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Abstract

Deep Neural Networks in NLP have enabled systems to learn complex non-linear relationships.
One of the major bottlenecks towards being able to use DNNs for real world applications is their
characterization as black boxes. To solve this problem, we introduce a model agnostic algo-
rithm which calculates phrase-wise importance of input features. We contend that our method is
generalizable to a diverse set of tasks, by carrying out experiments for both Regression and Clas-
sification. We also observe that our approach is robust to outliers, implying that it only captures
the essential aspects of the input.

1 Introduction

Motivation: Neural networks have rapidly become a central component in NLP systems in the last few
years. The improvement in accuracy and performance brought by the introduction of neural networks has
typically come at the cost of our understanding of the system. Deep learning systems have demonstrated
superior performance, compared to traditional Machine Learning techniques. This is due to their ability
to learn complex, non-linear, dependencies between features . However, the inability to effectively ex-
plain these dependencies has led to neural networks being characterized as black boxes . Moreover, the
use of black-box models have come under scrutiny for lack of fairness and intepretability. There has been
growing body of work that deals with interpreting neural architectures (Ribeiro et al., 2016; Murdoch
et al., 2018; Singh et al., 2018). For Natural Language Processing, specifically in sequence-to-sequence
tasks, there are relatively few methods that can extract the interactions between features that a DNN has
learned. There is a growing need for neural networks to be interpretable for deployment in real world
applications.
Our work We introduce a model agnostic technique, Exclusion-Inclusion for phrase wise feature impor-
tance in DNNs. We demonstrate our methodology on both classification and regression tasks.

Our work makes the following contributions :

• For classification tasks, we highlight which phrases contribute to a specific class.

• For regression tasks, we calculate the positive/negative impact of phrases on the overall score.

2 Related Work

There has been a growing body of work that deals with word level importance scores for deep learning
models. (Murdoch et al., 2018) introduced a contextual decomposition of the LSTM’s output embedding
into a sum over word coefficients, and demonstrated that those coefficients are meaningful by using them
to distill LSTMs into rules-based classifiers. (Li et al., 2016) introduced Leave One Out, a technique that
observes the change in log probability resulting from replacing a given word vector with a zero vector.
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(Sundararajan et al., 2017) proposed a gradient-based technique, called Integrated Gradients, which was
evaluated anecdotally. These methods, however are limited to word wise importance and only work for
classification.

There have been methods that calculate phrase level feature importance using Contextual Decompo-
sition (Murdoch et al., 2018) and Hierarchical Interpretations (Singh et al., 2018). However Murdoch
et al. (2018) only work with LSTMs and Singh et al. (2018) do not show how a phrase affects every
class present in the dataset. To our knowledge, there has been no previous work that deals with phrase
level feature importance for regression tasks in NLP. Attention based models (Bahdanau et al., 2014)
offer another means of providing some interpretability. Such models have been successfully applied to
many problems, leading to performance improvements (Strobelt et al., 2017) . However, attention is at
best an indirect indicator of importance, with no directionality. It doesn’t tell us which class the phrase
is important for, or in the case of regression, whether it increases/decreases the actual score. Attention
weights. can be used to visualize which parts of a sentence are being focused on , but cannot be used as
an interpretation technique. Attention is also incapable of modelling interactions between words, hence
we cannot calculate phrase wise attention.

3 Methodology

3.1 Problem Statement
We are given a dataset D = {xki, yki}Ni=0. Each xki is string of text and label yi{1....q} indicates the
label/value of xki among a given set of q labels. We fit a model F such that yki = F (xki). Using
the Exclusion-Inclusion algorithm, we determine word phrases that (i) contribute to a particular class
(Classification) ii) Positively or negatively impact the score (Regression).

3.2 Exclusion and Inclusion
This method calculates the local effects (positive, negative or neutral) of words (or phrases) with inclu-
sion and exclusion of that particular word (or phrase) for a data point. For regression while calculating
the effects, there is one intermediate step i.e. importance of words (or phrases) calculation and regression
losses (e.g. MAE, MSE, etc) are being used while doing so. To calculate the final effects, for regression
we used the predicted response(ŷ) and for classification we used predicted probability.

3.2.1 Importance Calculation
This step is very important while effect calculation for regression, because after removing the unimpor-
tant words, we calculate the effect of only the important phrases on the output. We do not calculate the
effect of any word (or phrase) which are unimportant. This motivation came from the significance of
coefficients of linear regression. For the given linear regression Equation 1, the β̂i values are the esti-
mated coefficients. This sign of coefficients tells that whether xi is effecting the output (ŷ) positively or
negatively and values tells the impact of the effect. But before deciding so, we perform the t-test on the
βi to check whether they are significant or not. To perform the t-test we calculate the standard error of
the βi. As we assume that βi values follow t-distribution and we have one sample (the training data), it is
easy to calculate the standard error as well as the p-value of βi to check it’s significance (or importance).
In NLP deep model we pass the input as sequence and the occurrence of the same word (or phrase) at
the same location in the training data almost does not repeat. This means that the number of sample of
that word (or phrase) in that location is always almost 1 which makes difficult to calculate the standard
error of that word (or phrase) at that location.

ŷ = β̂0 + β̂1x1 + β̂2x2 + ...+ β̂nxn (1)

To tackle this problem we used the loss function of the problem as our pivot and checking the change of
this loss function we decide whether that word (or phrase) is important or not. For a regression example,
we calculated the predicted response excluding and including one phrase say, phri = [w1, w2, .., wn]
and got the output to be respectively, ŷex and ŷin. We calculate the losses (MAE or MSE for regression)
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for each of outputs i.e. MAEex (or MSEex) and MAEin (or MSEin). Now if MAEin < MAEex,
this means that inclusion of phri reduces the loss. That means this phrase phri is important to the output
and if the reverse happens in the loss then that phrase is unimportant. It is seen that after removing all the
unimportant phrases following the described procedure, if we predict the output only on the important
words then the new output becomes more close with respect to the previous predicted output based on all
the words. Mathematically, if including all the words if the loss is MAEall and including the important
words the loss is MAEimp then always MAEimp <=MAEall.

The same procedure is not followed for classification, because for classification instead of direct score,
we predict the probability of the data point to assign to a class. For classification, we calculate which
words (or phrases) increase or decrease the probability to the data point to fall in that specific class. This
thing has been captured in the effect calculation.

3.2.2 Effect Calculation

This section describes the calculation of effect of the word (or phrase) on the output Here, effect indicates
the positive or negative impact of the word (or phrase) on the output i.e. for regression if any phrase phrj
has positive effect that means inclusion of that particular phrase will increase the output response (ŷ) and
exclusion of that word will decrease the output response analogous to β̂ in regression. It is the other way
around if that phrase has negative impact. For classification, positive impact of any word (or phrase)
means inclusion of that word (or phrase) increase the probabilty of that data point to fall in that class and
vice versa for negative impact. For multi-class classification we have performed the this effect analysis
for each of the classes. This is described below.

Before calculating the effect we replace the identified unimportant words with zero. Zero means the
absence of that word which is analogous to what we do during padding or masking. Calculation of effect
is similar to the calculation of importance, but instead of loss function we take the predicted output of
the model here. For regression, let’s say including this phrase phri = [w1, w2, .., wn], we get predicted
response ŷin and excluding this phrase we get predicted response to be ŷex. If ŷin > ŷex, this means
that inclusion of that phrase increases the output of the model and exclusion of that phrase decreases the
output response. That means this phrase has positive effect on output and vice version if the equation is
reverse. For classification if there are n classes {c1, c2, ..., cn}, we calculate the probability of each class
for that data point including the phrase phri = [w1, w2, .., wn] of interest and one more time excluding
the same. Let’s say, probabilities of class j, including and excluding phri are P (cj)in and P (cj)el
respectively. If P (cj)in > P (cj)el, this means that inclusion of that phrase increases the probability of
the data point to fall in class cj and vice versa.

The flowchart of the above-mentioned process is shown in the Figure 3. For classification there is no
importance calculation step, so the input will be directed to Effect calculation as the first step.

3.2.3 Evaluation Metric

The evaluation metric of effect is the traditional percentage change of model output with respect to
excluding and including phrases. We call it EI (Exclusion-Inclusion) score, which is defined as,

EI(phri) =
ŷin − ŷel
ŷin

∗ 100 (2)

If the EI score is positive then, the phrase has positive effect and if negative then it has negative effect on
the output. The above equation is shown for regression, for classification ŷ can be simply replaced with
P (cj) to get the effect of phrases on that specific class.

3.2.4 Algorithm

To build the algorithm, let us introduce the prerequisites. Assume, we have the trained model M, where
M(x) is model output. This output is ŷ for regression and ˆP (cj) for classification. We will calculate the
effects of words (or phrases) on sentence S, and S : {w1w2w3...wn} : [iw1 , iw2 , iw3 , ..., iwn], where wj



means the j-th word in S and iwj is the index of j-th word in the vocabulary.

Algorithm 1: Exclusion Inclusion Algorithm
Input: Input Sentence
Result: Get phrases with positive, negative and neutral effect on output
Part 1: Importance Calculation

1 k = 0;
2 while k <= n do

Calculate loss omitting iwk
= loss(iwk

);
Calculate loss omitting iwk

and iwk+1
= loss(iwk

,iwk+1
);

if loss(iwk
) < loss(iwk

,iwk+1
) then

j = 1
while loss(iwk

,iwk+1
,...,iwk+j

) < loss(iwk
,iwk+1

,...,iwk+j
,iwk+j+1

) do
j = j + 1

end
Mark [iwk

, iwk+1
, ..., iwk+j

] as un-important;
else

j = 1
while loss(iwk

,iwk+1
,...,iwk+j

) > loss(iwk
,iwk+1

,...,iwk+j
,iwk+j+1

) do
j = j + 1

end
Mark [iwk

, iwk+1
, ..., iwk+j

] as important;
end

end
3 Filter out all the important word indices and replace the rest indices with 0 and get model

predictions on the important words i.e. ˆyimp

Part 2: Effect Calculation
4 k = 0;

while k <= n do
for j← k to n do

Calculate EI score by excluding phrases [iwk
, iwk+1

, ..., iwj ],

EI(iwk
,iwk+1

,...,iwj )
=

ˆyimp − ˆy(iwk
,iwk+1

,...,iwj )

ˆyimp
∗ 100 (3)

end
end

5 Conclude phrase with positive and negative EI scores will have positive and negative effect on
output respectively. The un-important phrases (or words) are considered as neutral.

While performing any kind of feature analysis, we do have the true output most of the times. If any
case we do not have that true output or if we are performing classification then Part 1 of the algorithm to
be skipped and only the Part 2 to be executed.

3.2.5 Real Time Exclusion and Inclusion

The algorithm described above captures the actual effect of the words (or phrases) because their effects
have been calculated with the presence of the other words in the model. This is always required to calcu-
late any feature importance. One thing we also see that the number of model predictions for a sentence
of n words is two times (two times for regression, one time for classification) the sum of consecutive n
terms from 1 to n i.e. 2n(n+1)

2 . Two time because one for importance calculation and another for effect
calculation. If n increases then this number also increases rapidly which in turns make our algorithm
slower to execute. To handle this issue we parallelized the algorithm by building matrices. To calculate
uni-grams we built a n × n square matrix and made the diagonals zero, where n is length of sequence



Figure 1: Flowchart of the Exclusion Inclusion method

of sentence S. Doing so, previously to calculate model predictions without uni-grams the required time
complexity was O(n), now it comes down to O(1) as we are predicting all at once. The same can be
done for bi-grams, tri-grams and more also, but the main difference is that for bi-grams the diagonal and
next to diagonal will be zero and the size of the matrix will be (n− 1)×n. For calculating the effects of
g-grams, the size of the matrix will be (n− g + 1)× n. The formulation of the matrices is shown in the
Figure 2. Following this parrallelization we can bring down the effect calculation time very significantly
i.e. 2n instead of 2n(n+1)

2 .

3.2.6 Issue Handling with very long sequences
Though with parallelization the time required for EI methods comes down significantly, it is still a prob-
lem where sequences are very long (e.g. essay, etc.) i.e. n is large. In that case the number of model
predictions will still be 2n, but due to the large matrix sizes the prediction time will be slower. To handle
that issue, we tried to reduce the row number of matrices as the number of grams increase, as a result
the second part of the algorithm where we calculate effect will change slightly. Initially, for sentence S,
we started iteration from wi and would continue the iteration till phrase {wiwi+1wi+2...wn}. But now
instead of looking for all the possible combination we will introduced one early iteration stop criteria
as we did in the importance calculation section. Starting from wi, we calculated the predicted output
omitting that word, if the predicted output decreases, then we marked wi as the word having positive
effect and now omitted phrase {wiwi+1}, if the output decreases more, we continue the iteration until
the predicted output is not lesser than the previous one which means ˆy(i,i+1,i+2,...,j) > ˆy(i,i+1,i+2,...,j−1)

where wj is the word where the iteration terminates. In that case, phrase {wiwi+1...wj−1} will be the
phrase with positive effect on output. Same iteration condition is applicable for the phrase with negative
effect also.

Doing so the number of iteration reduces significantly as the number of gram increases which in turns
reduces the number of row in the matrices making model predictions faster. It is seen that generally the
iteration happens up to 10 grams for sequence with length of 5000 words.

4 Experiments

We perform our experiments using an LSTM (Hochreiter and Schmidhuber, 1997) for both regression
and classification experiments. We use 3 LSTM layers each of hidden-size 128. We use 300-dimensional
glove embeddings with trainable parameters. For all models we use the Adam (Kingma and Ba, 2014)
optimizer with learning rate of 2e−5. For classification, we use Cross Entropy loss (Zhang and Sabuncu,
2018) and for regression, we use Mean Squared Error (Wang and Bovik, 2009).





iw1 iw2 iw3 iw4 ... iwn

iw1 iw2 iw3 iw4 ... iwn

iw1 iw2 iw3 iw4 ... iwn

... ... ... ... ... ...

... ... ... ... ... ...
iw1 iw2 iw3 iw4 ... iwn


unigram−−−−−→



0 iw2 iw3 iw4 ... iwn

iw1 0 iw3 iw4 ... iwn

iw1 iw2 0 iw4 ... iwn

... ... ... ... ... ...

... ... ... ... ... ...
iw1 iw2 iw3 iw4 ... 0


(a)



iw1 iw2 iw3 iw4 ... iwn

iw1 iw2 iw3 iw4 ... iwn

iw1 iw2 iw3 iw4 ... iwn

... ... ... ... ... ...

... ... ... ... ... ...
iw1 iw2 iw3 iw4 ... iwn


bigram−−−−−→



0 0 iw3 iw4 ... iwn

iw1 0 0 iw4 ... iwn

iw1 iw2 0 0 ... iwn

... ... ... ... ... ...

... ... ... ... ... ...
iw1 iw2 iw3 iw4 ... 0


(b)

Figure 2: Formulation of matrices for uni-grams and bi-grams

We use 3 datasets for evaluating our methodology:

• SST-2 (Socher et al., 2013): The Stanford Sentiment Treebank has movie reviews divided into 2
categories, negative and positive. This is a classification problem.

• ASAP 1: This dataset has a total of 7k essays for Automatic Essay Scoring. We treat this as a
regression problem.

5 Observations

Classification: Table 1 shows 5 examples from the SST-2 dataset. The effects are calculated for the true
class. The phrases contributing to the positive class are annotated as green while phrases which contribute
to the negative class are annotated as red. We highlight how one sentence can have multiple phrases
contributing to either class ( For example, bad movie and good actors ). It also highlights possible
reasons for the mis-classified samples. For example, There’s no art here, supersedes any positive phrase
within the sentence, although the conclusion itself is positive. It is interesting to note that the contribution
of one very negative phrase can cancel out contributions from multiple positive phrases. In cases where
there is no ambiguity, the entire sentence contributes to one class unanimously ( For example, A fun
ride). Through these examples, we elucidate how the Exclusion-Inclusion method adds phrase wise
interpretability to DNNs.

Regression: Figure 3 shows a sample essay from Automatic Essay Scoring task on the ASAP dataset.
The phrases contributing to a higher score are annotated as green while phrases which decrease the
score are annotated as red. We note that spelling mistakes are marked as red because they are often
out-of-vocabulary. Furthermore, descriptive phrases are marked positive. Phrases which keep repeating
themselves are marked negative after multiple occurrences ( For example Hand Eye Coordination. We
have deliberately not used any handcrafted features for AES, as used in relevant literature. We contend
that interpretable predictions from a simple LSTM model will aid in creating better handcrafted features
for Automatic Essay Scoring, and other general regression tasks.

1https://www.kaggle.com/c/asap-aes



Sentence Predicted Class Label

a bad movie that happened to good actors 0 0

it’s simply stupid irrelevant and deeply truly bottomlessly cynical 0 0

there s no art here it s still a good yarn which is nothing to sneeze at these days 0 1

a fun ride 1 1

overcomes its visual hideousness with a sharp script and strong performances 1 1

Table 1: Sample interpretations from SST-2

Figure 3: Sample enablers and disablers for regression

6 Conclusion and Future Work

In this paper, we introduce Exclusion-Inclusion, a model agnostic method for phrase wise feature impor-
tance in DNNs. Through qualitative experiments, we demonstrate how our approach adds an extra layer
of interpretability for common classification and regression tasks. We also highlight how our method can
be applied in a real world setting with very long sequences, where compute resources are limited. Our
work is a step towards better understanding of how DNNs predict text, as opposed to treating complex
non linear models as black boxes.
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