
ar
X

iv
:2

11
2.

09
69

7v
1 

 [
cs

.N
E

] 
 1

7 
D

ec
 2

02
1

1

On the Evolution of the MCTS Upper Confidence

Bounds for Trees by Means of Evolutionary

Algorithms in the Game of Carcassonne
Edgar Galván∗ and Gavin Simpson

Abstract—Monte Carlo Tree Search (MCTS) is a sampling
best-first method to search for optimal decisions. The MCTS’
popularity is based on its extraordinary results in the challenging
two-player based game Go, a game considered much harder than
Chess and that until very recently was considered infeasible for
Artificial Intelligence methods. The success of MCTS depends
heavily on how the tree is built and the selection process plays
a fundamental role in this. One particular selection mechanism
that has proved to be reliable is based on the Upper Confidence
Bounds for Trees, commonly referred as UCT. The UCT attempts
to nicely balance exploration and exploitation by considering the
values stored in the statistical tree of the MCTS. However, some
tuning of the MCTS UCT is necessary for this to work well.
In this work, we use Evolutionary Algorithms (EAs) to evolve
mathematical expressions with the goal to substitute the UCT
mathematical expression. We compare our proposed approach,
called Evolution Strategy in MCTS (ES-MCTS) against five
variants of the MCTS UCT, three variants of the *-minimax
family of algorithms as well as a random controller in the Game
of Carcassonne. We also use a variant of our proposed EA-based
controller, dubbed ES partially integrated in MCTS. We show
how the ES-MCTS controller, is able to outperform all these 10
intelligent controllers, including robust MCTS UCT controllers.

Index Terms—Genetic Programming, Monte Carlo Tree
Search, Carcassonne, UCT.

I. INTRODUCTION

Monte Carlo Tree Search (MCTS) is a sampling method

for finding optimal decisions by performing random samples

in the decision space and building a tree according to partial

results. In a nutshell, Monte Carlo methods work by approx-

imating future rewards that can be achieved through random

samples. The evaluation function of MCTS relies directly

on the outcomes of simulations. Thus, the accuracy of this

function increases by adding more simulations. The optimal

search tree is guaranteed to be found with infinite memory

and computation [25]. However, in more realistic scenarios,

MCTS can produce beneficial approximate solutions.

MCTS has gained popularity in two-player board games

partly thanks to its success in the game of Go [30], including

beating professional human players. The diversification of

MCTS in other research areas is extensive. For instance,

MCTS has been explored in energy-based problems [14],

∗Leading and corresponding author.
Edgar Galván and Gavin Simpson are both with the Naturally Inspired

Computation Research Group and with the Department of Computer Sci-
ence, Maynooth University, Lero, Ireland e-mails: edgar.galvan@mu.ie and
gavin.simpson.2021@mumail.ie

[15] and in the design of deep neural network (DNN) ar-

chitectures [33]. These two extreme examples demonstrate

the successful versatility, use and applicability of MCTS in

different problems.

The success or failure of MCTS depends heavily on how the

MCTS statistical tree is built. The selection policy, responsible

for this, behaves incredibly well when using the Upper Con-

fidence Bounds for Trees [26], commonly referred as UCT.

Some conditions are to be met for this to work well such

as having enough number of simulations and tuning a value

responsible for balancing exploration. In this work, we use

EAs, in particular Evolution Strategies (ES) [29] to evolve

mathematical expressions that can be used instead of the

UCT mathematical expression. We propose two approaches,

dubbed as ES partially integrated in MCTS and ES in MCTS.

The former evolves expressions by partially using the MCTS

statistical tree to make informed decisions. The latter is fully

integrated in the MCTS. We compare these two approaches

against 5 variants of the MCTS UCT, 3 variants of the

*-minimax family of algorithms and a random controller. We

show how the ES in MCTS outperforms these 10 controllers

in the Game of Carcassonne.

The main contribution of this work is to show how EAs can

be used in MCTS to evolve in real-time a mathematical ex-

pression to be used in the selection policy instead of the well-

known UCT. The major advantage of our proposed approach is

that it learns how to find a reliable expression in the selection

policy without the need to manually tuning it as commonly

done in MCTS UCT. There are some interesting works using

EAs in MCTS. For example, in [10] we incorporated some

notions of MCTS in EAs, an approach commonly referred as

rolling horizon. Cazanave [8] used Genetic Programming (GP)

for heuristic discovery, whereas Alhejali and Lucas [1] used

GP to enhance MCTS during the rollouts simulations. More

aligned to this research is the work by Bravi et al. [6] where the

authors used GP to evolve replacements to the UCB1 formula.

They tested their approach using the General Video Game AI

framework. They showed the different formulae found by the

GP approach. The main limitation in their work was a lack of

a more in-depth analysis with other AI techniques. Whereas

these and other works including [4], [28] are interesting, ours

attempts for the first time carrying out an extensive analysis

on the evolution of the UCT by means of evolution strategies

in the Game of Carcassonne. Our proposed approach is able

to outperform the MCTS UCT along with the rest of the AI

controllers used in this study.

http://arxiv.org/abs/2112.09697v1


2

The rest of this paper is organised as follows. Section II

provides some background in MCTS, EAs and in the game

of Carcassonne. Section III discusses in detail the controllers

used in this work. Section IV discusses the experimental

setup. Section V discusses the results attained by each of the

controllers while Section VI explains the reasons as to why

our proposed ES in MCTS outperforms all the controllers.

Section VII draws some conclusions.

II. BACKGROUND

A. The Mechanics Behind MCTS

MCTS relies on two key elements: (a) that the true value

of an action can be approximated using simulations, and (b)

that these values can be used to adjust the policy towards a

best-first strategy. The algorithm builds a partial tree, guided

by the results of previous exploration of that tree. Thus, the

algorithm iteratively builds a tree until a condition is reached

or satisfied (e.g., number of simulations, time given to Monte

Carlo simulations), then the search is halted and the best

performing action is executed. In the tree, each node represents

a state, and directed links to child nodes represent actions

leading to subsequent states. Like many AI techniques, MCTS

has several variants. Perhaps, the most accepted steps involved

in MCTS are those described in [7] and are the following:

(a) Selection: a selection policy is recursively applied to

descend through the built tree until an expandable (a node

is classified as expandable if it represents a non-terminal state

and also, if it has unvisited child nodes) node has been reached,

(b) Expansion: normally one child is added to expand the

tree subject to available actions, (c) Simulation: from the

new added nodes, a simulation is run to get an outcome

(e.g., reward value), and (d) Backpropagation: the outcome

obtained from the simulation step is backpropagated through

the selected nodes to update their corresponding statistics.

Simulations in MCTS start from the root state (e.g., actual

position) and are divided into two stages: when the state is

added in the tree and when a tree policy is used to select the

actions (the selection step is a key element and it is discussed

in detail later in this section). A default policy is used to roll

out simulations to completion, otherwise.

One element that contributed to enhance the efficiency in

MCTS was the selection mechanism proposed in [26]. The

main idea of the proposed selection mechanism was to design

a Monte Carlo search algorithm that had a small probability

error if stopped prematurely and that converged to the optimal

solution given enough time. That is, a selection mechanism

that balances exploration vs. exploitation, explained next.

B. Upper Confidence Bounds for Trees

As indicated previously, MCTS works by approximating

“real” values of the actions that may be taken from the current

state. This is achieved through building a search or decision

tree. The success of MCTS depends heavily on how the tree

is built and the selection process plays a fundamental role in

this. One particular selection mechanism that has proven to

be reliable is the UCB1 tree policy [26]. Formally, UCB1 is

defined as:

UCT = Qj + 2CE

√

2 · ln · n
nj

(1)

where n is the number of times the parent node has been

visited, nj is the number of times child j has been visited and

CE > 0 is a constant. In case of a tie for selecting a child

node, a random selection is normally used [26]. The values of

Qi,t and thus of Qj are understood to be within [0,1].

Thus, this selection mechanism works due to its emphasis

on balancing both exploitation (first term of Eq. 1) and

exploration (second term of Eq. 1). That is, every time a node

is visited, the denominator of the exploration part increases

resulting in decreasing its overall contribution. If, on the

other hand, another child node of the same parent node is

visited, the numerator increases, so the exploration values of

unvisited children increase. The exploration term in Eq. 1

guarantees that each child node has a selection probability

greater than zero, which is essential given the random nature

of the playouts.

C. Evolutionary Algorithms

Evolutionary Algorithms (EAs) [3], [9], also known as

Evolutionary Computation systems, refer to a set of stochas-

tic optimisation bio-inspired algorithms that use evolutionary

principles to build robust adaptive systems. EAs work with

a population of µ-encoded potential solutions to a particular

problem. Each potential solution, commonly known as an

individual, represents a point in the search space, where the

optimal solution lies. The population is evolved by means of

genetic operators, over a number of generations, to produce

better results to the problem. Each individual is evaluated using

a fitness function to determine how good or bad the individual

is for the problem at hand. The fitness value assigned to each

individual in the population probabilistically determines how

successful the individual will be at propagating (part of) its

code to future generations.

The field has its origins in four landmark evolutionary

methods. The first author’s work in Neuroevolution in Deep

Neural Networks [20] provides a nice summary of all of

these EAs. In this work we briefly describe the two methods

employed in this work:

1) Genetic Programming (GP): This EA was popularised

by Koza [27]. GP is a form of automated programming where

individuals are randomly created by using functional and

terminal sets required to solve a given problem. Multiple types

of GP have been proposed in the literature with the typical

tree-like structure being the predominant form of GP in EAs.

2) Evolution Strategies (ES): These EAs were introduced

in the 1960s by Rechenberg [29]. ES are generally applied

to real-valued representations of optimisation problems. In

ES, mutation is the main operator whereas crossover is the

secondary, optional, operator. Historically, there were two

basic forms of ES, known as the (µ, λ)-ES and the (µ+λ)-ES.

µ refers to the size of the parent population, whereas λ refers

to the number of offspring that are produced in the following

generation before selection is applied. In the former ES, the

offspring replace the parents whereas in the latter form of ES,



3

Fig. 1. An example of legal and illegal moves when placing a new tile by
aligning the sides with the artwork of currently placed tiles.

selection is applied to both offspring and parents to form the

population in the following generation.

D. The Game of Carcassonne

Games are great test benchmark problem and are becoming

more common in AI to carry out interesting research, ranging

from logical-based combinatorial puzzle games [17], [19],

board games [2], to video games [18], [22]. In this work,

we decide to use a popular board game named Carcassonne.

This is a challenging German-style board game that was first

released in 2000 and can be played by two to five players.

The objective of the game is to attain a higher score than

your opponents. The game consists of 72 playing tiles that are

used to build the game board. The square-shaped tiles contain

sections of a landscape and can contain several features, such

as farms, cities, roads and monasteries. Additionally, each

player is given a uniform coloured set of game pieces, called

Meeples. The order of play is decided by the players.

1) Placing Tiles: The game board begins with the same

tile being placed face up, and the remaining tiles placed face

down in a shuffled deck. In each turn, the current player picks

up the tile from the top of the deck and must place the tile

adjacent to the any of the previously played tiles on the game

board. However, the newly placed tile must extend the features

in the adjoining tiles. The tile can be also be rotated as many

times, as long as the artwork aligns with all neighbouring tiles.

Figure 1 demonstrates how to legally place tiles.

2) Meeples: The player can then choose to place one of

their meeples on any of the features in their recently placed

tile. The player can only place a meeple if they have any left

in their inventory. All players begin the game with a total

of 7 meeples each. Furthermore, the player can choose not

to place any meeple on their turn, if they wish to do so.

However, the player cannot place a meeple on a feature that

already contains an opponents’ meeple (or, in fact, one of

their own meeples). However, it is still possible to have a

game feature containing multiple meeples. If two disconnected

features of the same type each contain a meeple, and are then

subsequently connected, both meeples now control the same

feature. This can be done as many times throughout the game,

and is often employed as a tactic to take control of features

from opponents.

3) Scoring System: Scores are added to players’ tallies

when a feature containing a meeple or meeples is completed.

TABLE I
LIST OF SCORING ABILITIES IN CARCASSONNE.

Feature Completion (during play) End of Game

Farm (Not scored during play) +3 for each completed city
touching field

Road +1 per tile +1 per tile

City +2 per tile (+2 per pennant) +1 per tile (+2 per pennant)

Monastery +9 +1 and +1 for each sur-
rounding tile

A city is finished when the entire section of outer walls are

entirely connected. A city tile containing a pennant symbol are

worth double points. To gain scores from a road, both ends

of the section must be closed by entering a city, monastery or

village. Monasteries are only scored once they are entirely

surrounded by other tiles. If a completed feature contains

multiple sets of meeples, the points will be awarded to the

players with the most meeples within the feature. The same

set of meeples are then returned to the players.

The game continues until all tiles have been placed down.

At the end of the game, meeples placed in farms gain score

for each completed city touching the farm it is placed in.

Further scores are also added for meeples placed in incomplete

features. The player with the highest score is declared the

winner of the game. Table I provides details on how each

feature is scored. A player’s score achieved during normal

play is known as their current score, and their virtual score is

the player’s potential final score from farms and incomplete

features. Both scores are identical at the end of the game.

III. AI CONTROLLERS

A. Monte Carlo Tree Search

The basic implementation of MCTS is a tree search algo-

rithm that builds a statistical tree with stochastic simulations.

It is suitable for any two-player, perfect-information game of

finite length. Carcassonne falls into this category. The core idea

of MCTS is based on its four primary functions: Selection,

Expansion, Rollout and Backpropagation. See Section II for

details on how these work. The completion of these four stages

is known as a single simulation. Increasing the number of

simulations will ultimately lead to a more informative search

tree. When all simulations conclude, the algorithm will then

choose an action associated with a node from the first layer

of the tree. Normally the node with the highest action value

Q is chosen, which is the approach taken in this work.

One approach of evaluating the result would be to return

a reward value: +1 for a win, -1 for a loss, 0 for a draw.

However, both Heyden [24] and the first author [2] adopted

a more informative result evaluation: the reward value is the

difference of scores between the two players. We compare

both approaches. Their results are discussed in Section V.

B. Evolution Strategies Partially Integrated in Monte Carlo

Tree Search

We now turn our attention to the proposed AI controller

based on Evolution Strategies (ES) to evolve online the

mathematical expression to be used during the selection phase



4

of the MCTS for the game of Carcassonne. To this end, we use

(µ,λ)-ES, where µ = 1 and λ = 4. See Section II for details

on how EAs work. We first seed the UCT expression (see

Eq. 1) as our initial individual. We then proceed to generate

the offspring. Each of these is produced by means of subtree

mutation. We evolve a candidate solution in every turn that

we need to make a decision and we evolve it for a number of

generations. In Section IV we discuss in detail the parameters

used in this work and their corresponding values.

Our proposed method, as specified before, aims to evolve a

mathematical expression that can replace UCT with the goal

to get better or competitive results compared with UCT. Thus,

ES is called during the selection step in MCTS. Once a tree

node has been selected by our evolved expression, we proceed

to compute the fitness of the evolved expression. We do so by

performing rollouts as done in MCTS. A key difference is that

these values are not replicated from leaves to root and updating

the nodes’ values in that particular path. We simply keep track

of this fitness value. The latter is the score achieved when

selecting a node from the MCTS statistical tree and playing

the game of Carcassonne. We dubbed this proposed method as

Evolution Strategies partially integrated in Monte Carlo Tree

Search (ES-p-MCTS, for short).

C. Evolution Strategies in Monte Carlo Tree Search

We now proceed to describe how the previous method can

be fully integrated in MCTS. We call it Evolution Strategies in

Monte Carlo Tree Search (ES-MCTS, for short). Every time

we evolve a mathematical expression to potentially be used

instead of UCT, we assess it (compute its fitness) by applying

rollouts. The value of these rollouts are used to update a

copy of the MCTS statistical tree, from the selected node to

the root including the nodes given in a given branch. That

is, this update is performed in the same fashion as done in

vanilla MCTS (see Section II). By updating this copy of the

statistical tree of the MCTS, we can explore or exploit other

parts of the decision space, while at the same time keeping

the current status of the game unchanged. We perform ten

simulations to compute the fitness of the evolved expression.

The fitness of our evolved individual is the average of these

ten simulations. We then use the best (evolved) individual in

the MCTS algorithm instead of the UCT expression.

D. Minimax

The classic minimax search is expanded for stochastic

games as the expectimax algorithm [5], [23]. Expectimax

handles chance nodes by weighting their minimax values

according to the probabilities of the respective events. The

*-minimax family of algorithms, including Star1, Star2, and

Star2.5, are expectimax variants that use an alpha-beta pruning

technique adapted for stochastic trees.

In the Star1 algorithm, the theoretical maximum value U

and the theoretical minimum value L are used as the guess for

the worst and best scenarios of the chance nodes that have not

been evaluated in an attempt to prune the tree if the predicted

values fall outside an αβ window as in alpha-beta pruning. In

the worst-case scenario, no nodes are pruned and the search

behaves as the normal expectimax.

Star2 is meant for regular *-minimax games, in which the

actions for each player are influenced by a stochastic event at

the beginning of each turn. Examples of regular *-minimax

games are Backgammon, Catan, Monopoly, and Carcassonne.

In Star2, the first node is evaluated and used as the guessed

value for the rest of the sister nodes to prune as in Star1, in

the probing phase. Thus, ordering of the actions is required to

get more reliable results and to prune more often, leading to

a faster computational calculation. The actions available from

each state are ordered as soon as each state is reached for the

first time according to how promising they are (best to worst).

The ordering is done following a heuristic that is cheaper than

the simulation of the action and the evaluation of the resulting

state. If the probing phase fails to achieve a cut-off, the search

behaves as the Star1.

A probing factor f > 1 can be predefined in the Star2.5

algorithm. The probing factor determines the number of nodes

to be evaluated during the probing phase. In other words, a

f = 0 stands for Star1, f = 1 refers to Star2 and f > 1 is

the Star2.5. We used all these three variants to see which one

yields the best results.

E. Random

We also use a controller that chooses moves at random. This

controller chooses an action from a set of available possible

moves with uniform probability during its turn. This player

will predominantly be used as a baseline to demonstrate that

the remaining AI controllers are well-informed players that

perform intelligent moves

IV. EXPERIMENTAL SETUP

A. Function and Terminal Sets

We are interested in evolving mathematical expressions

that can be used instead of the UCT equation, shown in

Eq. 1. To this end, we define the function set and the

terminal set as follows. F = {+,−,×,÷, log,
√} and T =

{Q(s, a), N(s), N(s, a), CE}, where N(s) is the number of

visits to the node from the MCTS search tree, N(s, a) is the

number of visits to a child node, Q(s, a) is the child’s node

action-value and CE is the exploration-exploitation constant.

When CE is chosen to be mutated, it can take a random value

from the following set r = {0.25, 0.5, 1, 2, 3, 5, 7, 10}. The

division operator is protected against division by zero and

will return 1 for any divisor less than 0.001. Similarly, the

natural log and square root operators are protected by taking

the absolute values of input values.

B. League Competition Scoring System

The League competition scoring system is inspired by the

system adopted by most major professional sport leagues,

where points are awarded depending on the result of a game

between two player (in our case, between two controllers).

The points awarded to a game of Carcassonne based on a

win, a loss, a draw or bonus win (or loss) points are shown



5

TABLE II
SUMMARY OF PARAMETERS USED IN OUR EXPERIMENTS.

Parameter Value

*-Minimax
Max Depth 2 for Star 1, 2 and 2.5
Lower Bound L = −100, for Star 1, 2 and 2.5

Upper Bound U = 100, for Star 1, 2 and 2.5
Probing factor 0, 1, 4, for Star 1, 2 and 2.5, respectively

ES-p-MCTS and ES-MCTS

(µ,λ)-ES µ = 1, λ = 4

Generations 20
Type of Mutation Subtree (internal node), Point (leaf)

Mutation Rate One per individual
Initialisation Method Seeded and mutated

MCTS
No. of simulations 400
CE {0.25, 0.5, 1, 2, 3}

TABLE III
POINTS AWARDED TO A GAME OF CARCASSONNE BASED ON A WIN, A

LOSS OR A DRAW.

Acronym Description Points

BWP Number of Bonus Win Points 1

BLP Number of Bonus Loss Points 1

W Number of wins 4

L Number of losses 0

D Number of draws 2

PD
Average Point Difference
PD=Player Score-Opponent Score

Points Points tally of Controller

in Table III. A bonus point is attained for game win ratios

greater than 75:25 and for loss ratios greater than 45:55.

Furthermore, this system also considers each controller being

first or second player. The latter leads to a fair comparison by

letting a controller play as first player a number of games and

then act as second player for the same number of games.

C. Extensive Empirical Experimentation

To obtain meaningful results, we carried out an extensive

empirical experimentation: 1,100 independent games. This was

done as follows. We first group the MCTS controllers to play

against each other. Given that we have five variants for the

MCTS, we performed 500 independent games (20 matches of

25 games each). We also grouped the three Star algorithms.

This led to have 150 independent games (6 matches of 25

games each).

Finally, we compared our two proposed ES-based MCTS

controllers against the best controllers of MCTS and Star

algorithms. We also considered a random controller and the

MCTS controller with the highest average point difference

value. This led to have 450 independent games (30 matches of

15 games each). At every turn of each of these 1,100 games,

we performed 400 simulations. We executed our games using a

desktop computer with Intel Core i5 CPU clocked at 3.40GHz

and 8GB RAM. We completed running these experiments over

a period of four weeks. The results of this extensive empirical

experimentation is discussed in the next paragraphs.

TABLE IV
NUMBER OF WINS (W), LOSSES (L) AND DRAWS (D) BY USING TWO

DIFFERENT REWARD SYSTEMS. TOP: USING +1, 0 AND -1 AS REWARD

VALUES FOR W, D AND L, RESPECTIVELY. BOTTOM: USING DIFFERENCE

OF SCORES AS REWARD VALUES BETWEEN THE TWO PLAYERS. NO. OF

SIMULATIONS: 400. NO. OF INDEPENDENT GAMES: 50.

Controller Reward system
Player 1 Player 2

W L D W L D

C1 +1,0,-1 2 48 0 4 45 1

C2 Diff. of scores 45 4 1 48 2 0

V. DISCUSSION OF RESULTS

A. Reward Systems

When MCTS is used in a two-player game as done in this

work, the reward value is normally defined as +1, 0 and 1

when the player wins, draws or losses against its opponent,

respectively. However, as indicated in Section III, a more

informative case seems to be more beneficial. Specifically,

when the difference of scores between the two players is used

as reward value.

Table IV shows the results when using these reward sys-

tems: +1, 0, -1 denoted by Controller 1 (C1) and the difference

of scores between the two players denoted by Controller 2

(C2). We used these controllers to compete against each other

for 400 simulations using 50 independent games. When C1

is used as first player, it only wins 2 games against C2 that

is the second player. In the latter case, C2 wins 48 games

(see bottom right-hand side of the table). When C2 is used

as a first player and C1 as a second player, we can see that

C2 wins 45 games and C1 only wins 4 games (see top right-

hand side of the table). In summary, C2 (difference of scores

between the two players to be used as a reward value) yields

the best results and it is the reward system used in the rest of

the experiments.

B. Monte Carlo Tree Search and Different Values for UCT

The performance of MCTS is greatly determined by the

exploitation-exploration constant CE in the UCT function (see

Eq. 1). Increasing this value will result in less visited nodes or

nodes with smaller action-values to be explored more. A lower

value for CE will closely resemble a greedy algorithm that

will exploit the best possible action during each simulation.

A round-robin tournament with five MCTS controllers with

different CE values (see Table II for the values used in this

experiment) is adopted in this work to determine what value

yields the most competitive MCTS’ results.

Table V shows the results of the matches between pairs

of MCTS controllers using different values for CE in the

UCT as normally adopted in MCTS. When CE = 2 and

playing as Player 1 (left-hand side of the table), we can see

that this controller won all the matches against the rest of

the controllers. More specifically it won 16, 19, 13 and 16

games out of the 25 games that each match consists of. When

this controller plays as a second player (top of the table), it

wins only one match, which is against MCTS CE = 3, where

it wins 13 of the 25 games. Notice that in some cases the



6

sum of the wins shown in the cells is not equal to 25 games.

This denotes a draw and it is computed as the difference

of the sum of the wins and the the total number of games

(25) in each match. Continuing our attention on this controller

(MCTS CE = 2), we can see that it losses three matches when

playing as a second player against MCTS CE = {0.25, 0.5, 1}.

Furthermore, there is not a draw in any of these matches (either

MCTS CE = 2 being first or second player).

We then use this information to rank each player. This is

shown in Table VI. Two elements determine this ranking:

points attained by a controller (see Table III) and in case of a

tie, we use the average point difference between a controller

and the rest of the controllers (denoted as PD in Table VI). As

can be seen from the table, when MCTS uses CE = 2 in its

UCT formula, the controller wins five matches, losses three

and there are no draws. This gives 21 points (see first row of

Table VI). This is easily computed by considering Table III: 4

points for a win (4×5 wins) and 1 point for a win with ratio

greater than 75:25. The same number of points is attained

when CE = 0.5. This is the result of winning 5 matches

(4 points × 5) and 1 point for a loss within a loss ratio of

45:55. The tie breaker is determined then by the average point

difference, denoted by PD in the table, where CE = {2, 0.5}
achieve 12.48 and 8.2, respectively.

We can observe from Tables V and VI that the best

performing MCTS controller is when CE = 2 is defined in the

UCT formula. This is followed closely when CE = 0.5. The

bottom three controllers are when CE = {1, 0.25, 3}, from

best to worst. However, it is interesting to note that when

CE = 1, this attains the highest PD value among all the five

controllers.

TABLE V
NUMBER OF WINS OUT OF 25 GAMES, FOR EACH OF THE 20 PAIR

MATCHES (25*20 = 500 INDEPENDENT GAMES) WHEN USING MCTS AND

FIVE DIFFERENT CE VALUES.

Player 2
CE = 0.25 CE = 0.5 CE = 1 CE = 2 CE = 3

P
la

y
er

1

CE = 0.25 - 10-14 12-12 15-10 12-13
CE = 0.5 11-13 - 15-10 15-10 15-9
CE = 1 9-16 11-14 - 15-10 17-8
CE = 2 16-9 19-6 13-11 - 16-8
CE = 3 17-8 14-11 10-15 12-13 -

TABLE VI
RANKING OF THE MCTS CONTROLLERS BASED ON POINTS AS

DETERMINED BY WINS (W), LOSSES (L), DRAWS (D), BONUS WIN

POINTS (BWP) AND BONUS LOSS POINTS (BWP). SEE TABLE V FOR

FULL DETAILS OF RESULTS PER MATCH.

Pos MCTS Points BWP BLP W L D PD

1 CE = 2 21 1 0 5 3 0 +12.48

2 CE = 0.5 21 0 1 5 3 0 +8.2

3 CE = 1 15 0 1 3 4 1 +20.28

4 CE = 0.25 15 0 1 3 4 1 -19.96

5 CE = 3 13 0 1 3 5 0 -21

C. Performance of Star1, Star2 and Star2.5

Let us now focus our attention on the performance achieved

by the Star controllers. With only three controllers and using

TABLE VII
NUMBER OF WINS OUT OF 25 GAMES, FOR EACH OF THE 6 PAIR MATCHES

(25*6 = 150 INDEPENDENT GAMES) WHEN USING STAR1, STAR2 AND

STAR2.5.

Player 2
Star1 Star2 Star2.5

P
la

y
er

1 Star1 - 14-11 12-12
Star2 11-14 - 14-10
Star2.5 11-14 9-16 -

TABLE VIII
RANKING OF THE STAR CONTROLLERS BASED ON POINTS AS

DETERMINED BY WINS (W), LOSSES (L), DRAWS (D), BONUS WIN

POINTS (BWP) AND BONUS LOSS POINTS (BWP). SEE TABLE VII FOR

FULL DETAILS OF RESULTS PER MATCH.

Pos Player Points BWP BLP W L D PD

1 Star1 14 0 0 3 0 1 +8

2 Star2 8 0 0 2 2 0 -1.16

3 Star2.5 2 0 0 0 3 1 -6.84

a robin-round tournament match, as done with all the experi-

ments reported in this section, we have 6 matches (one match

is composed of 25 games). The results of these matches are

shown in Table VII. From this table, we can see that Star1,

acting as first player (left-hand side of the table) is able to

win a match against Star2 and it attains a draw against Star2.5.

When Star1 is now Player 2, shown in the top of the table, we

can observe that this controller wins all the matches (11-14,

in both cases, against Star2 and Star2.5).

This and the rest of the summary of wins, losses and draws,

among other informative values including number of bonus

wins/loss points (referred as BWP/BLP), and average point

difference (PD) between controllers, are shown in Table VIII.

Star1 yields the best results among all the controllers, without

losing any match. This is followed by Star2, with 2 wins and

2 losses. Finally, in last place, we have Star2.5 with no win

matches.

D. Comparison of performance of Evolution Strategies-based

MCTS controllers against the rest of the controllers

We now turn our attention on the performance achieved by

the Evolutionary Strategies variants in MCTS. We compare

each of these by playing matches against each other as well as

playing matches against those controllers discussed previously

that yield the best results in their respective groups. That

is, we use the best controller from MCTS (CE = 2) and

Star algorithms (Star1). We also include a random controller.

Because we are primarily interested to know whether our

proposed ES-MCTS variants yield competitive or better results

against MCTS or not, we further include MCTS with CE = 1:

this yields the highest value for the average point difference

(PD) between two controllers (see Table VI) and was the third

best controller in its MCTS group. All these controller led to

have ten matches between a particular controller against the

rest of the controllers, totaling 30 matches of 15 games each,

leading to run 450 independent games of 400 simulations at

each turn. The results of these matches are shown in Table IX.



7

TABLE IX
NUMBER OF WINS OUT OF 15 GAMES, FOR EACH OF THE 30 PAIR MATCHES (15*30 = 450 INDEPENDENT GAMES) WHEN USING ES-MCTS,

ES-P-MCTS, MCTS (CE = {1, 2}), STAR1 AND RANDOM.

Player 2
ES-MCTS ES-p-MCTS MCTS (CE = 1) MCTS (CE = 2) Star1 Random

P
la

y
er

1

ES-MCTS - 15-0 12-3 12-3 9-6 15-0
ES-p-MCTS 2-13 - 4-11 2-13 1-14 15-0
MCTS (CE = 1) 6-9 15-0 - 9-6 7-8 15-0
MCTS (CE = 2) 4-11 15-0 7-8 - 6-9 15-0
Star1 6-7 13-2 10-5 5-10 - 15-0
Random 0-15 0-15 0-15 0-15 0-15 -

Let us focus our attention in the Evolution Strategy in

MCTS, denoted as ES-MCTS in Table IX, we can observe

that when this controller plays as second player, it beats the

rest of the controllers. When ES-MCTS goes as first player,

we can see that it is able to beat all the controllers too. Thus,

the total number of wins for all ten matches is ten, as specified

under the W column in Table X. Moreover, there were nine

matches with a 75:25 ratio leading to nine points. Thus, the

total number of points attained by ES-MCTS is 49 (10 win

matches × 4 points, plus 9 bonus win points). The MCTS

variants with CE = {1, 2} attain six and five win matches,

respectively. When adding their bonus points (either by wins or

losses), we can see that MCTS with CE = 1 attains 29 points

and MCTS with CE = 2 achieves 26 points. These are ranked

3rd and 4th, respectively, as can be seen in Table X. Finally,

ES-p-MCTS and Random show poor performance with ten

and zero points, respectively.

E. Simulations carried out when using ES-MCTS and ES-p-

MCTS

As discussed in Section III, the ES-based MCTS variants

evolves potential solutions over a small number of gener-

ations. This, however, does not mean that these variants

have an advantage over the other AI controllers used in this

study. Specifically, when comparing MCTS-ES against MCTS,

ranked 1st and 3rd, respectively, when considering the best AI

controllers (see Table X). Whereas it is true that MCTS-ES

performs more simulations, these are not considered in the

statistical tree built by MCTS. Rather MCTS-ES uses a copy

of this statistical tree. Thus, when the EA simulations finish,

the MCT-ES statistical tree is the result of MCTS simulations

only, which is comparable to the MCTS UCT.

F. Statistically Significant Results

We carried out a statistical analysis on the results attained

at each group. Specifically, the statistical significance for the

results on the scores attained at each game for each group

summarised in Tables VI, VIII and X was computed using

Wilcoxon Test at 95% level of significance, independently

comparing the best MCTS controller (MCTS CE = 2 as

seen in Table VI), the best Star algorithm (Star1 as seen in

Table VIII) and the best controller from Table X (ES-MCTS),

in each case against each of the controllers in their groups

(in their corresponding tables). For MCTS CE = 2, this is

statistically significant with those results attained by MCTS

CE = {1, 0.25, 3} and not statistically significant with MCTS

TABLE X
RANKING OF THE ES-MCTS, ES-P-MCTS, STAR1, MCTS

(CE = {1, 2}) AND RANDOM CONTROLLERS BASED ON POINTS AS

DETERMINED BY WINS (W), LOSSES (L), DRAWS (D), BONUS WIN

POINTS (BWP) AND BONUS LOSS POINTS (BWP). SEE TABLE IX FOR

FULL DETAILS OF RESULTS PER MATCH.

Pos Player Points BWP BLP W L D PD

1 ES-MCTS 49 9 0 10 0 0 +381.67

2 Star1 34 4 2 7 3 0 +213.66

3 MCTS (CE = 1) 29 4 1 6 4 0 +218.47

4 MCTS (CE = 2) 26 5 1 5 5 0 +203.60

5 ES-p-MCTS 10 2 0 2 8 0 -326.06

6 Random 0 0 0 0 10 0 -1186.87

TABLE XI
FIVE MOST COMMON EXPRESSIONS AND OCCURRENCES THAT THESE

WERE YIELDED BY THE ES PARTIALLY INTEGRATED IN MCTS
(ES-P-MCTS) AND ES IN MCTS (ES-MCTS) CONTROLLERS.

Num ES-p-MCTS Count ES-MCTS Count

1 Qj + 2CE

√

2·log n

nj
263 Qj + 2CE

√

2·log n

nj
92

2
√
n 28

√

Qj 27

3
√
2 24 logQj 24

4
√

Qj 19 lognj 21

5 lognj 16 Qj +
√

Qj 19

Total 8517 8517

Unique 7444 7607

CE = 0.5. For Star1, this is statistically significant with those

results attained by Star2 and Star2.5. Finally, ES-MCTS is

statistically significant with those results attained by all the

controllers in their group (these are listed in Table X).

VI. WHY DOES ES-MCTS OUTPERFORM ES-P-MCTS?

We have already seen from Tables IX and X, how the

proposed Evolution Strategies in MCTS (ES-MCTS) outper-

formed the rest of the controllers. One of the reason why this

occurs is due to the ability of the ES-MCTS approach to use

the statistical tree of MCTS along with the ability to create

mathematical expressions that can be used instead of the UCT

expression (see Eq. 1), as normally adopted in MCTS.

To demonstrate the latter, we kept track of all the inde-

pendent games among all the controllers used in Tables IX

and X. In particular, we recorded those evolved expressions

generated by our ES variants. In Table XI, we show the five

most common evolved expressions yielded by ES partially

integrated in MCTS (ES-p-MCTS) and ES in MCTS (ES-

MCTS). The table also shows the number of occurrences of

these five most common evolved expressions as well as the



8

total number of expressions evolved by our controllers and

the number of unique expressions found by each of these ES

variants. These two are shown at the bottom of the table.

The unchanged UCT formula is the most popular with each

of the controllers. We can see that the ES partially integrated

in MCTS (ES-p-MCTS) uses the UCT formula more often

(263 times) compared to ES-MCTS (92 times). This seems

to indicate that ES-p-MCTS fails at producing a competitive

or better formula compared to UCT. When we take a closer

inspection to the rest of the most common evolved expressions

produced by ES-p-MCTS, we can see that only one of these

make use of the action-value Qj . This is a key element to

make intelligent decisions.

When we take a look at the expressions generated by the

ES-MCTS shown in the right of Table XI, we can see that this

situation changes radically. For instance, in all five common

expressions, but one, evolved by the ES in MTS (ES-MCTS)

the use of the value-action Qj is evident. The total number

of generated expressions were the same for both ES-based

controllers.

VII. CONCLUSIONS AND FUTURE WORK

Monte Carlo Tree Search (MCTS) is a sampling best-first

method to search for optimal decisions. A breakthrough in

MCTS was the adoption of the UCT, that yields extraordi-

nary results provided that this is well calibrated and enough

simulations are employed in MCTS. We have proposed (i)

Evolution Strategies (ES) partially integrated in MCTS (ES-

p-MCTS) and (ii) ES in MCTS (ES-MCTS). The latter uses

a copy of the MCTS statistical tree whereas the former does

not replicate the reward value attained by the simulations, as

normally adopted in MCTS. We have seen how the proposed

ES-MCTS is able to outperform all the ten controllers used in

this work, including robust MCTS controllers.

We believe that the information retrieved from rollouts is

underutilised in MCTS. From preliminary research, it is clear

that we can use this taking inspiration from GP semantic-based

approaches [11], [12], [13], [16], [21], [31], [32]. These results

show its adoption in MCTS can have a positive impact in the

results on the Game of Carcassonne.

ACKNOWLEDGMENTS

The authors thank the Department of Computer Science at

Maynooth University for financial support. The authors thank

Fred Valdez Ameneyro for providing the implementation of the

Game of Carcassonne. The authors also thank the reviewers

for their useful comments on the paper.

REFERENCES

[1] A. Alhejali and S. Lucas. Using genetic programming to evolve
heuristics for a monte carlo tree search ms pac-man agent. pages 1–8,
08 2013.

[2] F. V. Ameneyro, E. Galván, and Á. F. K. Morales. Playing carcassonne
with monte carlo tree search. In 2020 IEEE Symposium Series on

Computational Intelligence (SSCI), pages 2343–2350, 2020.
[3] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution

Strategies, Evolutionary Programming, Genetic Algorithms. Oxford
University Press, Oxford, UK, 1996.

[4] H. Baier and P. Cowling. Evolutionary mcts for multi-action adversarial
games. pages 1–8, 08 2018.

[5] B. W. Ballard. The*-minimax search procedure for trees containing
chance nodes. Artificial Intelligence, 21(3):327–350, 1983.

[6] I. Bravi, A. Khalifa, C. Holmgård, and J. Togelius. Evolving
game-specific UCB alternatives for general video game playing. In
G. Squillero and K. Sim, editors, Applications of Evolutionary Compu-

tation - 20th European Conference, EvoApplications 2017, Amsterdam,

The Netherlands, April 19-21, 2017, Proceedings, Part I, volume 10199
of Lecture Notes in Computer Science, pages 393–406, 2017.

[7] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton.
A survey of monte carlo tree search methods. IEEE Transactions on

Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[8] T. Cazenave. Evolving monte-carlo tree search algorithms. 2007.

[9] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Springer Verlag, 2003.

[10] E. Galván, O. Gorshkova, P. Mooney, F. Valdez, and E. C. Jimenez.
Statistical tree-based population seeding for rolling horizon eas in
general video game playing. Research in Computing Science, 2021.

[11] E. Galván and M. Schoenauer. Promoting semantic diversity in multi-
objective genetic programming. In A. Auger and T. Stützle, editors,
Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO 2019, Prague, Czech Republic, July 13-17, 2019, pages 1021–
1029. ACM, 2019.

[12] E. Galván and F. Stapleton. Promoting semantics in multi-objective
genetic programming based on decomposition. CoRR, abs/2012.04717,
2020.

[13] E. Galván and F. Stapleton. Semantic-based distance approaches in
multi-objective genetic programming. In 2020 IEEE Symposium Series

on Computational Intelligence (SSCI), pages 149–156, 2020.

[14] E. Galván-López, C. Harris, L. Trujillo, K. R. Vázquez, S. Clarke,
and V. Cahill. Autonomous demand-side management system based
on Monte Carlo tree search. In IEEE International Energy Conference

(EnergyCon), pages 1325 – 1332. IEEE Press, 2014.

[15] E. Galván-López, R. Li, C. Patsakis, S. Clarke, and V. Cahill. Heuristic-
based multi-agent monte carlo tree search. In IISA 2014, The 5th

International Conference on Information, Intelligence, Systems and

Applications, pages 177–182. IEEE, 2014.

[16] E. Galván-López, E. Mezura-Montes, O. A. ElHara, and M. Schoenauer.
On the use of semantics in multi-objective genetic programming. In
J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, and
B. Paechter, editors, Parallel Problem Solving from Nature - PPSN XIV -

14th International Conference, Edinburgh, UK, September 17-21, 2016,

Proceedings, volume 9921 of Lecture Notes in Computer Science, pages
353–363. Springer, 2016.

[17] E. Galván-López and M. O’Neill. On the effects of locality in a permu-
tation problem: The sudoku puzzle. In P. L. Lanzi, editor, Proceedings of

the 2009 IEEE Symposium on Computational Intelligence and Games,

CIG 2009, Milano, Italy, 7-10 September, 2009, pages 80–87. IEEE,
2009.

[18] E. Galván-López, J. M. Swafford, M. O’Neill, and A. Brabazon.
Evolving a ms. pacman controller using grammatical evolution. In
C. D. Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A. Esparcia-
Alcázar, C. K. Goh, J. J. M. Guervós, F. Neri, M. Preuss, J. Togelius, and
G. N. Yannakakis, editors, Applications of Evolutionary Computation,

EvoApplicatons 2010: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoIN-

TELLIGENCE, EvoNUM, and EvoSTOC, Istanbul, Turkey, April 7-9,

2010, Proceedings, Part I, volume 6024 of Lecture Notes in Computer

Science, pages 161–170. Springer, 2010.

[19] E. Galván-López, J. Togelius, and S. M. Lucas. Towards understanding
the effects of neutrality on the sudoku problem. In H. Lipson, editor,
Genetic and Evolutionary Computation Conference, GECCO 2007,

Proceedings, London, England, UK, July 7-11, 2007, page 1509. ACM,
2007.

[20] E. Galván and P. Mooney. Neuroevolution in deep neural networks:
Current trends and future challenges. IEEE Transactions on Artificial

Intelligence, 2(6):476–493, 2021.

[21] E. Galván, L. Trujillo, and F. Stapleton. Semantics in multi-objective
genetic programming. Applied Soft Computing, page 108143, 2021.

[22] E. Galván-López, D. Fagan, E. Murphy, J. M. Swafford, A. Agapitos,
M. O’Neill, and A. Brabazon. Comparing the performance of the
evolvable genotype-phenotype map to grammatical evolution in the
dynamic ms. pac-man environment. In IEEE Congress on Evolutionary

Computation, pages 1–8, 2010.



9

[23] T. Hauk, M. Buro, and J. Schaeffer. *-minimax performance in
backgammon. In International Conference on Computers and Games,
pages 51–66. Springer, 2004.

[24] C. Heyden and M. T. Dke. Implementing a computer player for
carcassonne. 2009.

[25] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In
European conference on machine learning, pages 282–293. Springer,
2006.

[26] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors, Machine Learn-

ing: ECML 2006, pages 282–293, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[27] J. R. Koza. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.
[28] S. Lucas, S. Samothrakis, and D. Perez Liebana. Fast evolutionary

adaptation for monte carlo tree search. 04 2014.
[29] I. Rechenberg. Evolution strategy: Nature’s way of optimization.

In H. W. Bergmann, editor, Optimization: Methods and Applications,

Possibilities and Limitations, pages 106–126, Berlin, Heidelberg, 1989.
Springer Berlin Heidelberg.

[30] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484–489, 2016.

[31] F. Stapleton and E. Galván. Semantic neighborhood ordering in multi-
objective genetic programming based on decomposition. In 2021 IEEE

Congress on Evolutionary Computation (CEC), 2021.
[32] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and E. Galván-López.

Semantically-based crossover in genetic programming: application to
real-valued symbolic regression. Genet. Program. Evolvable Mach.,
12(2):91–119, 2011.

[33] L. Wang, Y. Zhao, Y. Jinnai, Y. Tian, and R. Fonseca. Alphax: exploring
neural architectures with deep neural networks and monte carlo tree
search, 2019.


	I Introduction
	II Background
	II-A The Mechanics Behind MCTS
	II-B Upper Confidence Bounds for Trees
	II-C Evolutionary Algorithms
	II-C1 Genetic Programming (GP)
	II-C2 Evolution Strategies (ES)

	II-D The Game of Carcassonne
	II-D1 Placing Tiles
	II-D2 Meeples
	II-D3 Scoring System


	III AI Controllers
	III-A Monte Carlo Tree Search
	III-B Evolution Strategies Partially Integrated in Monte Carlo Tree Search
	III-C Evolution Strategies in Monte Carlo Tree Search
	III-D Minimax
	III-E Random

	IV Experimental Setup
	IV-A Function and Terminal Sets
	IV-B League Competition Scoring System
	IV-C Extensive Empirical Experimentation

	V Discussion of Results
	V-A Reward Systems
	V-B Monte Carlo Tree Search and Different Values for UCT
	V-C Performance of Star1, Star2 and Star2.5
	V-D Comparison of performance of Evolution Strategies-based MCTS controllers against the rest of the controllers
	V-E Simulations carried out when using ES-MCTS and ES-p-MCTS
	V-F Statistically Significant Results

	VI Why does ES-MCTS outperform ES-p-MCTS?
	VII Conclusions and Future Work
	References

