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Abstract—Classification of datasets into two or more distinct
classes is an important machine learning task. Many methods
are able to classify binary classification tasks with a very high
accuracy on test data, but cannot provide any easily interpretable
explanation for users to have a deeper understanding of rea-
sons for the split of data into two classes. In this paper, we
highlight and evaluate a recently proposed nonlinear decision
tree approach with a number of commonly used classification
methods on a number of datasets involving a few to a large
number of features. The study reveals key issues such as effect
of classification on the method’s parameter values, complexity
of the classifier versus achieved accuracy, and interpretability of
resulting classifiers.

Index Terms—Interpretable AI, Classification, Genetic pro-
gramming, Nonlinear decision trees, Generalized additive
method.

I. INTRODUCTION

The task of a binary classification algorithm is to arrive
at a classifier involving one or more features from a set of
two-labelled dataset, so that the resulting classifier is able
to correctly classify unseen test datasets of similar type into
two classes with near 100% accuracy. The classifier can be
a mathematical function of features, or a network in which
features act as input to the network and a binary output reveals
the class of a data point, or a decision tree in which a data
point flows from root node to internal nodes according to
the decisions made at each node and ending up with a class
identification at one of the leaf nodes. Each representation
(a mathematical function, a network or a decision tree) can
be simple, involving fewer terms and structure, or complex.
However, it is well understood that the complexity of a clas-
sifier and its achievable testing accuracy are closely linked. A
classifier which is simple most likely cannot be very accurate
and vice versa. Fortunately, most classification methods are
involved with one or more algorithmic parameters that can
be tuned to achieve a desired above-mentioned accuracy-
complexity trade-off.

An important matter which is getting a lot of attention in
the classification literature is the interpretability of obtained
classifiers. Besides accurately classifying new data into its true
class, the users are getting more interested in learning how the
classifier is able to classify a data into its true class with an
easy-to-explain logic. If a classifier has a complex structure (to
achieve a high enough classification accuracy), the resulting
classifier may be too complex to interpret and explain. Hence,

a classification method capable of producing a good balance
between accuracy and interpretability is desired.

In this paper, we consider a number of popular classification
methods – a linear decision tree (CART), support vector ma-
chines (SVMs), generalized additive models (GAMs), genetic
programming (GP), and a recently proposed nonlinear decision
tree (NLDT) approach. We discuss their working principles
in brief and provide their advantages and disadvantages in
Section II. After providing the effect of their parameters on
the obtained accuracy-complexity trade-off, we compare them
on 19 different binary classification problems (described in
Section III) having two to 500 features in Section IV. Finally,
conclusions are drawn in Section V.

II. EXISTING BINARY CLASSIFICATION METHODS

In this section, we provide a brief description of a few
popular existing classification methods pertaining to binary
classification tasks.

A. Classification and Regression Trees (CART)

Classification and regression trees or CART have been
thought of as a popular choice, since the resulting classifier
assumes the structure of a decision tree. Decision trees make
decision using a logical hierarchical representation, which is
also common to the way in which a human mind operates. The
overall structure is represented in an inverted tree format, with
the root node at the top and leaf nodes as the terminals. The
data in the root node undergoes recursive binary splitting [17],
[18] to create child nodes in the decision tree. One restriction
of the CART approach is that splits in decision trees are
axis parallel in nature and operate on only one feature (i.e.
xi ≤ τ∗i ), as shown in Figure 1.

The spilt rule xi ≤ τ splits the data in the conditional
node (P ) (the node where split is occurring) into two non-
overlapping subsets: left child node (L) and right child node
(R). The quality of split is computed by using an impurity
metric, like the Gini score, entropy, or others. An impurity
metric quantifies the purity (or impurity) of data distribution
in a given node:

Gini = 1−
c∑
i

Ni

N
, (1)

where c is the number of classes (which is two in our case),
N is the total number of data points in the node and Ni is the
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Fig. 1: A CART decision tree splitting the flow of a data into
one of the two branches, finally leading to a class identification
at its terminal leaf nodes.

number of data points in the given node belonging to class
i. The quality of split (S) can then be computed using the
following equation:

S =
NL

NP
Gini(L) +

NR

NP
Gini(R), (2)

where NP is the total number of points in the given parent
node undergoing a split, NL and NR are number of points
belonging to left child node (for which xi ≤ τ is TRUE) and
right child node (for which xi ≤ τ is FALSE), respectively.
The optimal feature xi and its optimal threshold value τi are
determined using a greedy algorithm, or through a univariate
optimization method. The (xi, τi) combination giving the
lowest S-value (Eq. 2) is chosen to conduct the split. A
recursive algorithm ID3 [18] or C4.5 [3], [17] is employed
to grow the tree.

The tree is allowed to grow up to a prespecified maximum
depth when the node under consideration meets one of the
termination criteria. The nodes that do not undergo any further
split are referred to as leaf nodes. The leaf node is assigned
with a class based on the distribution of data within the
node. Since the split rule at each conditional node assumes
a very simple linear structure, i.e. xi ≤ τ , many splits are
required for a complex classification task, thereby resulting
into a complicated decision tree topology, which may not be
fathomable by a human.

Some advantages and disadvantages of the CART method
for binary classification are listed below:
Advantages:
• Fast to train.
• Easily interpretable rules (linear and each rule involves

only one of the features) in each node.
• Many source codes and packages available for quick

implementation.
Disadvantages:
• The execution requires a number of tunable parameters:

(i) maximum depth of the tree, (ii) total number of splits,
(iii) threshold impurity level and (iv) minimum number
of classified data points in a node for terminating any
further split and declaring it as a leaf node. Available
codes come with default values, which may not produce
a desired accuracy or end up with a huge decision tree.

• The method has a tendency to overfit the training data,
leading to poor performance on test data. Pruning and
other methods, like bagging and boosting, are suggested
[12], [13], [22] to overcome this effect.

• The tree eventually grows as a result of many hierarchi-
cal successive spitting and becomes topologically very
complex for humans to fathom.

• Clearly, the method is not suitable for datasets which
require a complex, nonlinear, and linked feature relation-
ships for achieving an accurate classification.

In our experiments in this paper, we use Matlab’s fitctree()
routine with its default parameter settings to generate CART
based classifiers.

B. Support Vector Machines (SVMs)

For a separable dataset, support vector machine (SVM)
algorithm attempts to derive a decision boundary in the form
of a single mathematical equation as shown below:

y(x) = wTφ(x) + b, (3)

where φ(x) is a set of feature transformation functions which
can be either linear or non-linear functions of feature vector
x, w is a weight vector and b is a bias term. A conceptual
understanding of SVM is provided in Figure 2. For a binary

Fig. 2: SVM on separable datasets with a hard margin.

classification task involving class labels t = −1 or t = 1, an
optimal hyper-surface is derived by maximizing the margin
between two classes, as shown by y = 0 line in the figure.
Points with y ≤ −1 belong to one class and points with y ≥
1 belong to another class. The points which fall on y = 1
and y = −1 are called support vectors, as they alone decide
the classifier. However, for non-separable datasets, such as the
scenario shown in Figure 3, a soft margin approach is used to
allow some data points within |y| < 1 (margin) while training
the SVM. These points are also declared as support vectors in
addition to the points on the margin.

To identify the classifier and the support vectors, the under-
lying optimization problem is solved:

Minimize: 1
2 ||w||

2 + C

N∑
i=1

ζi,

subject to : ti(w
Tφ(xi) + b) ≥ 1− ζi,

ζi ≥ 0, i = 1, 2, . . . , N,

(4)

where ti is the true class label (either 1 or -1) of the datapoint,
ζi is the distance of i-th data point from its representative



Fig. 3: SVM with non-separable datasets with a soft margin.

margin, thus ζi = max [0, 1− tiy(xi)] (where value of y(xi) is
estimated from Eq. 3). C is a penalty parameter which is used
to enhance generalizability by compromising with training
accuracy. It is also aimed to balance the complexity of the
classifier (described with the number of non-zero terms of w)
and soft support vectors within the margin and is an important
parameter. With lower values of C, broader margin (with some
misclassification of training datapoints) is achieved while for
large values of C, misclassification of training datapoints is
heavily penalized and so narrower margin is achieved.

Using a kernel trick [1] k(xp,xq) = φ(xp)
Tφ(xq) Eq. 3

is transformed into the following:

y(x) =

N∑
i=1

aitik(x,xi) + b, (5)

where ai is a Lagrange multiplier which is obtained by
converting the optimization problem of maximizing the margin
(Eq. 4) to a dual Lagrangian representation [1]:

Min: L(a) =

N∑
i=1

ai − 1
2

N∑
i=1

N∑
j=1

aiajtitjk(xi,xj),

s.t. ai ∈ [0, C],

N∑
i=1

aiti = 0.

(6)

Classical gradient based algorithms can then be employed to
find ai. In Eq. 5, data points xi for which ai = 0 do not
contribute in the equation of the split rule (Eq. 5) and data
points for which ai > 0 are called support vectors for the SVM
classifier and they dictate the overall length of the classifier’s
equation (Eq. 5). The penalty parameter C has to be tuned
to efficiently derive the decision boundary. Lower value of C
makes the classifier more generalizable. C =∞ (hard margin)
attempts to achieve near 100% training accuracy and hence is
prone to overfitting. In our case, we use scikit-learn’s [16]
SVM module and set C = 1, 000. We use RBF (or Gaussian)
kernel function. Table I shows results for various settings of
C on some datasets considered in our study.
Advantages:
• Good in many classification tasks and scales well with

dimension of the dataset.
• Since a classical optimization solver is employed to solve

the Lagrangian dual problem (Eq. 6), the training is fast.
• Can generalize well through an appropriate choice of C.

• Many source codes and packages are available for rapid
implementation of SVM on various languages like python
[16] and Matlab.

Disadvantages:
• The penalty parameter C acts as a regularization param-

eter and needs to be properly identified and tuned while
working on different datasets.

• The knowledge regarding separability of datapoints be-
longing to different classes is required to properly tune
C and in practical problems, this information is not
available.

• The kernel function k(xp,xq) (Eq. 5) needs to be chosen.
• Since only one rule is found through SVM, the resulting

rule might involve many terms, thereby making the
overall classifier uninterpretable.

C. Generalized Additive Models (GAMs)

For a binary classification task involving two classes: Class
1 (y = 0) and Class 2 (y = 1), the GAM based classifier
[10], [21] estimates the probability of a data point belonging
to class y = 1 (i.e. P (y = 1|x))1 as ŷ(x) using the following
equation

ŷ(x) =
1

1 + e−g(x)
, (7)

where g(x) is referred to as link function [14]. The link
function g(x) in GAM is expressed as a sum of non-linear
functions as shown below:

g(x) = f1(x) + f2(x) + · · ·+ fM (x) + β0, (8)

where β0 is a constant and fi(x) are scalar valued nonlinear
functions. The functional form of fi(x) and total number of
such nonlinear functions is pre-specified by the user. Mod-
elling of link function g(x) using Eq. 8 makes GAMs more
generalizable than its precursor: generalized linear models
(GLMs) [15], which involves only linear terms.

In our experiments, we use penalized B-splines to model
non-linearity of each feature separately (i.e. referring to Eq. 8,
fi(x) = si(xi)). Thus, the g-function in our case is given by

g(x) = s1(x1) + s2(x2) . . . sd(xd) + β0,

where: si(xi) =

Ki∑
j=1

B
(qi)
j (xi)βj = B′i(xi)βi.

(9)

Here, si(xi) denotes a spline function corresponding to i-th
feature, B(qi)

j (xi) indicates the basis function of order qi, βj
are scalar coefficients and Ki is the total number of basis
functions used to model the spline. The order of spline (i.e.
qi) and the number of basis-functions Ki is user-specified.

Once the structure of link function g(x) is specified, an
optimization algorithm is invoked to learn parameters corre-
sponding to basis functions β(qi)

j (xi) and coefficients βj with
an objective to minimize the error between the estimated value
of probability (ŷ(x) Eq. 7) and the actual y values across
the dataset. To make the resulting model more generalize and
simple, a second-order smoothing is employed. Thus, using

1probability of datapoint belonging to other class (i.e. y = 0) will be 1− ŷ.



TABLE I: SVM Result for different values of penalty parameter C. For each dataset, the first row represents the testing
accuracy and the second row represents complexity (number of support vectors). C = 1000 gives overall best performance.

Pen. Param. DS1 DS2 DS3 DS4 Truss WeldedBeam

C = 1
94.75± 1.97
191.94± 4.38

95.24± 0.00
16.56± 0.80

96.93± 1.87
64.68± 2.16

45.20± 4.24
138.76± 1.99

77.31± 2.16
343.76± 9.51

98.83± 0.70
47.26± 3.00

C = 10
98.42± 1.16
58.70± 2.90

95.24± 0.00
30.46± 0.64

99.32± 0.70
26.68± 1.88

68.77± 4.00
262.60± 4.76

81.29± 2.19
258.52± 10.85

99.53± 0.42
17.86± 1.73

C = 1, 000
99.88± 0.33
8.36± 0.87

99.70± 0.50
8.56± 0.67

99.75± 0.58
10.60± 0.92

96.63± 1.35
56.70± 3.13

88.54± 1.60
176.22± 7.87

99.63± 0.38
7.88± 0.86

Pen. Param. m-DS1 m-DS2 m-DS3 Cancer-10 Cancer-30

C = 1
99.77± 0.67
70.22± 2.23

95.24± 0.00
16.18± 0.59

99.97± 0.23
36.54± 1.72

97.15± 1.08
69.98± 6.51

90.83± 1.83
106.88± 4.44

C = 10
100.00± 0.00
26.42± 1.46

98.89± 0.85
14.40± 0.89

100.00± 0.00
12.60± 0.98

95.98± 1.13
56.22± 6.43

91.94± 1.36
81.66± 4.54

C = 1, 000
99.93± 0.33
7.38± 0.75

99.97± 0.22
5.34± 0.55

100.00± 0.00
8.82± 1.01

95.23± 1.09
52.36± 4.91

95.08± 1.65
58.74± 5.18

Eq. 7 and 9, the overall optimization problem translates to
minimizing the following function:

Min: F (B′,β)=

N∑
i=1

(yi−ŷi(B′β))2+

d∑
j=1

λj

∫
(s′′j (xj |B′

jβj
))2dxj ,

(10)
where yi is the actual class of the i-th datapoint (which

can have value of either 0 or 1) and ŷi is the probability
of i-th point belonging to class y = 1 (i.e. P (y = 1|xi))
as predicted by the GAM classifier using Eq. 7. λj are the
penalty parameters which are prespecified. In our case, we
use λj = 0.6 for all features. The rule complexity of a
GAM classifier can be tuned using λj , where higher values
of λj imposes heavy penalty on non-linearities with more
than second order. Additionally, the complexity can also be
controlled by regulating the degree (qi) and number of basis-
functions Ki (Eq. 9). In our experimental setup, we conduct
series of experiments using different combinations of (Ki, qi)
to model splines for each feature. Values of K and q are picked
from the one listed in Table II.

TABLE II: Details regarding parametric study for GAMs.

# Basis Functions (K) Degree (q)
2, 3, 5, 8, 13, 21 2, 3, 5

Total number of terms arising from the expression of rule
g(x) (Eq. 9) is

∑d
j=1 (qj + 1)×Kj +Kj + 1. However, due

to second-order smoothening effect (Eq. 10), 2nd order non-
linearities which are not contributing in minimizing the error∑N

i=1(yi−ŷi(B′β))2 will get removed from the rule and thus,
the effective degree of freedom (EoDF) will be far less than the
total length of the rule. Effective degrees of freedom versus
accuracy plot for GAM classifiers obtained using various
combinations of (Ki, qi) on Cancer-10 dataset is shown in
Figure 4. It is clear that a high training accuracy is achieved
with a large EoDF, but makes an over-fitting and produces less
testing accuracy. About 500 such experiments are performed
and the best combinations of (Ki, qi) are used to generate
results (Table IV) for a given dataset. Note here that generating
classifiers using GAM is computationally expensive for high-
dimensional datasets and so, we do not run experiments on
datasets involving 500 features.

(a) Training Accuracy (b) Testing Accuracy

Fig. 4: Effective degree of freedom (EoDF) V/s Accuracy for
Cancer-10 dataset. The best (Ki, qi) parameter setting for this
dataset is found to be K∗ = [8, 3, 8, 13, 8, 8, 13, 3, 8, 21] and
q∗ = [2, 2, 5, 5, 2, 3, 3, 2, 2, 2].

Advantages:
• Effect of each feature on the output variable can be

separately analyzed using partial dependence plots.
• A source code is available [19] for rapid prototyping.

Disadvantages:
• Hyperparameters defining the non-linear functions Eq. 8

needs to be properly identified.
• Slow to train as compared to other methods.
• Becomes computationally expensive to handle high di-

mensional datasets.

D. Genetic Programming (GP)

Fig. 5: A sample genetic pro-
gram (GP) tree. The above
GP translates this equation:
f(x) = (x5 − x7) + 3x2.

Genetic Programming has
been extensively used to de-
rive non-linear and inter-
pretable classifiers [2], [4],
[5], [9], [20]. A GP algorithm
evolves programs (or equa-
tions of classifier’s decision
boundary in our case) using
genetic operators like crossover and mutation. Programs in
GP are usually represented with tree architecture as shown
in Figure 5. Internal nodes of this tree can involve mathe-
matical operations, like +,×,−,÷, log, sin. Allowable set of
mathematical operations are pre-specified by the user. In our
case, we use {+,×,−,÷} only. Terminal leaf nodes of a GP



program either have one of the input feature xi or a constant
term c. It is to note here that a GP tree (T) represents one
non-linear equation and is fundamentally different from the
decision tree which involves assembly of split-rule equations
which are organized in a hierarchical format (Figure 1). The
optimal structure of tree, operators used, features xi involved
and value of constants c are all unknown and are determined
through an evolutionary algorithm. The evolution is conducted
with an objective to minimize the cross-entropy loss. However,
if unchecked, the size of GP trees grows as the evolution
progress and the GP algorithm suffers from bloating [11].
To counter this effect of bloating and encourage evolution of
simpler trees (trees with less number of nodes), a parsimony
coefficient Pc is used to penalize the fitness of a GP tree (T)
as shown below:

Min: fGP (T) = Closs + Pc × Tsize, (11)

where,

Closs=−
1

N

N∑
i=1

y(xi) log(ŷ(xi))−(1−y(xi)) log(1−ŷ(xi)),

ŷ(x)=Sigmoid(f(x)).
(12)

In Eq. 11, Tsize represents size of the tree and is computed
by counting total number of nodes in the tree. In Eq. 12, f(x)
is the value the GP tree outputs for a given feature vector x
(see Figure 5).

It is important to choose a suitable parsimony coefficient
Pc for a problem. Smaller value of Pc will encourage bloating
and will evolve complex equations while the higher value of
Pc will evolve simpler equations at an expense of reduced
classification accuracy. In our case, we perform experiments
using three values Pc: 0.01, 0.005 and 0.001, and conduct
50 runs on each dataset shown in Table III (discussed in
Section III) after randomly splitting the dataset into 70%
training and 30% testing for each run. Statistics regarding
testing accuracy and complexity (measured as the total number
of internal nodes) is reported in the table. It is clear from the
table that while a small Pc produces a better accuracy, a large
Pc produces smaller sized GPs. To demonstrate, we present
two GP classifiers for Pc = 0.005 and 0.01 obtained for the
breast cancer Wisconsin dataset (involving total 10 features)
in Figure 6. Training (Tr) and testing (Te) accuracy are better
for Pc = 0.005.

Table III indicates that GP does not perform well on certain
problems even in small-sized problems, such as DS1 and DS4.
In a mathematical classifier search, there are two hierarchical
aspects which must be learnt: (i) structure of the classifier, and
(ii) coefficient of each term in the structure. GP attempts to
learn both aspects in a single optimization task. We argue that
while a “good” structure may have evolved at a generation, if
its associated coefficients are not proper, the whole classifier
will be judged as “bad”. We attempt to alleviate this aspect in
the next procedure by using a bilevel optimization framework.

(a) Pc = 0.005, Tr = 96.44,
Te = 99.02, Complexity = 6.

(b) Pc = 0.01, Tr = 95.60,
Te = 98.05, Complexity = 3.

Fig. 6: Classifiers for Cancer data: Pc = 0.005: f(x) = x9 +
−0.537

(0.171x6)(0.171x3x2)
and Pc = 0.01: f(x) = x2 +

−0.502
(0.077x6)

.

Advantages:
• Non-linearity gets automatically determined during evo-

lution.
• Open Source Code is available https://gplearn.

readthedocs.io/en/stable/index.html.
Disadvantages:
• Correct set of operators needs to be specified to derive

optimal interpretable classifier.
• Training is slow as compared to SVM and CART.
• Parsimony coefficient Pc severely impacts the perfor-

mance of GP and so it needs to be tuned properly.

E. Nonlinear Decision Tree (NLDT) Approach

Recently, an evolutionary algorithm based non-linear de-
cision tree classifier was proposed in [8]. The classifier is
represented in the form of a non-linear decision tree as shown
in Figure 7. Unlike in regular CART based decision tree

Fig. 7: NLDT Schematic.

where the split-functions are constrained to have axis-parallel
structure (Figure 1), split-functions fi(x) in NLDT are non-
linear to the features and are represented as weighted sum of
p power-laws as shown below:

f(x) =



p∑
i=1

wiBi + θ1, if m = 0,∣∣∣∣∣
p∑

i=1

wiBi + θ1

∣∣∣∣∣− θ2, if m = 1,

(13)

https://gplearn.readthedocs.io/en/stable/index.html
https://gplearn.readthedocs.io/en/stable/index.html


TABLE III: GP Result for different values of parsimony coefficient Pc. For each dataset, the first row represents the testing
accuracy and the second row represents complexity (number of internal nodes). Pc = 0.001 produces better results.

Pars. coeff. DS1 DS2 DS3 DS4 Truss WeldedBeam

PC = 0.01
61.07± 9.91
3.40± 3.70

95.24± 0.00
1.98± 0.14

65.37± 11.57
4.44± 2.37

49.93± 1.43
1.12± 3.40

82.78± 11.28
5.20± 3.30

84.88± 13.08
9.32± 5.15

PC = 0.005
77.3± 11.29
16.18± 9.99

95.24± 0.00
3.86± 1.23

86.27± 11.41
19.86± 11.45

50.37± 2.96
2.06± 3.88

90.03± 8.50
11.98± 7.12

92.35± 6.06
14.08± 5.35

PC = 0.001
91.70± 6.91
67.72± 26.72

95.37± 0.63
15.14± 13.55

96.50± 3.3
76.74± 33.36

58.00± 11.22
18.76± 23.94

97.36± 3.81
36.02± 16.99

96.46± 4.14
35.90± 18.28

Pars. coeff. m-DS1 m-DS2 m-DS3 Cancer-10 Cancer-30

PC = 0.01
89.53± 3.27
8.34± 1.98

95.65± 0.70
3.58± 1.07

96.33± 4.68
15.04± 6.36

94.03± 4.59
5.56± 2.06

90.47± 4.54
4.78± 2.30

PC = 0.005
93.37± 4.57
16.32± 9.55

95.65± 0.70
3.76± 1.22

98.4± 1.99
19.88± 9.94

95.04± 1.76
7.88± 3.07

90.96± 6.29
5.74± 1.84

PC = 0.001
98.83± 1.88
55.38± 22.39

96.67± 1.93
14.08± 9.11

99.27± 1.22
49.80± 21.69

96.13± 1.29
15.80± 5.66

92.40± 4.98
14.58± 7.14

where Bi are the power-laws (Bi =
∏d

j=1 x
bij
j ), wi are

coefficients, θi are biases, and d is the number of features
in the dataset. The exponents bij of the j-th feature in the i-th
power-law can assume a value from a pre-specified discrete
set E. In our case, we choose E = −1,−2, . . . , 3. The
number of power-laws p is set to 3 in all the experiments. At
each conditional node in NLDT, the expression for split-rule
f(x) is derived by optimizing exponents bij , coefficients wi,
biases θi and the modulus-flag m using a dedicated bilevel
algorithm as shown in Figure 7. The upper level of the
bilevel algorithm operates in the discrete space of exponents
bij (which are encoded using a matrix B) and the modulus
flag m while for each upper level solution SU , the lower
level algorithm searches for the optimal values of weights
w and biases Θ. The upper level is modeled as a single-
objective constrained optimization problem with an objective
to minimize the complexity FU of the split-rule f(x) while
ensuring that child nodes resulting from split have their net
impurity FL less than a user specified threshold value τI (set to
0.05 in our experiments). The bilevel optimization formulation
to derive a split-rule f(x) in NLDT can then be written as
shown below:

Min. FU (B,m,w
∗,Θ∗),

s.t. (w∗,Θ∗)∈argmin
{
FL(w,Θ)|(B,m)

∣∣FL(w,Θ)|(B,m)

≤ τI ,−1 ≤ wi ≤ 1, ∀i, Θ ∈ [−1, 1]m+1
}
,

m ∈ {0, 1}, bij ∈ {−3,−2,−1, 0, 1, 2, 3}.
(14)

The upper level objective FU , which quantifies the com-
plexity is computed by counting all non-zero exponents bij
in the expression of f(x) (Eq. 13). The lower level objective
function FL which quantifies the quality of split is obtained
using the weighed sum of impurities of child nodes as shown
in Eq. 2. Evolutionary algorithms for both upper and lower
level are employed to conduct an efficient search on upper
level variables (B, m) and lower level variables (w, Θ). Splits
in NLDT are recursively derived until a certain termination
criteria is met. The bilevel optimization serves as a very
efficient search technique to derive simple split rules, an
example of which is shown in Figure 8 for Wisconsin breast
cancer dataset involving total 10 features. Besides being an

interpretable classifier, it also reveals that only five (x2-x4,
x7 and x10) of ten features are important in making the
classification.

Fig. 8: NLDT with a single nonlinear rule obtained for Breast
Cancer Wisconsin dataset (total 10 features) is shown. If the
function value on the root node is less-than-equal-to zero, the
data point is classified as Class 2 point with 165/178 or 92.7%
accuracy and if it is positive, then the data point is classified
as Class 1 point with 297/298 or 99.7% accuracy.

Advantages:
• Due to the use of nonlinear structure, the NLDT will have

a fewer rules,
• The structure of the rules can be controlled easily, so

interpretable rules can be obtained.
• Recent advancements in nonlinear optimization methods

enable NLDTs to be evolved efficiently.
Disadvantages:
• Maximum depth, total number of power laws per rule,

exponent set, impurity threshold τI and minimum number
of data points to conduct split, need to be set.

• Training is slower as compared to CART and SVM.
Details regarding the bilevel optimization algorithm and

parameter settings can be found from [8].

III. DATASETS CONSIDERED

In our study, we conduct experiments on total 19 datasets
to explore and investigate behaviour of various classification
algorithms discussed above on varieties of features spaces and
data distributions.

A. Customized Data: DS1-4 and modified DS1-3

Four synthetic two dimensional datasets DS1-DS4 and their
variants m-DS1, m-DS2 and m-DS3 are generated using the



procedure provied in [8] to investigate behavior of classifica-
tion algorithms across following properties:
• Data Distribution: For DS1-DS4 datasets, degree of

scatter in data varies across classes. For m-DS1, m-DS2
and m-DS3 the scattering of data for each class is more
similar than that in original DS datasets. A visualisation
of feature spaces for DS1 and m-DS1 dataset is provided
in Figure 9a and 9b, respectively.

• Geometry of Decision Boundary: Here, the effect of
the nature of the simplest possible decision boundary
is considered. Decision boundary corresponding to DS1-
DS2 and modified DS1-DS2 is linear, DS3 and m-DS3
have decision boundary involving nonlinearity of order 2
and DS4 have two disjoint linear decision boundaries.

• Data Bias: Here, effect of bias in class representation
is considered. All datasets except DS2 and m-DS2 are
balanced. For DS2 and m-DS2, minority class has 5 times
less number of data points as the majority class.

(a) DS1 Dataset. (b) m-DS1 Dataset.

Fig. 9: Original DS1 and its modified version.

B. Cancer Datasets

We use breast cancer Wisconsin data involving 10 features
and Wisconsin Diagnostics dataset having 30 features.

C. Pareto versus Non-Pareto Classification

In multi-objective optimization, there are two types of
solutions: (i) Pareto-optimal set and (ii) Dominated set. Users
are interested in knowing what feature relationships (decision
variables interactions) make a solution Pareto-optimal, thereby
making the task a binary classification problem.

1) Test problems: We use modified versions of ZDT [23]
and DTLZ [7] problems with two and three objectives, re-
spectively to generate datasets involving 30 and 500 features
(details in [8]). These two problem sizes also allow us to
perform a scale-up study of the classification methods.

2) Real-world Problems: Next, we consider two real-world
problems – welded beam and truss design problems [6].

IV. RESULTS AND DISCUSSIONS

Table IV presents the testing accuracy and complexity of
five classification methods on 19 problems. For each method, a
parametric study is performed on each problem and the setting
which obtained the best testing accuracy is used to generate
the final results. Statistics of 50 runs (with random data split

of 70% training and 30% testing in each) on each dataset for
two performance metrics is presented in Table IV.

For CART, the complexity metric is defined as total number
of nodes, for SVM, it is defined as total number of feature
vectors, for GAM, it is defined as the effective degrees of
freedom (EoDF); for GP, it is defined as the total number of
internal nodes; and for NLDT, it is defined as total number of
variables present in the entire tree. It is clear that a method
with high testing accuracy and low complexity is better.

The table clearly indicates that NLDT performs well in
terms of both metrics. Also, the performance of NLDT scales
well with an increase in feature size. CART produces a
good compromise on accuracy and complexity, but performs
worse than NLDT on both metrics. While SVM achieves a
high accuracy, in general, the complexity of its classifiers
is large, thereby making them not easy to interpret for any
explainability purposes. The performance of GP is poor for
achieving a high accuracy. GAM is clearly not suitable for
problems with a large number of features and cannot be run
due to impractical computational time requirement for some
problems (marked with a dash). GP cannot match both accu-
racy and complexity obtained by NLDT. In most problems,
NLDT classifiers require fewer conditional rules (albeit with
restricted nonlinearities) and still achieve near 100% correct
testing accuracy.

V. CONCLUSIONS

In this paper, we have presented three popular binary
classification methods – CART, SVM and GAM. We have
also included a genetic programming approach and a recently
proposed nonlinear decision tree (NLDT) approach for a com-
parison with three existing methods on 19 different problems
involving two to 500 features. The advantages and disadvan-
tages of each method are described by highlighting one or
more problem parameters which control the potential trade-off
between complexity of the obtained classifier and its testing
accuracy. The extensive comparative results have indicated that
the NLDT approach makes an excellent compromise between
the testing accuracy and complexity of the classifier. While the
former is always important for a classifier, the latter allows an
user to look for an explanation involving features and their
interactions for the classifier’s working principles.

The study raises a number of interesting future studies: (i)
extension to multi-class classification problems, (ii) extension
to regression problems, (iii) use of the bilevel approach similar
to that used in NLDT search with GP to improve GP’s
performance, (iv) extension to nonlinear forest (NLF) search
involving multiple NLDTs for generating more compact, but
slightly more complex and more accurate rules.
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