0-way and a 1-
way coupling. Additionally, even within the isolated condition,
one could distinguish different ways in which the agent can
couple to its physical environment – bidirectionally in a
full sensorimotor loop [10] or one-directionally, whereby the
agent is passively receiving stimulation from the environment.
However, this work focuses on the social interaction scenario
and we think it is still useful to think of levels of coupling
within this domain and how they might have distinct effects
on individual cognitive capacities.
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A. Previous work

Evolutionary robotics (ER) has been used as a scientific tool
to study minimal models of cognition. It is a methodology
especially suited for embodied cognition because it allows for
developing integrated sensorimotor systems which act in close
coupling with their environments, i.e. ER takes into account
both embodiment and situatedness in how they contribute to
the solution of particular cognitive tasks [11]. The Candadai
et al. (2019) model [7] is a minimal model of cognition in
interaction based on ER. This model demonstrates as a proof
of concept that social interaction transforms the neural and
behavioral dynamics of embodied agents more than what is
achievable by agents operating in isolation. In this model, pairs
of agents were evolved in a 2-dimensional environment to
maximize their individual neural entropy2. When the agents
were evolved together (interaction condition) they exhibited
mutually coordinated behavior and higher individual neural
entropy compared to when they were evolved alone (isolation
condition). Furthermore, when agents that evolved in the inter-
action condition were tested in the presence of a ”ghost” non-
interactive partner (ghost condition), they exhibited a loss in
neural and behavioral complexity. This condition is analogous
to a “double TV monitor experiment” in which infants used
to normal 2-way interaction mode are suddenly placed in a
1-way interaction mode.

In our previous work [12], we have replicated the Candadai
et al. (2019) model [7] with a less constrained parameter
space of the agents, leading to a broader diversity in the
agent genotypes but achieving similar results in terms of
neural complexity. We also provided a state-space analysis of
the evolved agents’ neural network activity, which showed a
single fixed-point attractor. This is consistent with previous
ER work that shows that CTRNN controllers are often able to
display rich dynamics despite having a single attractor because
the attractor landscape is constantly shifting in the agent’s
interaction with the environment [13], [14].

B. Current work

The Candadai et al. (2019) model [7] demonstrated that
2-way coupling leads to higher neural complexity than 1-
way coupling and 0-way coupling. However, the specific
implementation adopted is open to two central criticisms.

First, it is known that continuous dynamical systems can
only exhibit chaotic behavior when they have more than 2
dimensions [15]. This is indeed an assumption of the Candadai
et al. (2019) model [7]: the fact that the agents’ 2D brains
exhibit chaotic activity is remarkable because it means that
interaction can overcome the inherent limitations of their
brains. However, a corollary of this is that if agents had
brains with more dimensions, they could generate neural and
behavioral complexity without interaction. If so, this would

2It is important to emphasize here that maximizing this measure was not
meant to achieve any particular adaptive outcomes. Rather, the point is to
establish whether 2D brains can be evolved to become more complex and
whether interaction is an enabling condition for this.

limit the result to very constrained systems and tell us nothing
about cognition in multi-dimensional actual brains.

Second, it could be argued that a comparison between agents
evolved in isolation and agents evolved in interaction is not
a strong comparison that would justify far-reaching claims
about the role of interaction in cognitive complexity. The
isolated agents might be less complex not only because they
don’t interact but because they evolve in an overall poorer
environment from which they receive no input. It could be
that if the environment contained some stimulation, even if
not social, the agents could leverage it to create more neural
complexity.

In this study, we address these two limitations and investi-
gate whether the Candadai et al. (2019) model [7] results still
hold when we 1) include one more neuron in the internal layer
of the neural architecture of the agents, i.e. we construct a 3-
neuron model instead of 2-neuron model and 2) we create
a new condition in which we evolve agents with a ghost
agent, thereby providing them with a source of non-interactive
stimulation. As a result, we implement 4 conditions based
on 3 levels of coupling distinguished above, as illustrated in
Fig. 1, 2, 3:

• Interactive condition (2-way coupling): pairs of agents
are evolved in bidirectional interaction.

• Ghost-test condition (1-way coupling): pairs of agents
are evolved in bidirectional interaction but tested with a
ghost at the end.

• Ghost-evolution condition (1-way coupling): an active
agent is evolved in the presence of a sufficiently complex
ghost.

• Isolated condition (0-way coupling): agents are evolved
in isolation.

Fig. 1. Two-way coupling: Fully interactive condition, agents interact with
each other by sending and receiving acoustic signals.

Fig. 2. One-way coupling: “Live” agent (red) tested or evolved with a “ghost”
agent (blue). Live agent is sending and receiving acoustic signals. Ghost agent
is playing back pre-recorded behavior of previous trials and so sending pre-
recorded signals but not receiving anything.

In all conditions agents are evolved to maximize their
neural complexity operationalized, for simplicity, as Shannon



Fig. 3. Zero-way coupling. The “isolated” agent (red agent) is evolved on
its own, therefore, the agent neither receives any input from the environment
nor interacts with other agents.

entropy of neural outputs. However, the maximization of
predictive information (PI, [16]), which has been successfully
applied in previous self-organizing robotic systems where they
exhibited a wider behavioral spectrum [17], is considered as
an alternative approach for future work.

We then compare the level of neural and behavioral com-
plexity in the last generation across all conditions. We find
that despite having more powerful brains, agents that evolve
in isolation exhibit lower neural and behavioral complexity.
However, agents that evolve in the presence of the ghost
exhibit an interesting divergence between the complexity of
their neural output and behavior: their neural complexity is
comparable to that of agents that evolve in interaction while
their behavioral complexity is lower. We also investigate the
quality of interaction between social conditions and conclude
by placing our results in a broader theoretical context of
embodied cognition.

II. METHODS

A. Model Design

Our model is a replication of the Candadai et al. (2019)
model [7], except for the increased number of neurons in the
internal layer of the neural architecture: three neurons instead
of two.

1) Agents and environment: Agent bodies are circular, with
a radius of 4 units. Each of them has two acoustic sensors
symmetrically placed in the front of the agent at a 45◦ angle
to the central axis; an acoustic emitter positioned in the center
of the body; and two motors located in the right and left
sides of the agent to allow movement in a 2-dimensional
empty environment, which is an unlimited arena. Collisions
are modeled as point elastic, which means, no change in the
agents’ angular velocity (i.e. no friction between them) and
zero net effect on their velocity vectors (i.e. energy of the
complete system is conserved). This is achieved by exchanging
the agents’ velocity vectors, which causes them to bounce off
each other without loss of energy [4]. Each agent can emit
and sense acoustic signals. The strength of the acoustic signal
experiences two kinds of attenuation:

a) Attenuation due to distance: The maximum strength
of the emitted signal is exhibited from the source to a
distance equal to 2R between the center of the bodies of the
agents. The intensity of the signal obtained by each sensor is
then calculated by applying the inverse square law using the
distance between the sensor and the source.

b) Attenuation due to “self-shadowing” mechanism:
This attenuation occurs when the emitted signal passes within
the body of the sensing agent (as the intensity of the acoustic
signal is weakened due to the agent’s own embodiment). It
is modeled as a scaling factor over the sensory inputs in a
range from 0.1 (when the sensors of the sensing agent are
diametrically opposite from the source) to 1 (when the sensing
agent is facing the source). The equations to calculate the
distance that the emitted signal travels within the body of the
sensing agent, i.e. the shielded distance (Dsh), are available
in the Supplementary Material of the Candadai et al. (2019)
model [7].

According to the previous points, the sensory input for each
sensor of an agent is calculated using the distance between the
sensor and the source (applying the inverse square law), and it
is then multiplied by the “self-shadowing” attenuating factor
which goes linearly from 1 (when Dsh = 0) to 0.1 (when
Dsh = 2R).

2) Neural architecture: The neural architecture of each
agent consists of three layers, in our previous work we called
them: sensor layer, neuron layer and actuator layer. The main
difference from our current model and the Candadai et al.
(2019) model [7] is presented in the neuron layer, where
instead of two neurons, we use three neurons, as shown in
Fig. 4

a) Sensor layer: In this layer, there are two sensor nodes
with a sigmoidal activation function, whose output is given by:

os = gsσ(Is + θs) (1)

where gs is the sensory gain, σ(x) = 1/(1 + e−x) is the
sigmoidal activation function, Is is the sensory input and θs is
the bias. In this layer, both sensor nodes share common gain
and bias.

b) Neuron layer: This layer is modeled as a continuous-
time recurrent neural network (CTRNN) [18]. In contrast to
the Candadai et al. (2019) model [7], this layer now consists of
three fully recurrently connected neurons, which corresponds
to a 3-dimensional dynamical system. Each neuron’s activity
is governed by the following state equation:

τi
dyi
dt

= −yi +
N∑
j=1

wijσ(yj + θj) +

2∑
s=1

wisos (2)

where dyi/dt refers to the rate of change of internal state
yi of neuron i based on a time constant τi. The rate of change
dyi/dt depends on the current state of the neuron, the weighted
sum of outputs from other internal neurons and the total
external input from the sensors. The output of each neuron
based on its internal state is given by a sigmoid activation
function σ(yi+θj) where θj refers to the neuron’s bias. In this
implementation, the three neurons share same time-constant
and bias.

c) Actuator layer: The three internal neurons feed into
the actuator layer, where the input to each actuator node is
a weighted sum of the outputs of the neuron. The actuator



Fig. 4. Neural architecture of the 3-neuron model based on the Candadai et
al. (2019) [7] model, where the number of neurons in increased to three. In
this approach, the two sensor nodes share common gain and bias; the three
neurons share common time-constant and bias; and, the three actuator nodes
share common gain and bias.

layer contains three actuator nodes, two corresponding to the
motors and one corresponding to the acoustic signal emitter.
All of them are sigmoidal units with a gain and bias (but no
internal state) such that the output of the actuator node i, mi,
is given by:

mi = gmσ

(
N∑

n=1

wni ∗ on + θi

)
(3)

where on is the output of the neuron, that are weighted by
wni, θi is the bias and gm is the gain. In this layer, the three
actuator nodes share common gain and bias.

Locomotion is managed by the effective control of the two
motors. Net linear velocity is given by the average of their
corresponding outputs and angular velocity which rotates the
agent is given by their difference divided by the radius of the
agent.

3) Evolutionary optimization:
a) Fitness function: Neural entropy: The fitness function

for the evolutionary algorithm is the Shannon entropy of neural
outputs, i.e. neural entropy, which has been used as a proxy
of cognitive complexity. This function does not optimize any
particular task. The agents are initialized in a random position
in the environment (see below) and allowed to move around
over 4 trials, during which their neural activity is recorded.
The neural complexity is measured as the Shannon entropy
in the three-dimensional time series from the outputs of the
three neurons, which are bounded in the range from 0 to 1.
The output space is binned with 100 bins along each of the
three dimensions, i.e. one million bins in total. Then, a 3-
dimensional histogram is created using all the binning data
points acquired during the 4 trials. Thus, the Shannon entropy
H of the neural time series is given by:

H =

100∑
i=1

100∑
j=1

100∑
k=1

−pijklog(pijk) (4)

where the probability of the neural activity in a specific bin
[i, j], pij , is given by the number of data points in that bin
divided by the total number of data points. The neural entropy
is then normalized to be in the range from 0 to 1 by dividing by

the maximum neural entropy, i.e. log(100 ∗ 100 ∗ 100), when
all bins are uniformly populated. Therefore, the normalized
neural entropy is given by:

Ĥ = H/log(100 ∗ 100 ∗ 100) (5)

b) Genetic algorithm: We used a real-valued genetic
algorithm to optimize the parameters of the neural controllers,
such as weights, gains, biases and time-constants in order to
maximize the neural entropy of the agents. Each agent had 30
parameters, i.e. for N agents, the genotype consisted of 30N
parameters that were initially encoded in the range [−1, 1].
When building the agents from each genotype to perform the
4 trials, these parameters were scaled appropriately, following
the same parameter ranges as in the Candadai et al. (2019)
model [7] such that: for sensor and actuator nodes, the gains
were scaled in the range [1, 5] and the biases were scaled in
the range [−3, 3]; for neuron nodes, the time-constants were
scaled in the range [1, 2] and the biases were scaled in the
range [−3, 3]; all weights were scaled in the range [−8, 8].

The performance evaluation of the agents was obtained
according to each of the 4 conditions: interactive condition,
ghost-test condition, ghost-evolution condition and isolated
condition. The experimental setup for each of the 4 conditions
is described in detail in the Experiments section.

For all conditions, after the performance evaluation, we gen-
erated a new population by, first, keeping an elite population
of the top 4% solutions as it is and, second, by mutating
and crossing over this elite fraction to get the remainder of
the solutions. Mutation was obtained by adding a zero-mean
Gaussian mutation noise with variance 0.1 to the solutions
and, then, crossover was obtained by swapping each parameter
between a pair of solutions with a probability of 0.1.

B. Experiments

Here, we describe the implementation of the 4 conditions
introduced in the Introduction:

1) Condition 1: Interactive condition (2-way coupling): In
this condition, we performed 100 independent runs using 96
pairs of agents that were able to interact with each other. Each
pair’s agent parameters were encoded in a single genotype
subjected to evolutionary search. Initially, the agents were
placed at 20 units from each other. For each trial, their
relative angle was modified as [0, π/2, π, 3π/2], respectively,
where both agents’ heading direction was set to the right.
The population was evolved for up to 2000 generations to
maximize the neural entropy of both agents.

2) Condition 2: Ghost-test condition (1-way coupling):
In this condition, we selected the best pair of agents of
the best 10 runs previously obtained in the fully interactive
scenario and, then, tested them under a “ghost” condition. Red
agent was the “live” agent and blue agent was the “ghost”
agent. The “live” agent was able to interact with the “ghost”
partner, while, the “ghost” agent was just playing back pre-
recorded behavior from the previous trials in a fully interactive
scenario. The “live” agent was initially positioned at a different



angle (randomly selected from [0, π/2, π, 3π/2] but different
to the one it was chosen when the ”live” agent was in 2-
way interaction) from the “ghost” agent to avoid repeating the
behavior of those previous trials. The initial distance between
both agents was 20 units. We conducted 4 trials for each pair
of agents, as in the fully interactive condition, and measured
the normalized neural entropy of the “live” agent.

3) Condition 3: Ghost-evolution condition (1-way cou-
pling): In this condition, we selected the best blue agent of the
best run in fully interactive scenario and used it as the non-
interactive or “ghost” agent. We performed 10 independent
runs, where only the interactive or “live” agent was evolved
in the presence of the “ghost” partner, which was just playing
back the pre-recorded behavior in fully interactive scenario
(different for the 4 trials). The same playback was used for
all runs, all agents and all generations, in order to evolve the
agents to respond to a specific set of conditions and see the
effects on neural and behavioral complexity through each gen-
eration. The population in each run consisted of 96 individuals,
where each individual was encoding the parameters of only the
“live” agent. For each trial, the ”live” agent was placed 20 units
from the ”ghost” agent and their relative angle was modified as
[0, π/2, π, 3π/2], respectively. The population was evolved for
up to 2000 generations to maximize the interaction entropy of
“live” agents. Evaluation was performed the same way as for
Condition 1 with fitness derived only from the “live” agent’s
neural entropy.

4) Condition 4: Isolated condition (0-way coupling): In this
condition, we performed 10 independent runs using isolated
agents that were not receiving any input and were evolved
on their own to maximize their isolation entropy. Red agent
was referred as the “isolated” agent. The population in each
run consisted of 96 individuals, where each individual was
encoding the parameters for only one agent (“isolated” agent).
The population was evolved up to 2000 generations.

In all conditions, the agents’ initial heading direction was
set to the right.

III. RESULTS

Fig. 5 shows example trajectories and neural activation of
the best agents in 4 conditions from the best runs, respectively.
Complex behavior and neural activity can be clearly seen on
the fully interactive condition. This complexity seems to be
lost in the ghost-test condition, in line with Candadai et al.
(2019) model [7] results. The agent that exhibits complex
movement trajectory when interacting with a live partner,
starts to literally run in circles when the partner is non-
responsive. This is the case even though the agents in the
current experiment have a more complex 3-neuron brain that
could in principle exhibit chaotic activity. In the isolated
condition, the agent shows highly regular behavior and an
oscillatory pattern of neural activity, again, in line with the
results of the original model and despite a more complex
brain. The most interesting for our purposes ghost-evolution
condition, in which the agents are evolved in the presence of a
ghost partner displays something that seems as an intermediate

level of behavioral and neural complexity between the fully
interactive and the isolated case.

In order to go beyond intuitions and understand the general
pattern of differences between conditions, we run 4 statistical
tests comparing the best agents’ neural activity and movement
trajectories.

Specifically, in the first test we compared the average of
the means of neural entropy of 100 agent pairs in interac-
tive condition against the means of the best live agents in
other conditions. Given unequal sample size and significantly
different variances between conditions, F (3, 127) = 21.24,
p < .001, we performed a non-parametric Kruskal-Wallis
test, which showed a significant difference in neural entropy
between conditions, H(3) = 41.7, p < .001. Focused compar-
isons of the mean ranks between groups showed that agents
in isolated condition had significantly lower neural entropy
compared to interactive and ghost-evolution conditions, as
expected. However, somewhat surprisingly, the entropy in
ghost-evolution condition was significantly higher than in the
interactive or ghost-test conditions. This trend can also be seen
in Fig. 6A.

Next, we obtained a measure of behavioral complexity of
the live agents in all conditions. We recorded heading direction
angles at each time point of agent trajectories, which resulted
in 1D time series. We then computed sample entropy for each
such time series. Since there does not seem to be a universally
agreed upon measure of behavioral trajectory complexity, we
used sample entropy as a measure that has been shown to be
an appropriate index of complexity for biological time series
more broadly [19]. We have informally validated this measure
by checking that it reliably distinguishes between fully regular
circular and more complex movement patterns3. The data sub-
jected to statistical analysis were time series sample entropy
for all trials of the 10 best runs in each condition. In the
interactive condition, only one of live agents was considered.
Levene’s test for equality of variances was not significant and
there was a significant effect of condition on the level of
behavioral entropy, F (3, 153) = 20.98, p < .001. Post-hoc
Bonferroni-corrected tests showed that isolated agents’ entropy
was significantly lower than entropy in all other conditions
(p < .001) but also ghost-evolution condition entropy was
significantly lower than entropy in the interactive condition
(see Fig. 6B).

As the difference in neural and behavioral complexity in the
ghost-evolution condition compared to interactive condition
was in opposite directions (higher and lower respectively), we
run two further tests to investigate the type of interaction be-
tween the agents in 3 conditions with coupling (thus, excluding
the isolated condition). In the first test we have computed the
entropy of the distance between the agents while in the second
their synchrony. Distance entropy was measured with a binned

3We originally tried to estimate behavioral complexity using image entropy
calculated on generated plots of trajectories. However, this measure delivered
inconsistent results, most likely because it does not consider the temporally
ordered nature of movement coordinates and instead takes into account only
their spatial dispersion.
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Fig. 5. Example plots of movement trajectories and neural activity across 4 conditions. Movement trajectories in red are of a live agent, movement trajectories
in blue are of a live agent in Figure A and of ghost replay in figures B and C. Neural activity plots show output of 3 internal neurons of the live agents.

Shannon entropy approach adopted in the original Candadai et
al. (2019) paper [7] . Synchrony was estimated with a Dynamic
Time Warping metric applied to 2-dimensional time series
representing the xy-coordinates of the two agents in all trials.
Only the first measure showed a significant overall effect of
condition, F (2, 27) = 4.27, p < .05 and a significant post-hoc
pairwise comparison between Ghost-evolution and Ghost-test
conditions. Fig. 6C and Fig. 6D show the overall trends for
these measures.
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Fig. 6. Individual and interaction measures across experimental conditions.
Figures A and B show neural and behavioral entropy of live agents. C: distance
entropy between agents. D: DTW-estimated distance between agents (lower
distance means more synchrony).

IV. DISCUSSION AND CONCLUSIONS

In this work, we have extended the Candadai et al. (2019)
model [7] in order to address some of its limitations. By
including one more neuron in the neuron layer, i.e. three
neurons instead of two, we have found that the results in
terms of neural and behavioral complexity are similar to those
in the original configuration. In particular, the agents’ neural
entropy is still higher in the interactive condition than in
the ghost-test or isolated conditions. Additionally, we have
quantitatively assessed behavioral complexity in all conditions
and this measure was found to be also lower in the isolated
condition. This means, perhaps unsurprisingly, that a powerful
brain operating in isolation, without any input is not able to
achieve high levels of neural or behavioral complexity.

Our second generalization test delivered mixed insights.
On the one hand, by observing example plots of neural
activation (Fig. 5), it can be suggested that in the interactive
condition, the neural activity of the three neurons exhibits
more chaotic activity than in the other conditions, including
the more stringent ghost-evolution condition. On the other
hand, this suggestion is not borne out by the statistical test
that shows that neural complexity in this condition is higher
than in the interactive condition. This would mean that richer
environment that provides constant but complex input to
the agent can compensate the relative poverty of the 1-way
coupling and lack of contingent response of the interaction
partner. At the same time, despite a higher neural complexity,
behavioral complexity in this setting is lower. Thus, agents
that are evolved to maximize their neural complexity in a rich



environment end up behaving in more predictable and regular
manner than agents that receive specifically social stimulation.

Briefly, our findings suggests that the richness of the envi-
ronment may compensate 1-way interaction in terms of neural
complexity, however, this does not apply in terms of behavioral
complexity. This suggests that the social world (i.e. real-
time interaction between agents becoming the whole brain-
body-environment-body-brain system [20]) allows for a greater
repertoire of behaviors transforming our individual capacities
[3].

Some possible limitations may be encountered in our model
based on the specific metrics that we used as a measure of
neural and behavioral complexity. Further work is needed to
compare the results by implementing alternative methods, e.g.
evolving agents to maximize predictive information (PI), using
permutation entropy and applied it to raw xy-coordinates, etc.

V. FUTURE WORK

In this paper, we have explored the neural and behav-
ioral complexity of embodied agents using different levels of
coupling in dyadic interaction. Future work will investigate
how different modes of coupling can affect individual and
interactive capacities of evolved agents. Specifically, it could
be argued that an opportunity to interact with multiple partners
could further enhance individual complexity. Alternatively,
allowing agents to use different interactive modalities, such
as distal and proximal coupling analogous to pheromone and
saliva-based interactions in ants, could enrich their cognition.
This will allow us to further understand how individual com-
plexity can be generated by interaction.
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