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Abstract— This work presents a comparative evaluation of 

four population-based optimization algorithms for workflow 

scheduling in cloud-fog environments. These algorithms are as 

follows: Particle Swarm Optimization (PSO), Genetic 

Algorithm (GA), Differential Evolution (DE) and GA-PSO. This 

work also provides the motivational groundwork for the 

weighted sum objective function for the workflow scheduling 

problem and develops this function based on three objectives: 

makespan, cost and energy. The recently proposed 

FogWorkflowSim is used as the simulation environment with 

the aforementioned objectives serving performance metrics. 

Results show that hybrid combination of the GA-PSO algorithm 

exhibits slightly better than the standard algorithms. Future 

work will include expansion of the workflows used by increasing 

the number of tasks as well as adding some more workflows. The 

addition of some more objectives to the weighted objective 

function will also be pursued.  

Keywords—Workflow scheduling, Fog Computing, Genetic 

Algorithm, Differential Evolution, Particle Swarm Optimization 

I. INTRODUCTION 

Cloud computing is a distributed computing paradigm that 
provides virtual, scalable and dynamic resources on a pay-as-
you-use basis [1]. Facilities offered by cloud computing fall 
under the following categories: Software as a Service (SaaS), 
Infrastructure as a Service (IaaS), and Platform as a Service 
(PaaS) [2]. Some of the benefits of cloud computing include 
cost efficiency, high speed, excellent accessibility, 
manageability, elasticity, virtualization capabilities and 
sporadic batch processing. These attributes have made cloud 
computing the platform of choice for scientists when they are 
executing computation-intensive, and collaboration intensive 
scientific algorithms by using scientific workflows [3-5]. 

A scientific workflow denotes interdependent tasks and 
computations aimed at achieving some scientific objectives. 
Workflows are described as a directed acyclic graph (DAG), 
where the nodes are tasks and the edges denote the task 
dependencies [6]. These workflows are characterized by 
complex data and long sessions of distributed computing. 
They require high computational resources. Scheduling 
workflows for execution on cloud resources is accompanied 
by massive computation and communication costs [7]. It 
involves mapping of the tasks in the workflows to the 
available virtual machines in the cloud infrastructure. 

Literature is replete with works focusing on the use of 
population-based algorithms such as Genetic Algorithm (GA) 
and Particle Swarm Optimization (PSO) for scheduling tasks 
or workflows in the cloud environment [7-12]. A recent 
comprehensive survey on Quality of Service (QoS) 

requirements based on PSO scheduling techniques marks out 
PSO as the most used population-based optimization approach 
in this field. Prior to that, there was another survey targeting 
PSO-based scheduling algorithms in cloud computing [13]. 
The maximization of the execution finishing time, commonly 
known as makespan, and minimization of the cost are the two 
major objectives that have been targeted so far. Other QoS 
requirements such as deadline and budget are incorporated as 
constraints. 

Population-based optimization techniques for workflow 
scheduling in cloud environments have so far followed two 
modes. The first group uses Pareto optimality-based 
approaches to determine a set of Pareto Optimal solutions [7, 
14]. These approaches are motivated by the observation that 
workflow scheduling has conflicting optimization objectives. 
A set of non-dominated optimal solutions that satisfy the non-
commensurate objectives, irrespective of whether the Pareto 
front is convex or non-convex is determined. The major 
drawback is, however, that there is a need for a post-
optimization process to extract the best compromise solution 
from the Pareto optimal set, for practical implementations 
[15]. The second group combines the objective functions into 
a weighted sum objective, which is optimized by using single 
objective optimization algorithms such GA and PSO [8, 9, 
11]. These approaches do not have the capability to explore 
the Pareto front sufficiently when it is non-convex for 
minimization problems. This problem is, however, not there 
when the Pareto front is convex [16]. Motivated by the 
observation that Pareto fronts in the workflow scheduling 
problem are generally convex [7], this paper adopts the 
weighted sum approach. This approach can generate 
sufficiently optimal solutions for the workflow scheduling 
problem, while averting the need for an a posteriori process 
to determine the best compromise solution [16]. 

So far, many population-based optimization approaches 
[8, 9, 11, 12] for workflow scheduling have focused on the 
two-tier architecture, with the cloud servers at the top and the 
end devices at the low level. WorkflowSim [17] has been the 
most common simulation technique for these techniques. Very 
few works [8, 14] have focused on the emerging three-tier 
framework that incorporates the fog/edge nodes, as a middle 
processing infrastructure between the cloud servers and the 
end devices. The fog layer brings the high computational 
capabilities of the cloud infrastructure close to end devices. 
This paper focuses on this three-tier network and it will use 
the recently proposed FogWorkflowSim [18], which includes 
a fog layer between the end devices and the cloud. 



The major contributions of the work proposed in this paper 
are as follows:  

1. The development of a weighted sum objective 
function that incorporates makespan, cost, and 
energy consumption: While makespan and cost are 
widely used in workflow scheduling, energy 
efficiency is seldomly used [7, 18]. Nevertheless, 
with the introduction of fog servers, which have 
relatively lower energy resources than cloud servers, 
there is a need to include energy consumption in the 
optimization process. The energy equation used in 
this work is holistic in the sense that the end devices, 
the fog servers as well as the cloud servers are all 
included. Furthermore, in the development of the 
energy objection there is a distinction between idle 
times and active times. As expected, the latter leads 
to more energy consumption. 

2. The introduction of the Differential Evolution (DE) 
algorithm to scientific workflow scheduling: This 
technique has been recently applied to task allocation 
in cloud computing [19], but, to the best of 
knowledge, it is yet to be applied to the problem at 
hand. 

3. The implementation of the hybrid GA-PSO 
algorithm [11] in the cloud-fog environments: This 
algorithm exhibited better performance than PSO 
and GA in cloud environments. 

4. The implementation of the aforementioned 
algorithms in the FogWorkflowSim [18]: A 
comparative evaluation of GA, PSO, GA-PSO and 
DE as optimization tools is also conducted with 
makespan, cost and energy as performance metrics 

The rest of this paper is organized as follows. Section II 
presents the population-based optimization algorithms used in 
this work. Section III presents workflow scheduling basics 
and the formalization of the problem. Section IV presents the 
workflow optimization process while Section V presents the 
performance evaluation. Section VI concludes the paper. 

II. A BRIEF OVERVIEW ON POPULATION BASED 

OPTIMIZATION ALGORITHMS USED IN THIS WORK 

This presents the four population-based optimization 

algorithms for scheduling scientific workflows that are 

evaluated in this paper. 

A. Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population-based 
stochastic optimization method created by Kennedy and 
Eberhart [20]. It is inspired by the social behavior of bird 
flocking, fish schooling and other animal societies that act 
collectively. In this technique, a population of individuals, 
represented as particles, searches a predefined space 

according to its current position, 𝑋𝑖
𝑘 and current velocity 𝑉𝑖

𝑘 . 
Each particle's movement is determined by its best known 
position 𝑝𝐵𝑒𝑠𝑡𝑖 , but is also guided toward the best known 
position 𝑔𝐵𝑒𝑠𝑡𝑖 for the entire swarm. This process leads the 
swarm to the best position as the number of iterations 
increases. The particle’s velocity and position are defined 
using 

𝑉𝑖
𝑘+1 = 𝜔𝑉𝑖

𝑘 + 𝑐1𝑟1(𝑝𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖
𝑘) 

                               + 𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡𝑖 − 𝑋𝑖
𝑘),   (1) 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘 , 

where 𝜔 is the inertia weight, 𝑟1 and 𝑟2 are random 
numbers between (0,1), and 𝑐1 and 𝑐2  are the acceleration 
coefficients (cognitive and social coefficients). 

B. Genetic Algorithm 

Genetic algorithms [21] are a class of population-based 
algorithms that start with a population of randomly generated 
individuals (represented as chromosomes) and are advanced 
over a number of iterations toward better solutions by 
applying genetic operators such as selection, crossover and 
mutation analogous to the genetic processes occurring in 
nature. Standard genetic algorithm first encodes the 
parameters to generate a certain number of individuals to 
create the initial population. The algorithm uses the fitness 
function as the criterion to evaluate the performance of each 
individual. Genetic operators are used in the creation of new 
generation of individuals. After creating a new generation of 
the population at each iteration, the algorithm performs a 
fitness evaluation of the new individuals. The elitism 
procedure is applied in order to generate the new population 
by merging the initial population and children. After creating 
a new generation of the population, the algorithm keeps on 
performing genetic operations in order to generate new 
offsprings; the fitness functions for each of the offsprings are 
evaluated; the best individuals are maintained. This process 
continues until the end condition is met upon which the 
individual with the best fitness is returned. 

C. GA-PSO Algorithm 

The Hybrid GA-PSO algorithm proposed in [11] is 
evaluated and compared with the other optimization 
algorithms. In the first stage, the GA is applied to the entire 
generated population for the first half of the total iterations, to 
evolve towards the optimal solution from the existing 
individuals. The PSO is applied to the population for the 
following half of the iterations, whereby the resulting 
chromosomes are passed to the PSO algorithm for the second 
half of the iterations. 

D. Differential Evolution 

Differential Evolution (DE) [22] was first proposed by 
Storn and Price. The basic process of the DE algorithm is 
similar to the genetic algorithm. The difference is, however, 
that DE starts with mutation, followed by crossover and 
selection, while GA operates in the following order: selection, 
crossover, mutation and elitism. DE starts from a randomly 
generated initial population (each individual represented as a 
vector of real numbers). During the evolution process of DE 

algorithm, two different individuals, 𝑋𝑟1
𝑔

and 𝑋𝑟2
𝑔

, are 
randomly selected and then subtracted to get a differential 
vector. The differential weight, 𝐹, is applied to the differential 
vector and summed with the third randomly selected 

individual, 𝑋𝑟3
𝑔

, to generate a variation individual for the 

mutation process, and then the new individual is compared 
with the corresponding individual in the current population. 
The crossover operation involves changing the position of real 
numbers of the variation individual and target individual to 
generate a trial individual determined by the crossover 
probability, 𝐶𝑅. If the new individual’s fitness is better than 
the current one, the new individual will replace the current one 
in the next generation, otherwise the old one will remain. 
Through continuous evolution, the strong individuals are 



retained, and the inferior individuals are eliminated, which 
guides the search to approximate the optimal solution.                                                               

III. WORKFLOW SCHEDULING BASICS AND OBJECTIVE 

FUNCTION FORMALIZATION 

This section starts by presenting the workflow scheduling 
concept. Then, it proceeds to develop the weighted sum 
objective function for workflow scheduling. 

A. The Concept of Workflows and Problem Formalization 

 The workflow is generally modelled as a Direct Acyclic 
Graph (DAG) [7-11]. The DAG is  defined by a tuple 𝐺(𝑇, 𝐸), 
where 𝑇 = {𝑡1, 𝑡2, . . . 𝑡𝑛} denotes the set of tasks, and 𝐸 is a 
set of edges, which denotes temporal dependencies or 
precedence constraints between pairs of tasks in the workflow. 
An edge is better visualized by using inter-task data, 𝑑𝑖𝑗 =<
𝑡𝑖 , 𝑡𝑗 > ∈ 𝐸 , where 𝑑𝑖𝑗  refers to the output data of task 𝑡𝑖 , 

which serves as the input for task 𝑡𝑗 . Therefore, the execution 

of task 𝑡𝑗  will only start after the execution of task 𝑡𝑖  has 

executed. Task 𝑡𝑖 is the parent task while task 𝑡𝑗  is the child 

task. The very first task to start executing in a graph does not 
have a parent; it is called an entry task 𝑡𝑒𝑛𝑡𝑟𝑦. At the other 

extreme, the final task in a graph does not have any child and 
it is called an exit task  𝑡𝑒𝑥𝑖𝑡. 

      The period between starting time of 𝑡𝑒𝑛𝑡𝑟𝑦 and the 

completion time of 𝑡𝑒𝑥𝑖𝑡  is referred to as makespan. It is a key 
measure of performance of workflow scheduling algorithms. 
The other major measure of performance is the cost; it 
incorporates both the computational cost and the cost of 
transferring tasks and execution results in the network. As 
already mentioned, these two metrics are conflicting in nature. 
Pursuit for shorter makespan implies incurring more 
computational costs. This is because the processing of the 
tasks will be predominantly done by the expensive cloud 
servers and the transfer of task data between the end devices 
and the cloud servers will also require the user to put in more 
financial resources. The work in [12] presents a wide range of 
QoS parameters that have to be incorporated in the workflow 
scheduling algorithms. Many of the parameters listed in [12] 
are indirectly addressed by makespan and cost. Energy 
consumption is, however, one key parameter that is very key 
to any computational infrastructure, not only from the 
perspective of cost reduction, but also from the environmental 
perspective. The energy consumption becomes even more 
necessary, when the fog servers are included in the 
computational infrastructure. 

B. The Weighted Sum based Workflow Scheduling 

Objective Function 

In our cloud-fog approach, there are 𝑚  computational 
resources which are of three types, namely cloud servers, edge 
servers and end devices. End devices are included in the mix 
because for some small tasks, transferring them to the fog and 
cloud servers does not make economic sense, especially now 
that some of these end devices are being equipped with 
advanced computational capabilities and have steady access 
to power in fixed environments such as homes. Next, we will 
review the mathematical formulations for makespan, cost and 
energy consumption in the leadup to the presentation of the 
weighted sum based objective function. 

1) Makespan: For task 𝑡𝑖 in a particular workflow, let 
𝑆𝑇𝑡𝑖

 and 𝐹𝑇𝑡𝑖
denote the starting time and the 

finishing times respectively. Therefore, makespan 
𝑀𝑆 can be determined by using 

𝑀𝑆 = 𝑚𝑎𝑥 {𝐹𝑇𝑡𝑖
, 𝑡𝑖 ∈ 𝑇} − 𝑚𝑖𝑛 {𝑆𝑇𝑡𝑖

, 𝑡𝑖 ∈ 𝑇}    (2) 

2) Cost: This metric is composed of computational 
costs and communication cost. Computation costs 
apply for all the three computational resources while 
communication costs are not included when the tasks 
are executed on the end device. The computation cost 
of using computing resource 𝑟, which may refer to 
the end device, the fog server or the cloud server in 
this work, is defined [8] as 

  𝐶𝐸𝑖
𝑟 = 𝑝𝑟 ∗ (𝐹𝑇𝑡𝑖

− 𝑆𝑇𝑡𝑖
),        (3)                                                                                                                  

where 𝑝𝑟 is unit processing cost of using computing 

resource 𝑟. On the other hand, for a particular task 

the communication cost will only refer to the links 

between the end device and the fog or the cloud 

server. The communication cost, incurred when 

transferring the output file of size 𝑑𝑖𝑗 from the 

resource that was processing task 𝑖 to the resource 

that will process task 𝑗, is defined [10] by using 

𝐶𝐶𝑖𝑗 = 𝑡𝑟𝑐𝑖𝑗 ∗ 𝑑𝑖𝑗 ,        (4) 

where 𝑡𝑟𝑐𝑖𝑗  is the unit cost of communication from 

the resource, where task 𝑖  is mapped, to the 

resource, where task 𝑗 is mapped; 𝑡𝑟𝑐𝑖𝑗= 0 when the 

two tasks are executed on the same resource. The 

total cost task 𝑇𝐶 is, therefore, determined by using 

𝑇𝐶 = ∑ ∑ 𝐶𝐶𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 + ∑ ∑ 𝐶𝐸𝑖

𝑟𝑛
𝑖=1

𝑚
𝑟=1 .               (5) 

3) Energy Consumption: Just like in [10], the energy 

consumption model has the active and idle 

components, which are labeled as 𝐸𝑎𝑐𝑡𝑖𝑣𝑒  and 𝐸𝑖𝑑𝑙𝑒 

respectively. The former refers to the energy 

consumed when a particular task is being executed 

while the latter is the energy dissipated when the 

resource is idling. The active energy is defined by      

𝐸𝑎𝑐𝑡𝑖𝑣𝑒 = ∑ 𝛼𝑛
𝑖=1 𝑓𝑖𝑣𝑖

2(𝐹𝑇𝑡𝑖
− 𝑆𝑇𝑡𝑖

),                     (6) 

where 𝛼  is the constant; 𝑓𝑖 and 𝑣𝑖  denote the 

frequency and the supply voltage for the resource on 

which task 𝑖 is being executed. During the idle, the 

resource goes into sleep mode, where the voltage 

supply level and the relative frequency are at the 

lowest level. Therefore, the energy consumed during 

this time is determined by using [10]:   

       𝐸𝑖𝑑𝑙𝑒 = ∑ ∑ 𝛼 𝑖𝑑𝑙𝑒𝑗𝑘∈𝐼𝐷𝐿𝐸𝑗𝑘

𝑚
𝑗=1 𝑓𝑚𝑖𝑛 𝑖𝑣𝑚𝑖𝑛 𝑖

2 𝐿𝑗𝑘 ,       (7) 

where 𝐼𝐷𝐿𝐸𝑗𝑘  is a set of idling slots on resource 𝑗 

while 𝑓𝑚𝑖𝑛 𝑖  and 𝑣𝑚𝑖𝑛 𝑖  refer to the lowest supply 

voltage and frequency on resource 𝑗  respectively; 

𝐿𝑗𝑘  is the amount of idling time for 𝑖𝑑𝑙𝑒𝑗𝑘. The total 

energy consumed in the cloud-fog system for the 

duration of the workflow is 



         𝑇𝐸 = 𝐸𝑎𝑐𝑡𝑖𝑣𝑒 + 𝐸𝑖𝑑𝑙𝑒.         (8) 

     Therefore, weighted sum objective function, that 

incorporates makespan, cost and energy consumption, is 

determined by using 

𝐹(𝑀) = 𝑤1 ∗ 𝑀𝑆𝑛𝑜𝑟𝑚 + 𝑤2 ∗ 𝑇𝐶𝑛𝑜𝑟𝑚 + 𝑤3 ∗ 𝑇𝐸𝑛𝑜𝑟𝑚 ,    (9)                                                                                              

where 𝑀 is the mapping of the 𝑛 tasks of a workflow to 
the 𝑚 available computing resources located in the cloud, in 
the fog and at the end devices; 𝑀𝑆𝑛𝑜𝑟𝑚  is normalized 
makespan, while 𝑇𝐶𝑛𝑜𝑟𝑚 and 𝑇𝐸𝑛𝑜𝑟𝑚 denote the normalized 
total cost and the normalized total energy respectively; 𝑤1, 𝑤2  
and 𝑤3  are the respective weights that determine the 
contribution of each of them to the overall objective function. 
Normalization is necessary here in order to ensure that there 
are no biases in the realized objective function. 

IV. THE WORKFLOW SCHEDULING OPTIMIZATION 

PROCESS 

This section begins by describing how the workflow tasks 
are mapped to the available resources and how this mapping 
is used to generate a solution vector. The second part describes 
the optimization process based on GA, PSO, DE and GA-
PSO. 

A. Mapping of Workflow tasks to computational resources 

and generation of the solution vector 

As already mentioned, the workflows in this work can be 
scheduled for execution at the source end device, at the fog 
server or at the cloud server. Each of these computation 
resources has its own computational power and access 
bandwidth with respect to the end node. The end nodes do not 
offload their tasks to fellow end nodes; they can only offload 
their tasks to fog and cloud servers. Therefore, in the 
scheduling of workflows, only one representative end device 
for each of the end nodes is incorporated in the encoding 
process. 

Given that task scheduling in cloud-fog computing 
environments is a discrete problem, natural numbers are used 
to encode the individuals for each populated-based algorithm. 
In the case of the GA, PSO and DE, the individuals 
represented by the chromosome, particle and agent 
respectively, are mapped to possible task-resource schedules. 
The length of each individual is 𝑛, which is the total number 
of tasks in the workflow; each position in the individual’s 
vector is a positive integer representing the task number. The 
value assigned to this position is the virtual machine ID that is 
allocated to execute the task. The ID numbers are selected 
from the virtual machines available on the three layers of the 
cloud-fog architecture. Suppose a workflow has 10 tasks 
which are scheduled for execution on 5 available virtual 
machines, specifically one end device, two fog nodes and two 
cloud servers. In this instance, the individual’s length is 10 and 
each element is an integer between 1 and 5. An example task 
assignment of this individual can be expressed as 
{4,3,2,4,5,4,2,1,5,1}. A more detailed representation of the 
individual’s schedule is illustrated in Table I and Table II. 

 

 

 

TABLE I.  EXAMPLE OF THE INDIVIDUAL’S ENCODED SCHEDULE 

Task 

number 
1 2 3 4 5 6 7 8 9 10 

VM ID 4 3 2 4 5 4 2 1 5 1 

 

TABLE II.  EXAMPLE OF THE TASK-RESOURCE ALLOCATION ON THE 

CLOUD-FOG LAYERS 

VM 

Layer 
Cloud Cloud Fog Fog End 

VM ID 1 2 3 4 5 

Assigned 

Task 
8,10 3,7 2 1,4 5,9 

 

B. The Optimization Process 

We will now describe how the four optimization 
algorithms are implemented. For purposes of brevity, the 
candidate solutions are simply called vectors for all algorithms 
instead of the algorithm specific terms such as a particle for 
PSO and chromosome for GA. Fig. 1 shows the generic flow 
chart for a population based scheduling algorithm. 

 

 

Fig. 1. Flowchart of a generic population-based algorithm for workflow 

scheduling 

In the initialization step, a population of 𝑃 individuals of 
length 𝑛 is initialized with random integer values depicting 
the possible VM unto which the corresponding task would be 
assigned. Then workflow simulation for each individual is 
carried out; this is followed by the determination of the three 
performance metrics, namely: makespan 𝑀𝑆 , cost 𝑇𝐶  and 
energy 𝑇𝐸  as described in Section III. The minimum and 
maximum values of the metrics (𝑀𝑆𝑚𝑖𝑛 , 𝑀𝑆𝑚𝑎𝑥 , 𝑇𝐶𝑚𝑖𝑛 , 
𝑇𝐶𝑚𝑎𝑥 , 𝑇𝐸𝑚𝑖𝑛  and 𝑇𝐸𝑚𝑎𝑥 ) are determined for this initial 
population, and based on these values, normalized metrics are 
calculated for each vector by using 

𝑀𝑆𝑛𝑜𝑟𝑚  =
𝑀𝑆𝑖−𝑀𝑆𝑚𝑖𝑛

𝑀𝑆𝑚𝑎𝑥−𝑀𝑆𝑚𝑖𝑛
, 



𝑇𝐶𝑛𝑜𝑟𝑚  =
𝑇𝐶𝑖−𝑇𝐶𝑚𝑖𝑛

𝑇𝐶𝑚𝑎𝑥−𝑇𝐶𝑚𝑖𝑛
,                   (10) 

𝑇𝐸𝑛𝑜𝑟𝑚  =
𝑇𝐸𝑖−𝑇𝐸𝑚𝑖𝑛

𝑇𝐸𝑚𝑎𝑥−𝑇𝐸𝑚𝑖𝑛
, 

where 𝑀𝑆𝑖 , 𝑇𝐶𝑖  and 𝑇𝐸𝑖  are the makespan, cost and 
energy values for vector 𝑖 ∈ {1, . . . , 𝑃}. The fitness function 𝐹𝑖 
for the individual is determined by using the weighted sum 
objective function in (9). After this, the other post 
initialization processes are more specific for each algorithm. 
In the GA approach, the worst and the best solutions for the 
population are saved. In the PSO approach, ∀𝑖 ∈
{1, . . , 𝑃} 𝑝𝐵𝑒𝑠𝑡𝑖 = 𝐹𝑖  and 𝑔𝐵𝑒𝑠𝑡𝑖 = 𝑚𝑖𝑛{𝑝𝐵𝑒𝑠𝑡𝑖} . In the 
DE approach, the best solution for the population is saved. 

In the second step, algorithm specific routines are applied 
to the population as follows.  

1. In the GA approach, selection, crossover and 
mutation operators are applied in order to generate a 
new pool of potential solutions that are evaluated on 
a workflow simulation. The fitness values for all 
chromosomes are determined. The elements of the 
best chromosome and its fitness value are saved. 
Elitism is applied to truncate the pool of potential 
solutions to only the best ones, in preparation for the 
iteration. 

2. In the DE approach, mutation and crossover are 
performed. The fitness values for all chromosomes 
are determined. The elements of the best agent and 
its fitness value are saved. Some of the well 
performing offsprings replace some agents in the 
original solution, thereby creating room for further 
improvements in the next iteration. 

3. In the PSO approach, the particle’s positions are 
updated using the PSO equations in (1). The fitness 
values for all particles are determined. The elements 
of the best particle and its fitness value are saved. If 
the new particle positions give a better fitness value 
than its pbest, the pbest is updated to the particle’s 
new position; the fitness value is updated 
accordingly. If one of the particles’ updated pbest is 
better than the gbest, the gbest is updated 
accordingly, in preparation for the next iteration. 

4. The GA-PSO approach applies GA’s update 
mechanism for the first half of the iteration. The PSO 
update process is applied until the end. 

If the maximum number of iterations has not been reached, 
the algorithm goes back to the second step. This process keeps 
on getting repeated for each of these algorithms until the 
maximum number of iterations is reached. Then the best 
solution with the lowest fitness value is saved in step 3. 

The GA and PSO codes are already incorporated into the 
FogWorkflowSim Simulator [18]. But we integrated the DE 
and GA-PSO algorithms as well as the weight sum based 
objective function proposed in this work. 

V. PERFORMANCE EVALUATION 

We compare the algorithms using FogWorkflowSim [18]. 
The FogWorkflowSim is an extensible toolkit built for 
automatically evaluating resource and task management 
strategies in Fog Computing with simulated user-defined 

workflow applications. Next, we describe the workflow 
models used in this study. 

A. Description of the workflow models 

This study uses three well-known scientific workflow 
applications, Montage, Epigenomics, and CyberShake, which 
are described and characterized in detail in [23]. The graphical 
representation of the workflows is shown in Fig. 2. The 
Montage workflow, created by NASA/IPAC, represents an 
astronomy application that creates custom mosaics of the sky 
using multiple input images. The CyberShake workflow is 
used by the Southern California Earthquake Center to 
characterize earthquake hazards threatening a region.  The 
Epigenomics workflow, created by the USC Epigenome 
Center and the Pegasus Team, is used in the field of 
bioinformatics to automate the different operations in genome 
sequence processing. These workflows have been extensively 
used in practice, therefore we have used these workflows in 
our evaluations conducted to measure the performance of each 
optimization algorithm. 

 

 

  (a) Montage                    (b) CyberShake            (c) Epigenomics 

Fig. 2. Structure of scientific workflows [23] 

B. Simulation environment 

The FogWorkflowSim simulator is run using the Eclipse 
Java IDE. The simulations are performed on a computer with 
64-bit Windows 10 operating system, Intel(R) Core(TM) i5-
5200U CPU @ 2.20GHz and 8 GB RAM. The population size 
was set to 50 for each algorithm. The PSO learning factors C1 
= C2 = 2. The inertia weight is 1. The GA crossover and 
mutation rates are 0.8 and 0.1 respectively. The DE crossover 
probability is 0.4 and the differential weight is 1.2. The 
number of iterations for all algorithms is 100. The weighted 
coefficients 𝑤1 , 𝑤2  and 𝑤3  are each set to 0. 3̅ . The 
algorithms are evaluated using the three scientific workflows, 
with three different task amounts per workflow. Each 
workflow is a DAG XML file representation of the workflow 
structures generated by Pegasus [24]. The simulations are 
performed 10 times for each workflow to get the average 
performance of the algorithms. Three end devices, 5 fog VMs 
and 5 cloud VMs are used. The characteristics for each server 
on the three cloud-fog layers along with the parameter settings 
for the simulation environment are shown in Table III. The DE 
used in this code was downloaded from this site [25]. 

TABLE III.  PARAMETER SETTINGS OF CLOUD-FOG COMPUTING 

ENVIRONMENT 

Parameters 
End 

device 

Fog 

node 

Cloud 

server 

Processing rate (MIPS) 1000 1300 1600 

Task execution cost ($) 0 0.48 0.96 

Communication cost ($) 0 0.01 0.02 

Working power (MW) 700 800 1600 



Parameters 
End 

device 

Fog 

node 

Cloud 

server 

Idle power (MW) 30 40 1300 

Uplink bandwidth (Mbps) 20 10 1 

Downlink bandwidth (Mbps) 40 10 10 

 

C. Simulation results 

Fig. 3 - Fig. 5 show the results for makespan, cost and 
energy consumption for the Montage workflow. As expected, 
all the metrics increase as the number of tasks increases. 
Results show that PSO is exhibiting poorer performance 
compared to the other three approaches. On the other hand, all 
the three other approaches exhibit similar levels of 
performance. This is probably because of PSO’s well-known 
problem of premature convergence and getting trapped in the 
local minimum. Clearly, the GA-PSO algorithm, which 
adopts the GA approach in the first half of the run and the PSO 
approach in the latter iterations, seems to benefit from the 
GA’s ability to see a wide range of solutions, courtesy of the 
random mutation and crossover operators. 

 

Fig. 3. Makespan for Montage 

 

Fig. 4. Total cost for Montage 

 

Fig. 5. Energy consumption for Montage 

Fig. 6 - Fig. 8 show the results for makespan, cost and 

energy consumption for the Epigenomics workflow. The 

metrics for 24 and 47 tasks is very low but it springs up when 

the number of tasks increases to 100. For instance, makespan 

increases from less than 10 sec for 24 and 47 tasks to beyond 
50 sec at 100 tasks; cost increases from less than $10 000 for 

24 and 47 tasks to beyond $50 000 at 100 tasks; energy 

increases from less than 50 000J for 24 and 47 tasks to beyond 

250 000J at 100 tasks. This is due to the map jobs in the 

Epigenomics workflow [23] responsible for aligning 

sequences with the reference genome, which become 

significantly more computationally intensive with higher 

runtimes as the number of tasks increase. In terms of 

performance, PSO is still exhibiting poorer performance 

compared to the other three approaches. There is, however, 

improvement in terms of energy consumption as it performs 

better than the other approaches for that metric.  

 

Fig. 6. Makespan for Epigenomics 

 

Fig. 7. Total cost for Epigenomics 

 

Fig. 8. Energy consumption for Epigenomics 
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Fig. 9 - Fig. 11 show the results for makespan, cost and 

energy consumption for the CyberShake workflow. In Fig. 9, 

the makespan performance remains fairly constant for all 

algorithms. GA-PSO exhibits the best performance for all 

tasks while PSO seems to perform better than in the previous 
two workflows. DE’s makespan increases as the number of 

tasks increases. In Fig. 10, GA-PSO generally continues to 

perform better than the other approaches for 30 and 50 tasks. 

DE’s cost goes down drastically as the number tasks 

increases. It looks like the DE algorithm allocates more tasks 

to the end devices as the number of tasks increases thereby 

reducing the cost greatly. There are very low data 

transmission and computation costs due to less usage of cloud 

and fog servers. This leads to high energy consumption on 

the end devices as shown by Fig. 11. 

 

Fig. 9. Makespan for CyberShake 

 

 
Fig. 10. Total cost for CyberShake 

 

Fig. 11. Energy consumption for CyberShake 

 

The general outcome of these results is that there is no 
single algorithm that stands out among these algorithms even 
though the GA-PSO approach seems to exhibit slightly better 

performance. This shows that there is room for improvement 
if hybrid algorithms are proposed for the workflow scheduling 
problem. 

In terms of practical implementation, the solution vector 
realized from the optimization process can be downloaded 
into the end device as a lookup table for scheduling the 
workflows.  

VI. CONCLUSION 

This work has presented a comparative evaluation of PSO, 
GA, DE and GA-PSO to the problem of workflow scheduling 
in cloud-fog environments by using the FogWorkflowSim. It 
begins by laying out the motivational groundwork in support 
of the weighted sum method of developing the optimization 
objective function for workflow scheduling. It proceeds to 
present the optimization objective by combining makespan, 
computation and communication costs, and energy consumed 
in active as well as in idle mode on all the computation 
devices; this helps to ensure that a holistic view of energy 
consumption is incorporated in the optimization process. This 
work has also introduced the Differential Evolution (DE) 
algorithm to scientific workflow scheduling. It also 
implements the hybrid GA-PSO algorithm [11] in the cloud-
fog environments. Results show that the GA-PSO algorithm 
exhibits a slightly better performance than the standard 
approaches. This gives hope for the application of hybrid 
algorithms that synergistically combine the good attributes of 
the standard algorithms. 

In terms of future work, we intend to further increase the 
tasks in each of the workflows to 2000. We also intend to add 
other types of workflows such as LIGO and SIPHT. Plans to 
expand the number of objectives to include reliability and fault 
tolerance, and the incorporation of deadline and budget 
constraints are also in the pipeline. The solution vector 
realized in this work will be improved by incorporating 
adjustment mechanisms in the online mode. 
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