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performance, successful and innovative designs naturally build

upon further qualities such as aesthetic appeal, which typically

relies on a human in the loop to ideate and realize envisioned

conceptual design directions.

Through the recent advances in artificial intelligence (AI),

a current major trend is to collect and utilize existing digital

design and simulation data for the application of data analytics

and machine learning. Both help to increase the knowledge

on the problem domain, provide qualified system answers

and realize a fast exploration of potential design ideas. The

finding based on data analytics and machine learning may be

communicated to the designer through an interactive vehicle

design tool which would favor a cooperative character with

well-thought interactions for proper guidance [1] such that

the human designers capabilities are enhanced rather then

replaced [2]. State-of-the-art AI methods offer a promising

approach to the realization of such a cooperative design system

(CDS), where in particular generative models may be used to

provide guidance or potential alternatives giving the designer

the freedom to rethink, discuss and adapt promising product

directions.

Essential to such an automotive CDS is a model that

provides a representation of 3D geometries that allows to

efficiently explore the design space, and is able to generate

novel and realistic car shapes. In contrast to a manual design

of the representation which would be potentially biased or

limited by human heuristics, geometric deep learning offers

generative methods such as (variational) autoencoders (V)AE

[3], [4] that learn low-dimensional representations of existing

3D shape data in an unsupervised fashion. In particular in the

engineering domain, unsupervised approaches are favorable

since labeling of data is often prohibitively expensive. Applica-

tions of unsupervised models, such as AEs and VAEs, to geo-

metric data are sparse (e.g., [5], [6]), and applications targeted

specifically at the engineering application domain are lacking.

In the present paper we therefore use a point cloud based

variational autoencoder (PC-VAE) that builds on the point

cloud autoencoder originally proposed in [6], and extended

in [7] and [8], which has been successfully evaluated for

engineering applications [7]. We train the proposed model on

digital car shapes taken from ShapeNetCore [9], a benchmark

Abstract—During each cycle of automotive development, large 
amounts of geometric data are generated as results of design 
studies and simulation tasks. Discovering hidden knowledge from 
this data and making it available to the development team 
strengthens the design process by utilizing historic information 
when creating novel products. To this end, we propose to 
use powerful geometric deep learning models that learn low-
dimensional representation of the design data in an unsupervised 
fashion. Trained models allow to efficiently explore the design 
space, as well as to generate novel designs. One popular class 
of generative models are variational autoencoders, which have 
however been rarely applied to geometric data. Hence, we use 
a variational autoencoder for 3D point clouds (PC-VAE) and 
explore the model’s generative capabilities with a focus on the 
generation of realistic yet novel 3D shapes. We apply the PC-VAE 
to point clouds sampled from car shapes from a benchmark 
data set and employ quantitative measures to show that our 
PC-VAE generates realistic car shapes, wile returning a richer 
variety of unseen shapes compared to a baseline autoencoder. 
Finally, we demonstrate how the PC-VAE can be guided towards 
generating shapes with desired target properties by optimizing 
the parameters that maximize the output of a trained classifier 
for said target properties. We conclude that generative models 
are a powerful tool that may aid designers in automotive product 
development.
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I. INTRODUCTION

Current engineering design development processes are en-

riched by a manifold of computer-aided design (CAD) and

engineering (CAE) tools for various tasks. Human users mod-

ify digital designs and evaluate concepts towards their perfor-

mance under given environment and scenario specifications.

Like in many other fields, in the automotive industry a huge

amount of digital data emerges from computational models

which are processed for quantifying various vehicle character-

istics according to required fidelities of detail. As examples,

complete car designs are simulated for aerodynamic drag

efficiency, or finite element models of structural components

are computed for stiffness or crash safety. Besides technical
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research and innovation programme under grant agreement number 766186 
(ECOLE).



3D shape database for computer graphics research. We further

evaluate the generative capability of our PC-VAE by evaluating

two central aspects: (1) the realism of the sampled shapes

and (2) the capability of the model to generate diverse, novel

shapes. In a final step, we demonstrate how the generative

process can be guided towards the generation of a specific car

type by combining optimization and a multilayer perceptron

(MLP) classifier trained on the learned latent space. The last

step may be utilized to guide the generative process towards

specific objectives, such as the generation of a shape with a

desired appeal but also other properties of the generated model.

The remainder of this paper is organized as follows: we

present a literature review on generative models from the field

of geometric deep learning in Section II. In particular, we

focus on VAEs for 3D shape analysis as well as on methods

to explore the latent space of such generative models. We

then introduce in Section III the architecture of our proposed

PC-VAE model and the training process on the car class of

ShapeNetCore [9]. We also detail the quantitative measures

to evaluate the generative capability of the model for the

generation of realistic and diverse shapes. In Section IV,

we present the experiments and results of training the PC-

VAE on the ShapeNetCore car class data. In particular, we

evaluate the model’s generative capabilities in comparison to

a baseline autoencoder model using quantitative measures, and

we describe the training and optimization process used to

guide the generative process through the training of an MLP

classifier on the learned latent space. Finally, we discuss our

results in the light of using a PC-VAE to generate car designs

for design suggestions in the context of a CDS in Section V.

II. PRIOR ART

A. Generative models for shape analysis

Recently, several generative models have been proposed

in the 2D domain for creative design inspiration by sketch

drawings [10] or for fashion generation [11]. However, realiz-

ing similar systems for 3D shape data, especially engineering

data, requires different approaches due to the higher inherent

complexity of the data, limited number of available source

data and various base representations of CAE/D models [12].

By base representation we refer to different options how 3D

geometries are potentially represented such that they can be

processed in a geometric deep learning pipeline. Here, com-

mon representations include voxels, point clouds or polygon

meshes, which mainly vary in the level of detail they are able

to represent and in memory demand [13]. For our application,

we focus on 3D shapes sampled as surface point clouds due to

their high flexibility and memory-efficiency, which allows to

represent finer geometric detail and scale models to bigger

input sizes [8]. Potential candidates for 3D representation

learning are autoencoders (AEs) [14], variational autoencoders

(VAEs) [3], and generative adversarial networks (GANs) [15].
Popular AE architectures that process point-cloud represen-

tations of 3D data are PointNet [16] and PointNet++ [17].

Many networks have adopted the PointNet architecture be-

cause of its simplicity and strong representation capability. The

architecture overcomes the common difficulty of learning data

from point clouds by making models invariant to permutations

in the input through pre-processing and modification in the

conventional multi-layer convolution network. Achlioptas et

al. [6] proposed an AE architecture building on PointNet,

where the encoder is similar to PointNet and the decoder

comprises fully connected layers. The generative capabilities

of the regular AE is limited, therefore, the authors train an

additional Gaussian mixture model (GMM) on the latent space

of the AE (AE+GMM), which is a computationally expensive

further step. In addition, Rios et al. [18] show that transferring

features using an AE between two different geometric shapes

results in a fuzzy point cloud, which may be a consequence

of the irregularity in the latent space of the AE in absence of

any regularization technique.

GANs, as potential alternative, are challenging in the train-

ing step because they suffer from non-convergence, mode col-

lapse, and vanishing gradients [19]. Consequently, researchers

use various forms of regularization to improve the training

convergence of a GAN [20], [21], but still tuning the hyper-

parameters remains challenging.

Recently, variational architectures have been successfully

introduced as generative models for point clouds (e.g., [5],

[22]), and have been extended using continuous normalizing

flow [23]. We here use such a variational architecture, which

is an extension of the autoencoder model presented in [6]–[8],

and which has been evaluated specifically for the application

to engineering problems. We extended the model to a VAE

architecture to obtain a model with improved generative ca-

pabilities, whose training is less complex and relatively time

efficient. Prior research on VAEs for geometric data focused on

various tasks, such as 3D shape reconstruction from 2D images

[24], 3D shape segmentation [25], part generation and shape

generation from segmented objects [26], as well as shape-

inference from images and classification [22]. The research

closest to our goal of generating novel and diverse shapes is

CompoNet [27], a generative neural network for 2D or 3D

shapes based on a part-based prior, which relies on a VAE

for 2D shape synthesis and the above mentioned AE+GMM

for 3D objects. Zamorski et al. [5] proposed an end-to-end

solution to generating 3D shapes with an adversarial autoen-

coder (AAE) for 3D point clouds using a binary representation

in the latent space. The AAE differs from a VAE in the

loss computed on the latent space, where the AAE uses the

adversarial loss similar to a GAN while the VAE uses the

Kullback-Leibler (KL) divergence to enforce regularization of

the latent space. Zamorski et al. [5] trained the adversarial

model with the Earth-Mover distance (EMD) and analyzed

the model with various objectives, such as 3D point cloud

clustering and object retrieval.

Opposed to prior research on the generative capabilities

of PC-VAEs, we here focus on the generative capabilities

of generative geometric models, in particular with respect

to the realism and diversity of generated shapes, such as to

evaluate the model’s potential for applications in engineering

design tasks. To this end, we propose a VAE architecture and



evaluate both aspects in a quantitative fashion. Furthermore,

we demonstrate how shapes may be generated in a more

targeted fashion by optimizing the input of a classifier trained

on the learned latent representations.

B. Evaluation of 3D shape generation

When generating novel shapes from a trained model, we

aim at generating both realistic and novel shapes. Both aspects

are central to the intended application domain of engineering

design. In other words, a model should generate plausible

shapes, i.e., shapes that in some aspects closely resemble the

data set, but also novel or diverse shapes that are sufficiently

far away from the training data.

To generate shapes from a trained model, research on

generative models typically uses linear interpolation between

two shapes as a way of demonstrating that a generative

model has not simply memorized the training examples [28].

Also, random sampling is frequently employed to evaluate

the explorative capability of the generative models. However,

shapes generated from sampling the learned latent space of au-

toencoders are not always realistic. To quantify the “realism”

of a generated shape, Berthelot et al. [29] proposed a mean

distance (MD) metric in 2D that compares the minimum cosine

distance of the interpolated data-points with the original data-

points by finding the nearest neighbor of each interpolation

step in the data set. Similar to this approach, Achlioptas et

al. [6] proposed a minimum matching distance (MMD) metric

to measure the closeness of two point cloud sets using the

Chamfer distance (CD) [24], where closeness between sets is

assumed to indicate a higher realism.

To limit the generation of samples to realistic shapes it has

been proposed to limit the boundaries of the latent space by

the sample encoding of the data set shapes [26]. This approach

deals with the fact that generative models can produce latent

spaces that are not tightly packed and ensures that one samples

from the latent manifold only. Even though this approach im-

proves the model reconstruction quality, it may become overly

restrictive in the context of a design exploration application

such that it prevents the model from suggesting novel samples.

To not only evaluate the realism but also the novelty or

diversity of generated shapes, Schor et al. [27] rely on a

classifier to test the diversity of samples generated from an

AE+GMM model. The generative diversity is calculated as the

percentage of the generated samples classified as belonging to

an unseen test set.

In sum, quantitative approaches for evaluating both the real-

ism and the diversity of 3D shapes generated from geometric

deep learning models have been proposed. We here combine

both approaches to assess whether the proposed PC-VAE is

able to generate shapes that are both realistic and novel. This

ability of 3D VAEs to generate realistic and novel shapes has

been little explored despite the relative simplicity and higher

efficiency of VAEs in comparison to other (3D) generative

models. We additionally show that the generation of specific

shapes can be enforced by running an optimization on the

inputs to the classifier. In the next section, we describe the

proposed PC-VAE architecture and optimization procedure in

detail before we go on to explore the model’s explorative and

generative capabilities.

III. METHODOLOGY

In this section, we first introduce the model architecture of

our proposed PC-VAE (Section III.A). Next, we provide details

on the quantitative measures which are applied to evaluate our

model’s generative ability (Section III.B). Finally, we propose

an approach to guide the generation of more diverse shapes

using optimization and machine learning models trained on

the learned latent space (Section III.C).

A. Variational autoencoder

Background: The VAE [3], [4] is a generative model that,

opposed to a standard AE, aims at learning “disentangled,

semantically meaningful, statistically independent and causal

factors of variation in data” [30]. The VAE may be seen as a

regularized version of the AE that forces the learned latent

space towards following an a-priori specified distribution,

p(z).
The VAE has the same basic architecture as an AE, with an

encoder, qφ(z|x), that is parameterized by φ and learns to map

the input x to a variational distribution. The decoder, pθ(x|z),
parameterized by θ aims at reconstructing the input x from

the latent vector z, sampled from the learned distribution.

The VAE maximizes the evidence lower bound (ELBO) [3]

L(x; θ, φ) w.r.t. parameters θ and φ,

L(x; θ, φ) = Eqφ(x|z)[log pθ(x|z)]−DKL(qφ(z|x)||p(z))

≤ log p(x),
(1)

which is a valid lower bound on the log-likelihood of the

data. Here, Eqφ(x|z)[log pθ(x|z)] is the negative reconstruction

loss which enforces the encoder to learn a meaningful latent

vector z, such that the decoder can reconstruct the input x from

z. DKL(qφ(z|x)||p(z)) is the Kullback-Leibler (KL) regular-

ization loss which minimizes the KL-divergence between the

approximate posterior qφ(z|x) and the prior p(z) ∼ (0, I).

Network Architecture (PC-VAE): The PC-VAE used in

our experiment is implemented based on an architecture

presented in [7] and [8], which extends a proposal in [6],

[16] (Figure 1) with minor modifications in the activation

functions to maintain the limits of the normalization used for

the input geometries. The encoder part of the PC-VAE follows

[16], who propose to use 1D-convolutional layers together

with permutation-invariant global operators (e.g., max-pooling

at a deeper layer of the network) in order to make the

architecture invariant against permutations in the input point

clouds. The encoder-decoder structure used here is similar

to the architecture proposed in [6], only the last layer of

the decoder is replaced with sigmoid activation functions [7],

since the coordinates of all points are normalized to the range

[0.1, 0.9]. In our encoder, we use five 1D-convolutional layers,



Fig. 1: PC-VAE architecture. Input and output are represented

by a 3D point cloud composed of 2048 points.

each followed by a ReLU [31] and a batch normalization layer

[32]. The decoder consists of three fully connected layers.

To extend the autoencoder architecture in [6]–[8] to a

variational autoencoder, the output of the last convolution layer

in the encoder is passed to a max-pool layer that produces a k-

dimensional vector that forms the bottleneck for two separate

k-dimensional vectors: a mean vector µ and standard deviation

vector σ. The mean vector has no activation function, while the

deviation vector uses a sigmoid activation function. A vector

sampled from the latent distribution is fed into the decoder

network for reconstruction of a point cloud and is represented

as,

z ∽ µ+ σ ∗ ǫ (2)

where ǫ ∽ N(0, 1).
The PC-VAE optimizes the loss function between the input

point cloud, S1, and the reconstructed point cloud, S2, as

LV AE (S1, S2) = αdCD + βDKL (qφ (z|S1) ||p (z)) , (3)

where the first term on the right-hand side denotes the recon-

struction loss, measured by the Chamfer distance (CD) [24],

dCD (S1, S2) =
∑

x∈S1

min
y∈S2

‖x− y‖
2
2 +

∑

y∈S2

min
x∈S1

‖x− y‖
2
2 ,

(4)

and the second term is the KL-divergence that quantifies

the distance between the learned latent representation and

the prior. Both terms of the loss function differ by several

orders of magnitude. To bridge this gap, we introduce two

parameters α and β to scale the reconstruction loss and

KL-divergence, respectively. For training and exploring the

generative capabilities of PC-VAE, we split the complete data

set S, into a seen training set, Dtrain, and an unseen test set,

Dtest.

B. Evaluating the generative capabilities of the PC-VAE

From the trained PC-VAE we generate new shapes, G, either

by interpolating in the latent space or random sampling of the

learned distribution in the latent space. We then evaluate both

the realism and the diversity of G.

We evaluated the realism of generated shapes qualitatively

through visual inspection and quantitatively employing the

method introduced in [29], where realism of generated shapes

is measured as the mean distance to the data set S. Fur-

thermore, we evaluated the novelty of generated shapes by

quantifying their diversity with respect to the training set

Dtrain, following the approach in [27]. Hence, we pose two

objectives: create shapes close enough to the data set to be

considered realistic, but far enough from the training set to be

considered novel.

Mean distance (MD) and Minimum matching distance

(MMD-CD): To quantify the realism of shapes G generated

through interpolation, we used the mean distance (MD) [29]

and minimum matching distance (MMD-CD) [6]. Both mea-

sures are similar and quantify realism as the distance between

shapes in G and the data set S. MMD-CD is calculated as

the average minimum CD between the shapes in G and their

nearest neighbor in S,

MMD-CD ({x̂1, x̂2, ..., x̂N}) =
1

N

N∑

i=1

q̂i, (5)

where x̂i is the point cloud reconstructed from the ith inter-

polation step and

q̂i = min
s∈S

{dCD (x̂i, s)} (6)

is the minimum CD between the reconstructed point cloud

x̂i and any shape s in S. Here, a model showing a lower

MMD-CD when performing the interpolations is considered

to generate more realistic shapes.

Generative Diversity: To quantify the novelty of gen-

erated shapes, G, we used the diversity measure presented

in [27]. Similar to the approach outlined there, we trained a

binary classifier on the latent representation of the whole data

set S, where the information whether a sample belonged to

either the training set, Dtrain, or test set, Dtest, was used as

the label. The diversity is then calculated as the percentage of

generated samples, G, that are classified as belonging to the

test set. In other words, the classifier quantifies the percentage

of samples generated by the model that are closer to the

unseen test set than to the training set. The higher the number

of generated samples classified into the unseen test set, the

higher the diversity of the model. We here used a multilayer

perceptron (MLP) for classification.

Coverage: Another measure of the novelty of G is the

coverage that quantifies the fraction of point clouds in G that

can be matched to the test set, Dtest. For each point-cloud in

G, we find its nearest neighbor in Dtest computed with the

CD. We calculate the coverage as the percentage of shapes in

Dtest that are nearest neighbors to G. If this fraction is small,

the generated shapes resemble only a small fraction of Dtest,

if the coverage is high, the generated samples represent a large

fraction of Dtest.



C. Enforcing the generation of novel shapes

To use a generative model in the engineering design process,

the model has to be able to generate realistic and novel shapes.

In the present work, we therefore explored methods to enforce

the generation of such realistic and novel shapes. To this

end, we first trained a classifier to calculate the diversity

of the generated samples, G. As described in Section III.B,

the classifier is trained on the latent representations of the

whole data set, S, with the information whether a sample

belongs to the training set, Dtrain, or test set, Dtest, as labels.

After training the classifier we performed an optimization

on the input to the classifier that was aimed at generating

novel samples that are classified as belonging to Dtest, i.e.,

are considered novel or diverse. Reconstructing the latent

representations returned by the optimization process leads then

to the generation of novel shapes in a targeted fashion.

For the optimization, we here trained an additional Gaussian

process model (GP) on the latent space representation and the

corresponding output probabilities of the MLP classifier for

each shape. We trained an additional model to make use of

gradient-based methods that are typically faster. Hence, we

used a differentiable model to map from the latent represen-

tation to classification results [33].

We trained the GP on top of the classification results to

apply the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm to generate shapes that maximize the GP output, i.e.,

the probability of classifying a latent sample as belonging to

Dtest. BFGS is an iterative method for solving unconstrained

non-linear optimization problems efficiently. For experimental

verification of the final shapes proposed by the optimization

approach, we applied the MLP classifier to the inputs opti-

mized using the described approach.

In sum, we here propose an approach that is a combination

of the exploratory ability of the PC-VAE, and a classifier and

optimization applied to the learned latent space. While we

make use of the explorative and generative capabilities of the

PC-VAE, we utilize an additional model and optimization to

identify and guide the generation of shapes towards more novel

designs.

IV. EXPERIMENTS AND RESULTS

In this section we first present evaluation results for our

proposed architecture, where we compare the PC-VAE with

existing models from literature (Section IV.A). Then, we

present a sequence of experiments that test the model’s gen-

erative ability with respect to the realism (Section IV.B) and

novelty of generated shapes (Section IV.C). Last, we evaluate

the proposed optimization approach (Section III.C) to guide

the generation of shapes towards more novel shapes (Section

IV.D).

A. Model training

Data: For all experiments, we used point clouds sampled

from the car class of the ShapeNetCore data set [9]. As input

to the models, we sampled 2048 points using random uniform

sampling from each shape’s surface, resulting in a matrix of

size 2048× 3 with spatial coordinates (x, y, z) for each point.

We performed all experiments on a single NVIDIA RTX 2080

Ti GPU.

Training the baseline autoencoder (AE): As a baseline

for all experiments, we trained a point cloud AE as proposed

in [6] and [7]. For training, we split the data set into 60%
training, 20% validation and 20% test set. We trained the

model with 128 latent dimensions using the Adam optimizer

[34] and a learning rate of 5e−04. We set the batch size to

50 and trained for 600 epochs. We performed a grid search to

set the learning rate, batch size and epochs based on the least

average reconstruction loss in the validation set.

Training the PC-VAE: The proposed PC-VAE model was

trained on the same train-test-split as the AE, with 128 latent

dimensions, using the ADAM optimizer and a learning rate

of 5e−03. We performed a grid search approach similar to

training the AE, which resulted in a batch size of 80 and a

training for 600 epochs.

To optimize the hyperparameters, α and β, in the loss

function (eq. 3), we also used a grid search and arrived at

parameter values of α = 250 and β = 0.001, which resulted

in an acceptable trade-off between the reconstruction accuracy

and divergence in the latent space.

To validate the implementation and function of our proposed

PC-VAE model, we compared its generative performance to

that of existing models as reported in the literature, specifically

a regular AE [6] and a 3D-Adversarial AE (3dAAE-G) [5]. As

no prior work was based on 3D car shapes, we re-trained our

model on the chair class of the ShapeNet data set, split into

85% training, 5% validation, and 10% test-split to match the

settings to the reference models from literature. We calculated

the MMD-CD between the reconstructed point clouds and their

corresponding ground truth in the test data set of the chair

object class (Table I). The resulting MMD-CD values indicate

that our model is comparable to existing models regarding the

ability to encode and reconstruct the data set, so that in a

next step, we can evaluate the model’s generative capabilities

with respect to realism and novelty of generated shapes. Note

that this evaluation aims at judging the model’s ability to

reconstruct inputs and not to generate novel shapes. Hence,

we here aim at a comparable performance only.

TABLE I: Comparison of the reconstruction capability be-

tween our PC-VAE and reference models.

Methods MMD-CD

PC-VAE (ours) .0008

AE [6] .0011

3dAAE-G [5]1 .0008
1 The model was trained using the Earth-

Mover distance (EMD) to calculate recon-
struction loss.

B. Evaluating the realism of generated shapes

We hypothesized that the PC-VAE due to the applied

regularization learns a smoother latent space compared to the



AE model, which should lead to the generation of more re-

alistic car shapes when reconstructing random or interpolated

samples from the latent space of the PC-VAE compared to the

AE. To test this hypothesis, we compared reconstructions from

a 10-step linear interpolation between 50 randomly selected

pairs of car geometries from the data set S using both our PC-

VAE and the AE (Figure 2). Each interpolation pair consisted

of an initial shape A and a target shape C, as well as

intermediate shapes B, which were reconstructed from the

interpolation in the latent space.

We first evaluated the generated shapes qualitatively by

visual inspection. We show one example (Figure 2), where

we observed a major difference in the roof region. Here, the

intermediate interpolations performed in the AE latent space

lead to a slanted roof as well as dents in the roof region of

the car shape. On the other hand, the interpolation with the

PC-VAE showed a more gradual change in the roof region and

mostly maintained the curvature of the roof, in total leading

to more realistic interpolated car shapes.

To also quantitatively assess the difference of the gener-

ative capability between AE and PC-VAE, we calculated the

closeness (MMD-CD) between the samples generated for each

interpolation and the samples in the complete data set S. Figure

3 shows the MMD-CD over all 50 interpolations for both, AE

and PC-VAE. Overall, the PC-VAE showed a lower MMD-

CD compared to the AE, indicating that the interpolation led

to shapes that were more similar to the shapes in data set and

hence produced more realistic cars.

Lastly, we tested the difference in MMD-CD for the in-

terpolations of the 50 car pairs for statistical significance

using a non-parametric one-sided Wilcoxon signed-rank test.

We performed a one-sided test of the null hypothesis that

the MMD-CD calculated from the PC-VAE interpolations

(MMDPC−VAE) was greater than or equal to the MMD-

CD calculated from the AE interpolations (MMDAE). We

found that the MMD-CD from the PC-VAE was significantly

smaller, MMDPC−VAE < MMDAE , for the tested sample

(z = −4.1449, p < 0.001 ∗ ∗∗). Hence, the shapes generated

from interpolation in the PC-VAE latent space were more

realistic car shapes as indicated by a lower distance to the

data set S.

C. Evaluating the diversity/novelty of generated shapes

Next, to not only test whether our proposed model PC-

VAE generated realistic, but also novel shapes, we evaluated

the diversity of generated shapes [27]. We compared the

performance of our PC-VAE model against the generative

capabilities of the baseline AE, where we trained a Gaussian-

Mixture Model (AE+GMM) on the learned latent space to

improve generative capabilities, following the approach pro-

posed in [6]. We divided the car class data set into three

different combinations of training- and test-splits as proposed

in [27] and re-trained the model for each split. In each run, we

generated a set G of 5000 shapes by random sampling from

the distributions over the latent space.

Overall generative diversity of the models: For each

train-test-split we calculated the diversity of the generated set,

G, as described in Section III.B. We classified samples in G

into training, Dtrain, and unseen test set, Dtest, using an MLP

classifier with two hidden layers [100, 60] and a tanh activation

function for the hidden layers. The MLP architecture was

optimized through a grid search. We repeated the experiment

ten times. The averaged percentage of generated samples

classified as belonging to the test set are shown in Table II.

For all train-test-splits, the PC-VAE generated shapes with a

higher diversity than the baseline model.

TABLE II: Comparing generative diversity of the PC-VAE and

the AE+GMM (baseline). Best generative diversity for each

train-test-split shown in bold.

Train-test-split AE+GMM PC-VAE Encoder

50/50 40.3 ± 0.80 58.19 ± 0.19

70/30 21.7 ± 0.5 26.96 ± 0.8

90/10 4.0 ± 0.3 6.5 ± 0.08

For an additional, qualitative evaluation of the generative

diversity of the models, we randomly selected three generated

samples from each model and searched for the three nearest

neighbors of each shape in the training set, Dtrain (Figure

4). Both models generated realistic shapes, however the PC-

VAE generated shapes that were more dissimilar to its nearest

neighbors in Dtrain compared to the baseline model.
Ability to generate new types of car shapes: In the next

experiment, we tested whether our proposed architecture was

able to generate a novel type of car. We re-trained the PC-VAE

and the baseline AE on the car class after manually excluding

all pickup truck designs from the data. The pickup truck shapes

present in the data set are a combination of convertibles and

coupe-like car designs (see Figure 5A for examples). We used

the separated pickup truck shapes as the test set, Dtest, (630

shapes in total).
We generated 1800 samples (three times the size of Dtest),

G, from the trained PC-VAE and baseline AE+GMM. We then

retrained the MLP classifier on the new Dtrain and Dtest to

calculate the diversity of the generated shapes. We furthermore

calculated the coverage and MMD-CD. Results are shown as

averages over three repetitions in Table III. All three measures

showed that the PC-VAE was able to generate more truck-like

and hence more novel shapes. Examples of generated shapes

that were classified as belonging to Dtest i.e., pickup trucks

are shown in Figure 5(B,C). Note that the trucks generated by

the PC-VAE show a slightly higher quality.
We want to emphasize that this experiment poses a signif-

icant challenge for the generative model since we are testing

for the generation of a shape that is significantly different from

the training set, Dtrain. This difficulty is also reflected in the

small number of generated shapes that are classified as truck-

like (3% of 1800 generated samples, Table III). Nevertheless,

both models surprisingly showed the ability to generate such

novel shapes, not seen in the training set, where the PC-VAE

generated shapes of higher quality.



Fig. 2: A Reconstruction of the initial shape. B Interpolation between shapes A and C in 10 steps—reconstruction of the

interpolation at steps 2, 4, 6, 8, and 10. C Reconstruction of the target shape. Top row Reconstruction of the interpolation

using the proposed PC-VAE. Bottom row Reconstruction of the interpolation using the AE.

Fig. 3: MMD-CD measure for 50 randomly selected car pairs

(each with 10 interpolation steps) using AE and PC-VAE

(shaded areas indicate the standard deviation).

TABLE III: Comparing generative diversity, coverage and

minimum matching distance (MMD-CD) for a subclass of car

shapes on test split (best performance for each measures shown

in bold.)

Models
Generative

diversity
Coverage MMD-CD

AE+GMM 0.3 ± .13 7.3 .00048

PC-VAE Encoder 3.1 ± 2.2 9.7 .00047

D. Optimization to guide the generation of novel shapes

In the last experiment, we evaluated our proposed approach

to guide the model towards generating more novel shapes by

performing an optimization of the inputs to the MLP classifier

trained to calculate the diversity of the generated set, G. We

ran an optimization on the classifier trained in the previous

experiment, which optimized the input to the classifier such

that it was classified as belonging to Dtest. To be able to

perform a gradient-based optimization, we trained a Gaussian

Process (GP) model on all samples in Dtrain and Dtest and

their corresponding output probabilities of the MLP classifier.

We then optimized the inputs to the classifier using the BFGS-

algorithm towards inputs that maximized the GP output, i.e.,

the probability of belonging to the test set Dtest.

We verified our approach by selecting an initial sub-set of

generated shapes, G′ ⊂ G, that comprised only samples that

were classified as belonging to the training set, Dtrain (we

choose 1744 samples as initial shapes out of 1800 generated

samples). We then used the BFGS algorithm to change the

latent representations of these shapes such that the output

of the MLP was maximized, i.e., shapes were classified as

belonging to Dtest consisting of the pickup designs. Figure 6

shows examples of initial and optimized shapes. To evaluate

whether the optimization resulted in pickup-like shapes in

Dtest, we use the previously trained classifier on the optimized

shapes. We found that 1307 out of 1744 initial shapes were

classified as pickup truck designs after optimization. Hence,

in 75% of the investigated cases, we could guide the model

towards generating a novel design.

V. CONCLUSION AND OUTLOOK

Building interactive systems to support engineers in a design

task is a long-standing topic in engineering research [1], [35].

In particular, guiding the design process has been identified as

a central aspect of building such a system. We here evaluated

the generative capabilities of a variational 3D model for

providing such a guidance and found that our proposed PC-

VAE was able to generate novel, yet realistic car shapes after

training. We furthermore demonstrated a universal approach

to guiding the model towards generating novel shapes with

certain properties. We here enforced the generation of a new

type of car shape, but other objectives, e.g., maximum aerody-

namic performance or mechanical properties, are conceivable.

We believe that generative, deep learning models provide a

promising approach to building design systems that provide

assistance in a collaborative fashion such that—instead of

replacing the human designer—the designer’s abilities are

amplified when creating novel shapes.
We quantitatively showed that our model performed compa-

rable to or better than other models proposed in literature while

being faster to train, e.g., compared to the generative approach

proposed by Achlioptas [6]. We showed that our model was

able to generate shapes that were both realistic, yet novel. We

demonstrated in two experimental set-ups that our proposed

model generated a higher percentage of diverse unseen shapes

compared to the baseline AE model. In particular, we showed

that the model was able to extrapolate to some extend such



Fig. 4: Qualitative comparison of generative diversity of PC-VAE and baseline AE+GMM. Row 1: Three randomly selected

shapes from the generated samples. Row 2-4: Nearest neighbors of the generated shapes in the training set (measured by CD).

Fig. 5: A Randomly sampled geometries from the test set consisting of pickup truck shapes only. B Shapes generated by the

AE+GMM baseline model that were classified as belonging to the test set. C Shapes generated by the PC-VAE classified as

belonging to the test set.

Fig. 6: A Initial shapes chosen for optimization in the latent

space of the PC-VAE. B Optimized shapes.

that it was able to generate shapes that belonged to a novel

type of car. Hence, the generative ability of the model was not

confined to the training set only.

Lastly, we demonstrated how machine learning models

trained on the latent space and a subsequent optimization of the

input to these models could be used to guide the generative

capabilities of the proposed model towards generating more

diverse designs. We want to highlight that such an approach is

versatile with respect to the optimization’s objective. In other

words, instead of guiding the model towards generating novel

shapes, we may guide it towards generating shapes with a

different target property such as aerodynamic performance of

the generated car shape.

The present results are a promising step towards using

the generative capabilities of 3D-VAEs in cooperative design

tools in the automotive domain. In particular, the smooth

latent space learned by the PC-VAE allows for an efficient

exploration of novel areas of the design space, while providing

realistic designs usable in further design steps. Hence, the

PC-VAE may be used as part of a CDS that enables an

intuitive communication of high-quality design suggestions to



the designer to provide plausible guidance but also as potential

alternatives giving the designer the freedom to rethink, dis-

cuss and adapt promising product directions. By adding the

proposed optimization procedure, the design process may be

guided by specific objectives set by the designer.
We conclude that variational models are a feasible and

effective approach to making suggestions in a design process

and may be used as a component in a CDS. Models are

able to generate realistic and novel shapes beyond samples

observed in the training set. In the future, we intend to use

PC-VAE along with the proposed optimization approach to

form a complete cooperative framework to generate realistic

and diverse designs.
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