

Towards biologically plausible learning in neural
networks
Citation for published version (APA):

García Fernández, J., Hortal, E., & Mehrkanoon, S. (2021). Towards biologically plausible learning in
neural networks. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-8). Article
9659539 IEEE Canada. https://doi.org/10.1109/SSCI50451.2021.9659539

Document status and date:
Published: 07/12/2021

DOI:
10.1109/SSCI50451.2021.9659539

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 30 Apr. 2024

https://doi.org/10.1109/SSCI50451.2021.9659539
https://doi.org/10.1109/SSCI50451.2021.9659539
https://cris.maastrichtuniversity.nl/en/publications/e5f9c45b-a631-4f40-995c-d3db1d9037b7

Towards biologically plausible learning in neural
networks

Jesús Garcı́a Fernández, Enrique Hortal, Siamak Mehrkanoon
Department of Data Science and Knowledge Engineering

Maastricht University
Maastricht, The Netherlands

Abstract—Artificial neural networks are inspired by informa-
tion processing performed by neural circuits in biology. While
existing models are sufficient to solve many real-world tasks,
they are far from reaching the potential of biological neural
networks. These models are oversimplifications of their biological
counterparts, omitting key features such as the spiking nature
of their units or the locality during learning, among others. In
this work, we, first, provide a short review of the most recent
theories on biologically plausible learning and learning in Spiking
Neural Networks. Then, aiming to give a step towards brain-
inspired deep learning, we introduce a novel biologically plausible
learning method. This approach achieves learning using only local
information to each synapse, spiking units and unidirectional
synaptic connections. We also propose a local solution to address
the credit assignment problem based on target propagation.
Finally, we evaluate our approach over three different tasks,
i.e. boolean problems, image autoencoding and handwritten digit
recognition.

I. INTRODUCTION

Artificial Neural Networks (ANNs) have been successfully
applied to a variety of real-world problems. On some occa-
sions, surpassing human capability, and achieving state-of-
the-art in many tasks [1]–[3]. However, conventional ANNs
differ from biological neural networks (BNNs) in many aspects
[4]–[6]. In terms of information processing, ANNs operate
based on different principles. Biological neurons communicate
through electrical impulses (spikes), unlike ANNs that use
continued values. Besides, the membrane of a biological
neuron has an electric charge, which is modified by incoming
synapses from other neurons through its dendrites. Another
feature is the use of time to encode information. The spikes
distributed across time is the underlying mechanism used by
neurons to convey information. In terms of functionality, the
differences are even more notable. While ANNs generally need
a tremendous amount of data to learn, BNNs can learn a new
task after witnessing a few examples. In the same way, ANNs
need to be given a clear solution in order to be able to solve a
specific task. That can also be seen as low efficiency when it
comes to unsupervised learning, something in which BNNs are
extremely good. Lastly, ANNs are highly domain-dependent.
Current models generally operate to solve one specific task,
which they learn using a set of specific inputs and outputs.
Spiking Neural Networks (SNNs) are more realistic models
of natural neural networks. They are inspired by BNNs. Yet,
they are still in their early days. As BNNs, SNNs contain

spiking neurons that communicate through spikes, encoding
the information over time. Furthermore, due to the non-
differentiability of spikes generation, they cannot be trained
using the same mechanisms used in ANNs. Although back-
propagation cannot be directly applied, modifications of this
algorithm can be used [7], [8]. Though their performances
are not comparable to ANNs trained with backpropagation.
Plus, the backpropagation algorithm has not yet been proven
biologically plausible [9]. While it requires the neurons to
know the activity of many other distant neurons, in biology,
the synaptic weights updates depend only on the presynaptic
and postsynaptic neurons [10]. On the other hand, studies
have found that ANNs trained with backpropagation adopt
similar representations to BNNs [11]. Hence, researchers are
currently working towards approximating the backpropagation
algorithm with simple local plasticity rules.
Supporting our claims in previous works [9], [12], [13], we
identify the following elements as necessary for biological
plausibility in artificial neural networks:

1) Realistic models of neurons, i.e. spiking neurons. Authors
in [14] provide a comparison between different models.

2) Realistic synapses. It implies non-symmetric weights.
Forward and feedback connections are distinct.

3) Local plasticity and computations. The weight modifica-
tions depend only on the presynaptic and postsynaptic
neurons’ activity.

4) Local error representation. Authors in [12] revise various
recent works where this has been tackled.

Also, most of the proposed theories on learning rely on a
two-phase process employing different learning rules in each
phase (e.g. feedforward/feedback, positive/negative, predic-
tion/reward). Various studies show that neuromodulatory sig-
nals, combined with feedback connection, can drive learning,
resulting in different learning rules [15]. Thus, in the brain,
neuromodulators such as dopamine could arguably enable
different plasticity rules that originate distinct phases.
In this work, we build on the ideas presented above to propose
a biologically plausible supervised learning approach. Here,
we use spiking models of neurons and unidirectional non-
symmetrical weights to implement the synapses. We also
combine rate and temporal coding, as it occurs in biology [16].
The synaptic weights modifications are performed through

Hebbian-based learning rules, achieving local plasticity and
computations. Lastly, we address the credit assignment prob-
lem with a solution inspired by target propagation [17], [18]
and feedback alignment [19]. In this way, the network can
also keep a local error representation. All this points are
further developed in Section III. In Section II, we will review
the most relevant works on biologically plausible learning in
neural networks and learning in SNN, making a distinction
among different categories. Due to the large number of existing
approaches, we will only cover the most relevant and recent
ones. Finally, Section V includes conclusions of this work and
potential future research lines.

II. REVIEW OF THEORIES IN BIOLOGICALLY PLAUSIBLE
LEARNING

A. Biologically plausible learning mechanism but implausible
neurons model

Most of the ideas proposed here attempt to explain how
learning occurs in the brain. They introduce learning mech-
anisms that can be feasible in the brain, though the chosen
neuron model is oversimplified. Contrastive learning [20] and
Generalized Recirculation (GeneRec) [21] are some of the first
attempts. They are very similar and operate with Hebbian-
based rules. In them, the weights change is proportional to
a difference in neural activity over time and contains two
phases. A first update is performed when the target is not
provided (anti-Hebbian plasticity), and a second update is
performed when the target is provided (Hebbian plasticity).
Differently, [19] proposes a variation of backpropagation
where the synaptic connections are not symmetric. In this
variation, the feedback weights are initialized randomly and
never modified, which results in sending random feedback to
the presynaptic neurons. Its performance is comparable to a
network trained with backpropagation. [22] proposes a method
to store the errors locally over the network and bases its
foundations on predictive coding [23]. In this model, every
neuron (value node) is paired with an error node, where
the errors are stored explicitly. Only the value nodes are
updated during the learning phase and, during the prediction
phase, only the error nodes are updated. [24] relies on a
similar mechanism to explicitly store errors. The authors do
so by employing dendritic microcircuits and interneurons. The
difference in neural activity between the postsynaptic neuron
and the interneuron encodes the error. Lastly, [25] introduces
the idea of equilibrium propagation, inspired by contrastive
learning. By employing local learning rules, and differences
of neural activity over time, it can compute gradients similar
to those generated by backpropagation.

B. Biologically plausible neurons model but implausible
learning mechanism

The works in this category propose new methods to train
SNN, seeking to achieve the best performance in practice with-
out being limited by biological feasibility. All these approaches
consist of a more effective variation of backpropagation suit-
able for spiking units, which are highly energy efficient. In all

of them, the computations are global. [26] and [27] introduce
two similar approaches to learn a temporal spike pattern,
which once decoded, represents a specific value. The authors
use the number of spikes within an interval as a surrogate
for gradient backpropagation. Therefore, they successfully
combine rate coding with a temporal credit assignment. The
method proposed in [28] also learns a temporal spike pattern.
However, in this approach, there is only one spike per interval.
Here, the membrane potential at spike times is used as a
surrogate for gradient backpropagation. In a similar way, [7]
uses the membrane potential to generate the backpropagation
of errors. Although in contrast, the used values are picked at
fixed times rather than spiking times. The authors in [29] and
[30] entirely adopt a temporal coding by choosing the spiking
times as a surrogate for gradient backpropagation. In their
models, there is only one spike per interval. Recently, [31]
proposed an event-based backpropagation, instead of using
intervals of time. In this works, the authors combine spike
times and membrane voltages as a surrogate for gradient
backpropagation.

C. Biologically plausible learning mechanism and neuron
model

In this last category, we include important works that are
entirely biologically feasible. Most of the works in this section
build upon the concept Spike timing dependent plasticity
(STDP) [32], a form of Hebbian learning that strengthens the
synaptic connections between two neurons when spike at close
time points. The first work in this section is the Tempotron
[33], one of the first of its kind. The authors trained a single
neuron to recognize specific input spike trains, with local
learning rules based on Hebbian learning. The neuron will
only spike in the presence of a target pattern. To update the
weights in a gradient-based manner, it uses the spike times
and the membrane potentials at spike time within a train.
Conversely, ReSuMe [34] is an approach based on STDP rules
and the Widrow-Hoff rule [35]. It teaches a desired output
spiking pattern when an input pattern of spikes is provided
to a network. Among more recent works, SuperSpike [36]
proposed a gradient descent approach based on the membrane
potential of the neurons. The weights changes depend on
the postsynaptic neuron’s membrane potential and the presy-
naptic spike train. However, the errors in the networks are
still explicitly globally propagated backwards, which should
be biologically justified. Nevertheless, the subsequent work
addresses this objection. Authors in [37] proposed a similar
approach to SuperSpike, but in this case, the network uses
a cost function, presented in the work [38], which is local in
time and space. This addition overcomes the only (potentially)
non-plausible aspect of SuperSpike. Similar to SuperSpike,
[39] introduces a gradient descent approach, approximating
the backpropagation algorithm with STDP rules. The weights
updates only depend on the spikes times of the presynaptic
and postsynaptic neurons. It also explicitly globally propagates
the errors backwards. Yet, we also included this work in this
section for its almost entirely biological feasibility. Besides the

previous works, there are many others dedicated to exploring
the effectiveness of the STDP in an unsupervised or rewarded-
modulated manner. In this paragraph, we will mention only the
most relevant ones. One of the most popular studies dedicated
to that is [40]. It applies the STDP rule in a fully unsupervised
manner to recognize handwritten digits (MNIST). In their
network, they included up to 6400 output neurons, and, after
training, only the most active output neuron per class (10 in
total) are kept. Inspired by this study, [41] used the same
network and similar learning rules, but including a rewarded-
modulated modification of STDP. They only employed one
output neuron per class and forced the desired output neurons
to spike during learning. In this way, the previous approach is
modified to enable supervised learning. [42] was again based
on the work proposed in [40], this time, aiming for more
complex topology and architecture. The authors proposed a
multi-layer Spiking Neural Network containing convolutional
and pooling layers and trained with STDP rules. This training
was done in a layer-by-layer fashion, and in an unsupervised
way. However, the network used a support vector machine
(SVM) to classify the spikes in the final layer. Yet, it can be
considered as a feature extractor. Authors in [43] extended
that previous work using rewarded-modulated STDP. As in
[41], the authors forced the output neurons to spike. Therefore,
they trained the first layers with unsupervised STDP and the
last layer with supervised rewarded-modulated STDP. In this
way, the network could perform classification with no need
for an external classifier. Differently, authors in [44] proposed
a learning mechanism based on local Hebbian rules, which
relies on structural changes instead of weight updates, and em-
ploys binary synapses. Similar to [24], but employing spiking
neurons, [45] uses segregated dendrites (multi-compartments
neurons) to store errors explicitly in a local manner. In their
approach, the difference between feedforward activity and
feedback activity is used to compute these local errors. For
the weight updates, a local gradient descent approach is used.

III. OUR APPROACH

A. Neuron and synapse model
We use the Leaky Integrate and Fire (LIF) with adaptation

as a spiking neuron model. It extends the simple LIF model,
one of the most common models in theoretical studies on
SNN, by causing the neuron to resist spiking consecutively
(for details see Chapter 6.1 of the book “Neural Dynamics”
[46]). Computationally, its membrane potential is treated as
an internal state. If the synapse is excitatory, the membrane
potential increases. Contrary, if the synapse is inhibitory, the
membrane potential decreases. When this potential reaches
a certain threshold, the neuron produces a spike, a sudden
increase in its membrane potential followed by a drop to a
reset value below its threshold. The dynamics of its membrane
potential [46] are described by equations (1) and (2).

τm
∂V

∂t
= RI(t) − (V − Vrest) −Rwk, (1)

τk
∂wk
∂t

= ak(V − Vrest) − wk + bkτk
∑

δ(t− t(f)), (2)

where τm is the membrane time constant, V is the membrane
potential, R is the resistance of the membrane, I(t) is the
input current at time t, Vrest is the resting membrane potential
value, wk is the adaptation variable, τk is the adaptation time
constant, a is the adaptation voltage coupling variable, b is
the adaptation increment variable, t(f) is the firing time of the
neuron and δ represents the Dirac delta function, which we
employ as indicated in Equation (3).

δ(x) =

{
1, if x = 0
0, otherwise.

(3)

We used biologically realistic values for all the above pa-
rameters [47]–[49]. These values are τm: 100.0, τk: 40.0,
R: 100.0, initial V : -70.0, Vrest: -70.0, reset: -51.0, wk:
0.0, threshold: -50.0, a: 0.01, b: 0.3. We chose the LIF
with adaptation model for our neurons due to its simplicity
and effectiveness in modelling realistic neural dynamics [50].
The number of floating-point operations (FLOPS) needed to
simulate this model (one neuron) during 1ms is 10 [14]. We
can notice how computationally cheap this model is, compared
to complex models, such as the Hodkin-Huxley model [51]
that would require 1200 FLOPS to simulate the same scenario.
Plus, it does not add excessive complexity compared to the
simple LIF model, which would require 5 FLOPS for the same
simulation.
In addition, we implemented lateral inhibition when various
neurons coexist within a network. With this mechanism, when
a neuron spikes, the activity of the neighbouring neurons
is reduced. This process can be found in BNNs [52] and
generates competitivity among nearby neurons.
We implement the synapses model as unidirectional non-
symmetrical weights, where forward and feedback connections
follow the same dynamics. Here, the input current to a
postsynaptic neuron is defined in Equation 4.

Ij(t) =
∑
i

Si(t)Wij , (4)

where Ij(t) is the input current to the postsynaptic neuron
j at time t, Si(t) is the output of the presynaptic neuron i
at time t and Wij is the synaptic weight of connecting the
presynaptic neuron i and the postsynaptic neuron j. Si(t) will
have the value 1 if the neuron i spikes at time t, and the value
0 otherwise. In addition, the synapses can be excitatory or
inhibitory. If the synapse is excitatory, the weight describing
it will be positive. If the synapse is inhibitory, the weight
describing it will be negative.

B. Coding scheme

In our simulations, the communication between neurons is
performed in a clock-driven way. The information exchanged
between neurons is encoded in intervals of 200ms of duration,
where the time is discretized in 1ms time steps. The encoding
of an input value into spikes can be modelled with a Poisson

process [53]. The Poisson distribution used in the encoding
process is given in Equation 5.

P (X = k) =
λke−λ

k!
. (5)

Regarding the decoding scheme, we introduce a novel coding
scheme that combines rate and temporal coding. This method
is inspired by the spike counting within an interval (rate
coding), adopted by some researchers (e.g. [26], [27]), and
the single spike timing within an interval (temporal coding),
adopted by other researchers (e.g. [29], [30]). In our approach,
we perform a time-weighted spike counting. That means that
earlier spikes will contribute more to the decoded result than
those later in the interval. Specifically, a spike at the beginning
of the interval (t=0) contributes twice as much as a spike at the
end (t=199). Thus, ranging from ×1 to ×0.5, the contribution
of every spike depends on its timing within the range. The
resulting value is then downscaled by a factor of 100 to match
the original value’s scale. This decodification is described in
Equation 6.

Decodedi =

∑
t∈[0,200) Si(t)Ci

100
, (6)

where Decodedi represents the decoded value of neuron i, Si
represents the spikes train outputted by the neuron i and Ci
represents the contributions of the spikes at each time step.
Si(t) takes the value 1 if the neuron i spikes at time t, and
the value 0 otherwise. It must be noticed that, due to the
randomness introduced by the Poisson-based spike generation,
there is a small amount of noise added during the encoding.

C. Errors encoding

Authors in [9] linked together a set of different learning
methods that use the difference in neural activities to encode
errors. They argued that the brain could also use this technique
to compute errors locally. They called this technique Neural
Gradient Representation by Activity Differences (NGRAD). In
our work, we employ a novel mechanism that may fall into this
category. In our network, two neurons are always connected by
a forward and a feedback connection. First, the forward con-
nections transmit information to perform predictions. Then, the
feedback connections transmit information to adjust weights
accordingly and enable learning. As shown in Figure 1, we
could compute the error of a neuron as the difference between
its activity at two different points on time: (i) after receiving
an input current through its forward connections and (ii) after
receiving an input current through its feedback connections.

However, we do not use the errors explicitly during the
learning process. In networks with non-symmetric feedback
weights, these two activities tend to converge to the same
value. This phenomenon receives the name of “feedback
alignment” [19].

D. Learning rules

As a learning method, a set of Hebbian-based learning rules
to achieve local plasticity and computations. Here, the weights
updates only depend on the presynaptic and postsynaptic

n1 n2 n3
n1 n2 n3
n1 n2 n3

W12(fw) W23(fw)

W12(fb) W23(fb)

Wij(fw) Forward connection
Wij(fb) Feedback connection

Output
spikes train

Feedforward phase

~0.345

Decoded
output n2

n1 n2 n3
n1 n2 n3
n1 n2 n3

W12(fw) W23(fw)

W12(fb) W23(fb)

Feedback phase

~0.421

Decoded
output n2

Wij(fw) Forward connection
Wij(fb) Feedback connection

Output
spikes train

Fig. 1: Example of a decoded output spikes train during the
two different phases.

neurons’ activity. Moreover, it does not require any external
control or global error during the computations. Having two
connected neurons, with output x1 and x2, and the desired
target output y in the second neuron, as shown in Figure 2A,
we can define the most simplistic rule for Hebbian learning
[10] as in Equation 7. If the neurons are spiking units, these
values represent their decoded spike trains.

n1 n2 n3
W12(fw) W23(fw)

x1 x2 x3

y

n1 n3
W12(fw)

(A)

x1 x2

y

(B)

Fig. 2: (A) Two and (B) three neurons connected consecutively
by feedforward connections.

Wij = xiy. (7)

When progressive updates are desired, we can add a learning
rate α and decompose it into an anti-Hebbian rule, defined in
Equation 8, and a Hebbian rule, defined in Equation 9.

∆Wij = −αxixj , (8)

∆Wij = αxiy. (9)

With these rules, we can address the credit assignment problem
in single-hidden layer networks. However, they cannot be used
in multi-layer neural networks, like the one in Figure 2B, as
we do not know the target outputs in the hidden layers.
Target propagation [17], [18] is an alternative to backpropa-
gation that computes a target output in every neuron instead
of gradients. Its basic idea is to assign close values in the
presynaptic neurons that hopefully lead to the desired values
in the postsynaptic neurons. In our work, we mimic this idea
with a much more simplistic approach. We introduce a novel
method to approximate the target propagation’s main idea
making use of the feedback alignment theory. For that, we
first include feedback connections in our network. Then, in
order to compute the target outputs in the hidden layers, the
postsynaptic neurons forward their desired outputs (label) back
through their feedback connections. Then, according to the
feedback alignment theory [19], the neurons’ output when
performing feedforward will tend to converge to the neurons’
output when performing feedback. Therefore, in a situation
like the one shown in Figure 3, the value x2 will tend to come

closer to y2. Notice that x1, x2 and x3 refer to the decoded
output spike trains during the feedforward phase, y3 refers to
the desired decoded output value (label) and y2 refers to the
decoded output spike trains during the feedback phase. In this
case, y2 is obtained by propagating y3 through the feedback
connections.

n1 n2 n3
n1 n2 n3
n1 n2 n3

W12
(fw) W23

(fw)

W23
(fb)

Wij
(fw) Forward connection

Wij
(fb) Feedback connection

x1 x2 x3

y3y2

xn Decoded output
yn Target decoded output

(input layer)

Fig. 3: Three layers of neurons connected consecutively by
feedforward connections and feedback connections, where the
first layer is the input layer with no feedback connections.

In the same way, the feedback weights also need to be
modified. When, for instance, a higher input current is de-
sired in the postsynaptic neuron, the influence of excitatory
presynaptic neurons (positive synaptic weights) should be
increased, and the influence of inhibitory presynaptic neurons
(negative synaptic weights) should be reduced. According to
the feedback alignment theory, we can indirectly do this by
increasing the feedback weights with the excitatory neurons,
and reducing the feedback weights with the inhibitory neurons.
We implement these feedback weights updates with a local
anti-Hebbian and a local Hebbian based rules to accomplish
biological plausibility. These rules are described by equations
10 and 11, using the same notation as in Figure 3.

∆W
(fb)
ij =

−αxiyj
W

(fw)
ij

, (10)

∆W
(fb)
ij =

αyiyj

W
(fw)
ij

. (11)

Equation 10 describes an update while the information is
forwarded back. Equation 11 describes an update once the
information is sent back. For implementation purposes, they
can be abstracted into one single rule, given in Equation 12.

∆W
(fb)
ij =

α(yi − xi)yj

W
(fw)
ij

. (12)

Notice that W (fw)
ij , which represent the synaptic weight of the

forward connection, is included to take into account the type
of synapse in the update (excitatory or inhibitory) through its
sign. It works as a scaling factor too. W (fw)

ij is a local value
to both the presynaptic neuron i and the postsynaptic neuron
j, so, in biology, it could influence updates in W

(fb)
ij . Also,

combining Equations 8 and 9 and adjusting its notation, we
obtain Equation 13.

∆W
(fw)
ij = αxi(yj − xj). (13)

Hence, our learning mechanism consists of two phases, i.e.
feedforward phase and feedback phase. During the feedfor-
ward phase, the feedback weights do not transmit information,

and the forward weights are updated using the learning rule
described in Equation 13. During the feedback phase, the
forward weights do not transmit information, and the feedback
weights are updated using the learning rule described in
Equation 12. Using this set of rules, there is no need for a
loss function and its optimization. These alternative provides
more biological realism than, for instance, backpropagation,
which is based on mathematical optimization concepts.

E. Adaptive learning rate factor

Here, we also introduce a novel adaptive learning rate
technique that drastically speeds up our simulations. It uses a
learning rate value per synaptic weight, and variates according
to the alignment between the forward neural activity and
the feedback neural activity, i.e. xn and yn in Figure 3.
After every feedback phase, if xn and yn have closer values
than in the previous feedback phase, then the learning rate
of the weight that connects to the neuron n is increased.
Conversely, if xn and yn have more distant values, the learning
rate decreases. This technique could be compared with the
momentum algorithm [54] for ANNs. We empirically found
that a 2% increase/decrease in the individual learning rates
when the above conditions are met is the optimal value. Since
after some point during learning (when more detailed updates
are needed), xn and yn stop coming closer, the learning rate
factors start decreasing considerably. Therefore, these learning
rate factors will tend to adopt small values at the end of the
training.

IV. EXPERIMENTAL PROCEDURE AND DISCUSSION

We conducted several experiments to evaluate our approach.
In our networks, the first layer is in charge of encoding the
input values into trains of spikes. Therefore, there are no
feedback connections between the first and the second layer.
Also, we did not explore complex topologies and only fully
connected layers are used here. The forward and feedback
weights are initialized randomly using a Gaussian distribution
with a mean of 2.5 and a standard deviation of 1.0.

A. Boolean problems

While the AND and OR problems are easy to solve, the
XOR problem poses some difficulty due to its non-linearity.
This non-linearity makes it impossible to solve employing a
single layer perceptron and, hence, a multi-layer extension is
needed [55]. The boolean operations are shown in Table I. In
our simulation, we used the value 0.01 instead of 0 to activate
our LIF neurons.

TABLE I: Boolean problems
AND OR XOR

a b a · b a + b a ⊕ b
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The architecture employed in these problems contains four
layers with 2-128-128-2 neurons. The starting learning rate

was 0.001, and the amount of lateral inhibition was 5mV.
We let the models train for 20 epochs, though they could
successfully learn the tasks in just a few epochs, as shown in
Figure 4. With these results we proved that a multi-layer SNN
with feedback connections trained with our learning method
can solve simple linear and non-linear tasks perfectly.

Fig. 4: Training history of the tasks AND, OR and XOR.

B. Autoencoding task

In this task, we trained an autoencoder to learn a compressed
representation of an image. For that, we used the MNIST
dataset with normalized values. We did not use validation set to
early stop the model. Instead, we used the training set to train
our network until the training performance stops improving
(5 epochs), and then test over the test set. The employed
architecture contains 784-64-784 neurons, with a starting
learning rate of 0.001 and a lateral inhibition of 1mV. We
used Mean Squared Error (MSE) to measure the performance
of the model. The resulting MSE over both the training and
test set is 0.037. Notice that these values are computed with
the normalized data. In Figure 5, we display some images
from the test set after encoding and decoding it using our
trained network. We can notice that the reconstructions closely
resemble the original images. In addition, we trained a regular
ANN with the same architecture using backpropagation for
comparison purposes during 100 epochs. It reached an MSE
of 0.0138 in both the training and test set. We can notice
that the ANN performs better than our SNN. Something not
surprising. Even the state-of-the-art approaches to biologically
plausible learning are still far from performing comparably
to ANNs trained with backpropagation. In the next task,
we perform a comparison between state-of-the-art approaches
to biologically plausible learning and an ANN trained with
backpropagation, among others. Despite the difference, the
performance measurement (MSE) of our approach and the
ANN trained with backpropagation are in the same order of
magnitude (0.0X) in this task, while the model was trained
with considerably less epochs.

Fig. 5: Examples of reconstructed images from the test set
with our trained neural network. Top row: original images.
Bottom row: reconstructed images (encoded and decoded).

C. Handwritten digits recognition

In this task, we trained various multi-layer neural networks
to perform handwritten digits recognition. Again, we used the
MNIST dataset with normalized values, and we did not use
validation set to early stop the model. Instead, we used the
training set to train our network until the training performance
stops improving (5 epochs), and then test over the test set.
The starting learning rate of 0.001 and a lateral inhibition of
1mV. A comparison between different configurations and their
performance can be found in Table II.

TABLE II: Comparison of different architectures over the
MNIST dataset. Each model was trained for 5 epochs.

Neurons per layer Training accuracy Test accuracy

784-200-10 90.0 90.3

784-400-10 90.9 91.1

784-1200-10 91.8 91.7

784-3000-10 91.5 91.2

784-200-200-10 89.9 90.5

784-1500-1000-500-10 88.9 89.0

We also compare our approach with others entirely biolog-
ically plausible learning methods in Table III. While some
architectures provide small improvements compared to others,
there seems to be a limit to learning. We hypothesise that it is
due to the stochastic encoding process. We elaborate on this
idea in the next section. We also consider in the comparison
a multi-layer ANN trained using backpropagation. We did
not tune the hyperparameters of this last network. Instead,
we adopted the same parameters as with the best performing
model in our approach: three layers with 784-1200-10 neurons
and starting learning rate of 0.001 (Adam optimizer). The
activation function in the last layer is a softmax, and ReLU in
the hidden layers. The loss function used is MSE.

V. CONCLUSION AND FUTURE WORK

Current models of ANNs differ from BNNs in many aspects.
Researchers are working to bridge this gap. However, there
are still plenty of unknown details about the brain and the
computation it performs. Seeking this goal, we present an
innovative approach, constrained by biological limitations.
This work intends to give a step towards brain-inspired neural
networks rather than being a conclusive work. Our proposed
learning method bases its foundations on recent brain-inspired
elements: local plasticity rules, target propagation, feedback
alignment and realistic models of neurons and synapses. In
the same way, our learning mechanism does not explicitly use
errors and does not minimize a loss function. Consequently,
it achieves more biologically realism than other mathematical
optimization-based solutions. We also introduce an adaptive
learning rate technique that drastically reduces the training
time. In all the tested tasks, the maximum performance is

TABLE III: Comparison with the state-of-the-art biologically
plausible approaches. A “-” indicates that the value is not
provided in the paper.

Work Description
Test acc.
MNIST

ANN (this
paper)

3-layers fully connected ANN
trained using backpropagation.

For comparison purposes.
98.5

STDP based approaches

F. Ponulak
et al. [34]

ReSuMe learning algorithm.
Supervised learning. It employs

STDP and anti-STDP rules.
-

A. Tavanaei
et al. [39]

Supervised learning. It employs a
locally approximated

backpropagation using STDP and
anti-STDP rules.

97.2

P. U. Diehl
et al. [40]

Unsupervised learning. It
employs a modified STDP rule
and many neurons in the output
layer. Then those output neurons

are filtered to only 10.

95.0

Y. Hao et al.
[41]

Supervised learning. It employs a
rewarded-modulated STDP rule. 96.7

M. Mozafari
et al. [43]

Supervised learning. It employs a
rewarded-modulated STDP rule

and a deep convolutional
architecture

97.2

Non-STDP based approaches

S. Hussain
et al. [44]

Supervised learning. It is based
on Hebbian learning with binary
synapses. Instead of update the
weights, it performs structural
modifications in the network.

90.3

R. Gütig et
al. and Zhao
et al. [33],
[56]

Tempotron learning algorithm.
Supervised leaning. It is based on

Hebbian learning, and it is
designed to classify

spatiotemporal patterns of spikes.

91.3

J. Guerguiev
et al. [45]

Supervised learning. It uses
dendritic compartments in the

neurons to compute local errors.
It employs a local version of

gradient descent.

96.3

F. Zenke et
al. [36]

SuperSpike learning algorithm.
Supervised learning. It employs
local Hebbian learning rules. It

uses a gradient descent approach
based on the neurons’ membrane

potential.

-

Ours (this
paper)

Supervised learning. It employs
Hebbian learning. It is based on

target backpropagation and
feedback alignment to enable

learning. Errors can be computed
locally as a difference between

neural activities.

91.7

reached within the first 5 epochs, unlike some state-of-the-art
approaches (e.g. the approach in [39] employs around 1200
epochs). Our approach was able to successfully solve a set of
linear and non-linear tasks and an image autoencoding task.
Furthermore, our approach performs comparably to other bio-
logically plausible non-STDP-based works in the handwritten
digits recognition task. On the other hand, the used coding
scheme, time-weighted spike counting, is not the optimal one.
Since the encoding is based on a Poisson random process, the
resulting scheme is stochastic. It introduces randomness during
the learning process, which leads to the use of non-accurate
information during the weights updates. While other learning
mechanisms considered in the comparison achieves high per-
formance over the training set and moderate performance over
the test set (e.g. Zhao et al. [56] achieve 99.36% acc. over the
training set and 91.3% acc over the test set), our approach
seems to have a limit in the learning. During training, very
detailed and accurate weight updates are needed after a certain
point. This added noise keeps the network from achieving the
needed detailed updates. We hypothesize that this is the reason
why, as shown in Table II, the networks seem to reach a limit
in learning around the same performance measurement (for
both training and test). A biologically plausible alternative to
this coding scheme is to use a temporal encoding with only
one spike per spikes train. That is, the timing of individual
spikes. With this alternative, information can be accurately
encoded and decoded, with the values represented by one spike
through the temporal dimension. We are confident that replac-
ing the current stochastic encoding/decoding scheme with a
highly accurate temporal scheme would lead to very improved
efficiency. In addition, evaluating the proposed learning mech-
anism with more complex topologies (convolutional, recurrent,
etc) or architectures (deeper networks, ResNet, UNet, etc) and
over more complex tasks (object recognition, medical image
segmentation, etc) would be desirable as well.

REFERENCES

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[3] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[4] D. G. Barrett, A. S. Morcos, and J. H. Macke, “Analyzing biological and
artificial neural networks: challenges with opportunities for synergy?”
Current opinion in neurobiology, vol. 55, pp. 55–64, 2019.

[5] R. Geirhos, C. R. M. Temme, J. Rauber, H. H. Schütt, M. Bethge, and
F. A. Wichmann, “Generalisation in humans and deep neural networks,”
arXiv preprint arXiv:1808.08750, 2018.

[6] D. Pospisil, A. Pasupathy, and W. Bair, “Comparing the brain’s repre-
sentation of shape to that of a deep convolutional neural network,” in
Proceedings of the 9th EAI International Conference on Bio-inspired
Information and Communications Technologies (formerly BIONETICS),
2016, pp. 516–523.

[7] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in neuroscience, vol. 10, p.
508, 2016.

[8] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropa-
gation for training high-performance spiking neural networks,” Frontiers
in neuroscience, vol. 12, p. 331, 2018.

[9] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton,
“Backpropagation and the brain,” Nature Reviews Neuroscience, vol. 21,
no. 6, pp. 335–346, 2020.

[10] D. O. Hebb, The organization of behavior: A neuropsychological theory.
Psychology Press, 2005.

[11] C. F. Cadieu, H. Hong, D. L. Yamins, N. Pinto, D. Ardila, E. A.
Solomon, N. J. Majaj, and J. J. DiCarlo, “Deep neural networks rival the
representation of primate it cortex for core visual object recognition,”
PLoS Comput Biol, vol. 10, no. 12, p. e1003963, 2014.

[12] J. C. Whittington and R. Bogacz, “Theories of error back-propagation
in the brain,” Trends in cognitive sciences, vol. 23, no. 3, pp. 235–250,
2019.

[13] Y. Bengio, D.-H. Lee, J. Bornschein, T. Mesnard, and Z. Lin, “Towards
biologically plausible deep learning,” arXiv preprint arXiv:1502.04156,
2015.

[14] E. M. Izhikevich, “Which model to use for cortical spiking neurons?”
IEEE transactions on neural networks, vol. 15, no. 5, pp. 1063–1070,
2004.

[15] P. R. Roelfsema and A. Holtmaat, “Control of synaptic plasticity in deep
cortical networks,” Nature Reviews Neuroscience, vol. 19, no. 3, p. 166,
2018.

[16] T. Gollisch and M. Meister, “Rapid neural coding in the retina with
relative spike latencies,” science, vol. 319, no. 5866, pp. 1108–1111,
2008.

[17] Y. Le Cun, “Learning process in an asymmetric threshold network,” in
Disordered systems and biological organization. Springer, 1986, pp.
233–240.

[18] D.-H. Lee, S. Zhang, A. Fischer, and Y. Bengio, “Difference target
propagation,” in Joint european conference on machine learning and
knowledge discovery in databases. Springer, 2015, pp. 498–515.

[19] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Ran-
dom synaptic feedback weights support error backpropagation for deep
learning,” Nature communications, vol. 7, no. 1, pp. 1–10, 2016.

[20] M. A. Carreira-Perpinan and G. E. Hinton, “On contrastive divergence
learning.” in Aistats, vol. 10. Citeseer, 2005, pp. 33–40.

[21] R. C. O’Reilly, “Biologically plausible error-driven learning using local
activation differences: The generalized recirculation algorithm,” Neural
computation, vol. 8, no. 5, pp. 895–938, 1996.

[22] J. C. Whittington and R. Bogacz, “An approximation of the error
backpropagation algorithm in a predictive coding network with local
hebbian synaptic plasticity,” Neural computation, vol. 29, no. 5, pp.
1229–1262, 2017.

[23] R. P. Rao and D. H. Ballard, “Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects,”
Nature neuroscience, vol. 2, no. 1, pp. 79–87, 1999.

[24] J. Sacramento, R. P. Costa, Y. Bengio, and W. Senn, “Dendritic cor-
tical microcircuits approximate the backpropagation algorithm,” arXiv
preprint arXiv:1810.11393, 2018.

[25] B. Scellier and Y. Bengio, “Equilibrium propagation: Bridging the
gap between energy-based models and backpropagation,” Frontiers in
computational neuroscience, vol. 11, p. 24, 2017.

[26] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment
in time,” arXiv preprint arXiv:1810.08646, 2018.

[27] J. Wu, Y. Chua, M. Zhang, Q. Yang, G. Li, and H. Li, “Deep
spiking neural network with spike count based learning rule,” in 2019
International Joint Conference on Neural Networks (IJCNN). IEEE,
2019, pp. 1–6.

[28] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation
in temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1-4, pp. 17–37, 2002.

[29] S. R. Kheradpisheh and T. Masquelier, “Temporal backpropagation
for spiking neural networks with one spike per neuron,” International
Journal of Neural Systems, vol. 30, no. 06, p. 2050027, 2020.

[30] I. M. Comsa, K. Potempa, L. Versari, T. Fischbacher, A. Gesmundo,
and J. Alakuijala, “Temporal coding in spiking neural networks with
alpha synaptic function,” in ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 8529–8533.

[31] T. C. Wunderlich and C. Pehle, “Event-based backpropagation can
compute exact gradients for spiking neural networks,” Scientific Reports,
vol. 11, no. 1, pp. 1–17, 2021.

[32] J. Sjöström and W. Gerstner, “Spike-timing dependent plasticity,” Schol-
arpedia, vol. 5, no. 2, p. 1362, 2010, revision #184913.

[33] R. Gütig and H. Sompolinsky, “The tempotron: a neuron that learns
spike timing–based decisions,” Nature neuroscience, vol. 9, no. 3, pp.
420–428, 2006.

[34] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural
networks with resume: sequence learning, classification, and spike
shifting,” Neural computation, vol. 22, no. 2, pp. 467–510, 2010.

[35] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” Stanford Univ
Ca Stanford Electronics Labs, Tech. Rep., 1960.

[36] F. Zenke and S. Ganguli, “Superspike: Supervised learning in multilayer
spiking neural networks,” Neural computation, vol. 30, no. 6, pp. 1514–
1541, 2018.

[37] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics for
deep continuous local learning (decolle),” Frontiers in Neuroscience,
vol. 14, p. 424, 2020.

[38] H. Mostafa, V. Ramesh, and G. Cauwenberghs, “Deep supervised
learning using local errors,” Frontiers in neuroscience, vol. 12, p. 608,
2018.

[39] A. Tavanaei and A. Maida, “Bp-stdp: Approximating backpropagation
using spike timing dependent plasticity,” Neurocomputing, vol. 330, pp.
39–47, 2019.

[40] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing-dependent plasticity,” Frontiers in computational
neuroscience, vol. 9, p. 99, 2015.

[41] Y. Hao, X. Huang, M. Dong, and B. Xu, “A biologically plausible
supervised learning method for spiking neural networks using the
symmetric stdp rule,” Neural Networks, vol. 121, pp. 387–395, 2020.

[42] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier,
“Stdp-based spiking deep convolutional neural networks for object
recognition,” Neural Networks, vol. 99, pp. 56–67, 2018.

[43] M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, S. J. Thorpe, and
T. Masquelier, “Combining stdp and reward-modulated stdp in deep
convolutional spiking neural networks for digit recognition,” arXiv
preprint arXiv:1804.00227, vol. 1, 2018.

[44] S. Hussain, S.-C. Liu, and A. Basu, “Improved margin multi-class
classification using dendritic neurons with morphological learning,” in
2014 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 2014, pp. 2640–2643.

[45] J. Guerguiev, T. P. Lillicrap, and B. A. Richards, “Towards deep learning
with segregated dendrites,” ELife, vol. 6, p. e22901, 2017.

[46] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal
dynamics: From single neurons to networks and models of cognition.
Cambridge University Press, 2014.

[47] R. Naud, N. Marcille, C. Clopath, and W. Gerstner, “Firing patterns in
the adaptive exponential integrate-and-fire model,” Biological cybernet-
ics, vol. 99, no. 4, pp. 335–347, 2008.

[48] L. Badel, S. Lefort, R. Brette, C. C. Petersen, W. Gerstner, and M. J.
Richardson, “Dynamic iv curves are reliable predictors of naturalistic
pyramidal-neuron voltage traces,” Journal of Neurophysiology, vol. 99,
no. 2, pp. 656–666, 2008.

[49] C. Clopath, R. Jolivet, A. Rauch, H.-R. Lüscher, and W. Gerstner,
“Predicting neuronal activity with simple models of the threshold type:
Adaptive exponential integrate-and-fire model with two compartments,”
Neurocomputing, vol. 70, no. 10-12, pp. 1668–1673, 2007.

[50] R. Jolivet, A. Rauch, H.-R. Lüscher, and W. Gerstner, “Integrate-and-fire
models with adaptation are good enough,” Tech. Rep., 2006.

[51] A. L. Hodgkin and A. F. Huxley, “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve,”
The Journal of physiology, vol. 117, no. 4, pp. 500–544, 1952.

[52] B. Bridgeman, “Metacontrast and lateral inhibition.” Psychological
review, vol. 78, no. 6, p. 528, 1971.

[53] M. N. Shadlen and W. T. Newsome, “The variable discharge of cortical
neurons: implications for connectivity, computation, and information
coding,” Journal of neuroscience, vol. 18, no. 10, pp. 3870–3896, 1998.

[54] N. Qian, “On the momentum term in gradient descent learning algo-
rithms,” Neural networks, vol. 12, no. 1, pp. 145–151, 1999.

[55] L. Noriega, “Multilayer perceptron tutorial,” School of Computing.
Staffordshire University, 2005.

[56] B. Zhao, R. Ding, S. Chen, B. Linares-Barranco, and H. Tang, “Feed-
forward categorization on aer motion events using cortex-like features
in a spiking neural network,” IEEE transactions on neural networks and
learning systems, vol. 26, no. 9, pp. 1963–1978, 2014.

