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Abstract—Machine Learning algorithms have been extensively
researched throughout the last decade, leading to unprecedented
advances in a broad range of applications, such as image
classification and reconstruction, object recognition, and text
categorization. Nonetheless, most Machine Learning algorithms
are trained via derivative-based optimizers, such as the Stochastic
Gradient Descent, leading to possible local optimum entrapments
and inhibiting them from achieving proper performances. A bio-
inspired alternative to traditional optimization techniques, de-
noted as meta-heuristic, has received significant attention due to
its simplicity and ability to avoid local optimums imprisonment.
In this work, we propose to use meta-heuristic techniques to
fine-tune pre-trained weights, exploring additional regions of the
search space, and improving their effectiveness. The experimental
evaluation comprises two classification tasks (image and text)
and is assessed under four literature datasets. Experimental
results show nature-inspired algorithms’ capacity in exploring the
neighborhood of pre-trained weights, achieving superior results
than their counterpart pre-trained architectures. Additionally, a
thorough analysis of distinct architectures, such as Multi-Layer
Perceptron and Recurrent Neural Networks, attempts to visualize
and provide more precise insights into the most critical weights
to be fine-tuned in the learning process.

Index Terms—Machine Learning, Meta-Heuristic Optimiza-
tion, Weights, Fine-Tuning

I. INTRODUCTION

Intelligence-based systems brought better insights into
decision-making tasks and withdrew part of the humans’
burden in recurring tasks, where most of these advances have
arisen from research fostered by Artificial Intelligence (AI) [1]
and Machine Learning (ML) [2]. They have been incorporated
in a wide range of applications, such as autonomous driv-
ing [3], text classification [4], image and object recognition [5],
and medical analysis [6], among others.

The increasing demand for more complex tasks and the
ability to solve unprecedented problems strengthened an ML
sub-area, denoted as Deep Learning (DL) [7]. DL algorithms
are known for employing deep neural networks and millions
of parameters to model the intrinsic nature of the human
brain [8], i.e., learn how humans can process information
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through their visual system and how they can communicate be-
tween themselves. Nevertheless, such learning is conditioned
to the training data and the model’s parameters and often does
not reproduce the real-world environment, leading to undesired
behavior, known as underfitting/overfitting [9].

Even though proper training usually accompanies underfit-
ting/overfitting, it is common to perceive a poor performance
when the model is collated with unseen data. This discrepancy
lies in the fact that the model “memorized” the training
data instead of learning its patterns, thus not reproducing the
desired outputs when applied to slightly-different data (test
data). The best approach to overcome this problem would be
to employ combinations of all possible parameters and verify
whether they are suitable or not when applied to the testing
data. Nevertheless, such an approach is unfeasible regarding
DL architectures due to their vast number of parameters and
exponential complexity [10].

On the other hand, a more feasible approach stands for
optimization procedures, where parameters are optimized ac-
cording to an objective function instead of being joined in all
possible combinations. A recent technique, denoted as meta-
heuristic, has attracted considerable attention in the last years,
mainly due to its simple heuristics and ability to optimize non-
differentiable functions. For instance, Rosa et al. [11] used
the Harmony Search algorithm for fine-tuning Convolutional
Neural Networks (CNN) hyperparameters, achieving improved
results over the benchmark architectures. At the same time,
Rodrigues et al. [12] explored single- and multi-objective
meta-heuristic optimization in Machine Learning problems,
such as feature extraction and selection, hyperparameter tun-
ing, and unsupervised learning. Furthermore, Wang et al. [13]
presented a fast-ranking version of the Particle Swarm Op-
timization algorithm to fine-tune CNN hyperparameters and
remove the fitness function evaluation cost.

Nevertheless, most of the literature works focus on only
optimizing the model’s hyperparameters (learning rate, number
of units, momentum, weight decay, dropout) [14]–[17] instead
of optimizing its parameters (layers’ weights and biases) [18].
Usually, parameters are optimized during the learning proce-
dure through gradient-based approaches, such as the Stochastic
Gradient Descent, yet they might benefit from the meta-
heuristic techniques’ exploration and exploitation capabilities.
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This work proposes an additional fine-tuning after the
model’s training, aiming to explore unknown search space
regions that gradient-based optimizers could not find. Such
an approach is conducted by exploring weights under pre-
defined bounds and evaluating them according to an objective
function (accuracy over the validation set). Therefore, the
main contributions of this work are three-fold: (i) to introduce
meta-heuristic optimization directly to the model’s parameters,
(ii) to provide insightful analysis of whether gradient-based
optimizers achieved feasible regions or not, and (iii) to fill the
lack of research regarding meta-heuristic optimization applied
to Machine Learning algorithms.

The remainder of this paper is organized as follows. Sec-
tion II presents a theoretical background regarding the em-
ployed ML architectures, e.g., Multi-Layer Perceptrons and
Recurrent Neural Networks. Section III introduces a brief
explanation about meta-heuristic optimization, as well as the
Genetic Algorithm and Particle Swarm Optimization. Sec-
tion IV presents the mathematical formulation of the proposed
approach, its complexity analysis, the employed datasets,
and the experimental setup. Finally, Section V discusses the
experimental results while Section VI states the conclusions
and future works.

II. MACHINE LEARNING

This section introduces brief concepts regarding the Multi-
Layer Perceptron and the Long Short-Term Memory.

A. Multi-Layer Perceptron

Multi-Layer Perceptron has arisen from the traditional Per-
ceptrons and represents a type of feed-forward artificial neural
network. Instead of having a single intermediate layer and a
linear function as the Perceptron has, the MLP architecture
comprises multiple Perceptrons arranged in hidden layers
and followed by non-linear activations, which allows it to
distinguish non-linearly separable data. Figure 1 illustrates the
standard architecture of an MLP.
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Fig. 1. Multi-Layer Perceptron standard architecture.

Commonly, MLP-based networks are employed in super-
vised learning tasks and trained through the Backpropaga-
tion [19] algorithm, which calculates the output error and
corrects the model’s weights according to the derivative of

the activation function and part of the error. Modern MLP
architectures use more sophisticated activation functions, such
as the Rectified Linear Unit (ReLU) [20], instead of only
relying on traditional ones, e.g., sigmoid and hyperbolic tan-
gents. Additionally, they have been used as the foundation of
several Deep Learning architectures, such as VGG [21] and
Inception [22] ones.

B. Long Short-Term Memory

Hochreiter et al. [23] proposed the Long Short-Term Mem-
ory networks, which are particular types of Recurrent Neural
Networks designed to learn information through long periods.
Their main difference when compared to traditional RNNs lies
in their hidden layer, which employs a cell (unit) with four
gate mechanism that interacts between themselves. Figure 2
illustrates such a cell architecture.
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Fig. 2. Long Short-Term Memory cell architecture.

An LSTM cell is represented by the following variables:
cell state Ct ∈ Rk, input neurons xt ∈ Rn, hidden layer
ht ∈ Rk and output neurons yt ∈ Rp. The cell state works
as a conveyor, running through the belt and suffering linear
combinations. Additionally, LSTM’s cell may add or remove
self-contained information through its gate mechanisms.

The gates allow or deny the flow of information and usually
constitute non-linear neural layers, such as sigmoid activation
and point-wise operations. The output of a sigmoid function
creates a real number between 0 and 1, which describes
the amount of information the gate should propagate. Note
that 0 stands for no-information, while 1 stands for the full-
information. Commonly, an LSTM cell is regulated by three
gates: input, forget, and output.

III. META-HEURISTIC OPTIMIZATION

Optimization problems consist of maximizing or minimiz-
ing mathematical functions through potential values, while
the optimization procedure aims to find those values given
a pre-defined domain. Traditional optimization methods [24],
such as the combinatorial and iterative methods, such as
the Grid-Search, the Newton method, the Quasi-Newton, the
Gradient Descent, Interpolation methods, use the evaluation
of gradients and Hessians, thus, being only practical when
applied to differentiable functions. Additionally, they elevate
the computational burden due to calculating first- and second-
order derivatives.



Alternatively, an approach known as meta-heuristic has
been applied to solve optimization tasks. Meta-heuristic tech-
niques [25] consists of high-level algorithms designed to create
and select heuristics capable of producing feasible solutions to
the optimization problem. Hence, meta-heuristic optimization
is a procedure that connects notions of exploration, used
to conduct extensive searches throughout the space, and ex-
ploitation, used to improve potential solutions based on their
neighborhoods.

A. Genetic Algorithm

Genetic Algorithm is a traditional evolutionary-based algo-
rithm inspired by the process of natural selection. It commonly
relies on biological operators, such as selection, mutation, and
crossover, and generates feasible solutions for optimization
tasks. Each individual is represented by an n-dimensional
position array x, where each dimension stands for a decision
variable, and a fitness value associated with this particular
position, i.e., f(x).

The Genetic Algorithm’s main objective is to evolve a popu-
lation of m individuals in an iterative way, where the so-called
biological operators are applied over the population to create a
more fit population, e.g., lower fitness values in minimization
problems. During each iteration/generation, the population is
evaluated, and a set of ps ×m individuals are stochastically
selected from it, where ps stands for the selection proportion
selection and m the number of individuals.

Furthermore, the selected individuals are divided into pairs
to form the “parents” and bred into offsprings according to
a crossover probability, denoted as pc. The offsprings are
new individuals who share characteristics inherited from their
parents, i.e., they have randomly selected positions from their
mother and father. Afterward, the offsprings are mutated
according to a mutation probability pm, which occasionally
adds a noise value to one of the offsprings’ positions.

Finally, the population is re-evaluated, and the iterative
process continues until a stop criterion is satisfied, such as
an epsilon or a maximum number of generations. Combining
the biological operators’ explorability and exploitability allows
the population to convergence to more appropriate values, thus
producing feasible solutions to optimization tasks.

B. Particle Swarm Optimization

Particle Swarm Optimization is a nature-inspired algorithm
that designs each agent as a bird that belongs to a swarm
and searches for optimal food sources. Each agent is rep-
resented by a (x,v) tuple, where x stands for its position
and v for its velocity. The initial position x is described
as an n-dimensional randomly vector, while the velocity v
is an n-dimensional vector of zeros, where each dimension
stands for the decision variable. Additionally, the objective
corresponds to searching the most likely decision variables,
which maximizes or minimizes a target function.

Let vt
i be the velocity of an agent i at iteration t, belonging

to a swarm of size M , such that i ∈ {1, 2, . . . ,M}. One can
update its velocity according to Equation 1, as follows:

vt+1
i = wvt

i + c1r1(x∗
i − xt

i) + c2r2(g − xt
i), (1)

where x∗
i stands for the best position obtained by agent i, and

g denotes the current best solution. Additionally, w, c1, and
c2 stand for the inertia weight, the social parameter, and the
cognitive ratio, respectively. Finally, r1 and r2 are uniformly
distributed random numbers in the range [0, 1].

Furthermore, let xt
i be the position of an agent i at iteration

t. One can update its position according to Equation 2, as
follows:

xt+1
i = xt

i + vt+1
i . (2)

IV. METHODOLOGY

This section presents a brief discussion regarding the
proposed approach, its complexity analysis, the employed
datasets, and the experimental setup.

A. Proposed Approach

The proposed approach aims to pre-train an architecture
through its standard pipeline, e.g., stochastic gradient op-
timization across a training set, followed by a fine-tuning
using meta-heuristic optimization across a validation set (post-
trained). The idea is to use meta-heuristic techniques to explore
the search space better and intensify a promising solution
found by the traditional optimization algorithm.

Let θ be the weights of a pre-trained neural network, where
θ ∈ <n and n stands for the number of weights. Additionally,
let ∆ be a defined value which stands for the search bounds
around θ. The initial solutions are randomly sampled from the
[θ −∆, θ + ∆] interval1 and feed to the meta-heuristic tech-
nique, which will explore the search space and find the most
suitable solutions given a fitness function, i.e., accuracy over
the validation set. At the end of the optimization procedure,
both post-trained and pre-trained networks are evaluated over
testing sets and compared. Figure 3 illustrates an overview of
the proposed approach pipeline.

B. Complexity Analysis

Let O(ι) and O(ζ) be the complexity of training and
validating a network for each epoch, respectively. We can
observe that in the proposed approach, we opted to pre-
train the whole network using Tn iterations, with additional
validations for every epoch. Hence, the whole pre-training
procedure complexity is depicted by Equation 3, as follows:

O(ι) · Tn +O(ζ) · Tn = O(ι+ ζ) · Tn. (3)

The proposed approach intends to provide an additional
optimization step after the network’s pre-training, where
agents will encode the pre-trained weights and biases as their
positions, search for better solutions throughout the space
and evaluate the fitness function (validation). Let To be the
number of optimization iterations, m the number of agents,

1Note that although the search interval (∆) is equal for each variable in θ,
they may have a different value.
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and the whole optimization procedure complexity described
by Equation 4, as follows:

O(ζ) · To ·m. (4)

Therefore, summing both Equations 3 and 4 together, it
is possible to achieve the proposed approach complexity, as
described by Equation 5:

O(ι+ ζ) · Tn +O(ζ) · To ·m. (5)

Note that if O(ζ)→ 0, both approaches will have the same
complexity. Unfortunately, this pattern will not often happen,
mainly due to the complexity of larger models, such as CNNs
and RNNs. However, the advantage is that O(ζ) is significantly
smaller than O(ι), thus adding only a small burden over the
standard pre-training.

C. Datasets

We considered four datasets in the experimental section,
being two image- and two text-based:

• CIFAR-10 [26]: is a subset image database from the “80
million tiny images” dataset. Composed of 60, 000 32x32
colour images divided in 10 classes, with 6, 000 images
per class. It is divided into five training batches and one
test batch, each containing 10, 000 images;

• CIFAR-100 [26]: is almost like the CIFAR-10 dataset,
yet it provides a more challenging problem. Composed
of 60, 000 32x32 colour images divided in 100 classes,
with 600 images per class. It is also split into five train-
ing batches and one test batch, each containing 10, 000
images;

• IMDB Large Movie Reviews [27]: is a dataset for the
task of sentiment analysis (binary classification) and is
composed of 50, 000 raw-text movie reviews, equally
split into training and testing sets;

• Stanford Sentiment Treebank (SST) [28]: is composed
of three-level sentiment analysis (positive, negative, and

neutral) of syntactically plausible phrase in thousands of
sentences from Rotten Tomatoes movie reviews (more
than 200, 000).

D. Experimental Setup

The proposed approach is evaluated amongst two distinct
tasks: image classification (CIFAR-10 and CIFAR-100) and
sentiment analysis (SST and IMDB). Regarding the former
task, we employed a standard Multi-Layer Perceptron (input,
hidden, and output layers), while the latter task uses a Long
Short-Term Memory (embedding, hidden, and output layers).
Table I describes the hyperparameters used in the image- and
text-based datasets, respectively.

TABLE I
HYPERPARAMETERS CONFIGURATION USED IN IMAGE CLASSIFICATION

(MLP) AND SENTIMENT ANALYSIS (LSTM) TASKS.

Hyperparameter CIFAR-10 CIFAR-100 IMDB SST

ni (input units) 3, 072 3, 072 − −
ne (embedding units) − − 128 64

n (hidden units) 1, 024 2, 048 512 128

no (output units) 10 100 2 3

e (epochs) 50 50 10 20

bs (batch size) 100 100 128 8

η (learning rate) 0.0001 0.0001 0.01 0.0001

Regarding the meta-heuristic techniques, we opted to use
an evolutionary-based algorithm denoted as Genetic Algorithm
and a swarm-based one, known as Particle Swarm Optimiza-
tion. Both algorithms are available in the Opytimizer [16]
package and the paper’s source code at GitHub2. For each
meta-heuristic, we employed three search space configurations,
as follows:

• α: 10 agents optimized over 5 iterations;
• β: 50 agents optimized over 25 iterations;
• γ: 100 agents optimized over 50 iterations.
Additionally, Table II describes the meta-heuristics param-

eters configuration.

TABLE II
META-HEURISTICS PARAMETERS CONFIGURATION.

Meta-heuristic Parameters

GA ps = 0.75 | pc = 0.5 | pm = 0.25

PSO w = 0.7 | c1 = 1.7 | c2 = 1.7

Finally, to provide a more robust analysis, we conduct
10 runnings with different seeds (different splits) for each
(metaheuristic, dataset) pair, followed by a statistical analysis
according to the Wilcoxon signed-rank test [29] with a 0.05
significance.

2The source code is available at https://github.com/gugarosa/mh fine
tuning.



V. EXPERIMENTS AND DISCUSSION

This section presents the experimental results concerning
the employed datasets and tasks. Furthermore, we present
additional discussions regarding the effect on weights’ op-
timization and how the search space’s bounds influence the
fine-tuning.

A. Overall Discussion

Table III describes the experimental results over the im-
age classification task, which comprehends both CIFAR-10
(top) and CIFAR-100 (bottom) datasets. The most striking
point to elucidate is that almost every meta-heuristic model
could slightly improve the baseline accuracy, i.e., every meta-
heuristic on the CIFAR-10 dataset, as well as α-GA-MLP and
β-PSO-MLP on the CIFAR-100 dataset. Additionally, consid-
ering both datasets, α-GA-MLP obtained the best accuracy and
recall metrics amongst the evaluated models (underlined cells),
yet every evaluated model was statistically similar according
to the Wilcoxon signed-rank test (bolded cells).

Table IV describes the experimental results over the senti-
ment classification task, which comprehends both IMDB (top)
and SST (bottom) datasets. The meta-heuristics performance
was marginally inferior to the baseline architecture (best
results marked by underlined cells) considering all metrics
and models. Such behavior is possibly explained by the fact
that meta-heuristics optimized the last fully-connected layer,
which is not the most descriptive layer in a recurrent network.
Even though they did not achieve outstanding results, every
model has been statistically similar to the baseline experiment
according to the Wilcoxon signed-rank test (bolded cells) and
reinforces the meta-heuristics capacity in attempting to search
for more reasonable minimum points.

Nonetheless, we think that meta-heuristics’ performance
was hindered by their high dimensional space (thousands
of features), which often bottlenecks the exploration and
exploitation phases as a low number of agents (roughly 102

smaller order of magnitude) are not capable of traversing local
optima and hence not converging to the most proper locations.
On the other hand, the experimental results showed that meta-
heuristics could sway the pre-trained weights in search of
better values, which fosters feasible improvements and the
necessity of additional experimentations.

B. How Weights Influence the Fine-Tuning?

Figure 4 illustrates the weights distribution concerning
LSTM and γ-GA-LSTM models over the IMDB dataset, while
Figure 5 depicts the weights concerning LSTM and γ-PSO-
LSTM models over the SST dataset. In both figures, it is hard
to observe differences between plots (a) and (b), although plot
(b) has slightly lighter colors when compared to plot (a). Such
behavior indicates that the meta-heuristic algorithms found
local optima when searching for weights values inferior to
the pre-trained ones.

Furthermore, the absence of a critical difference between
both plots indicates that the meta-heuristics could not ad-
equately explore the search space, only attaining minimal

superior or inferior values. As previously mentioned, this
may happen due to an optimization in a not so “important”
layer, hence marginally improving or decreasing the optimized
networks’ performance.

C. Bounding the Search Space

Finally, we opted to conduct the last experiment to verify the
influence of distinct search bounds over the proposed method-
ology. Table V describes the accuracy results between distinct
search bounds (∆ = 0.0001 and ∆ = 0.001) over CIFAR-10
(top) and CIFAR-100 (bottom) datasets. Even though a larger
∆ provided the best results (underlined cells), every model
has been statistically similar to each other according to the
Wilcoxon signed-rank test (bolded cells). Such performance
strengthens the hypothesis that optimizing high dimensional
search spaces requires more complex structures, such as
increased agents and iterations, to accomplish an adequate
convergence.

Moreover, Table VI describes the accuracy results between
distinct search bounds (∆ = 0.0001 and ∆ = 0.001) over
IMDB (top) and SST (bottom) datasets. In such an experiment,
it is possible to observe the same behavior depicted by
Table V, where every meta-heuristic has been statistically
similar to each other. Notwithstanding, one can also perceive
that γ-based models with ∆ = 0.001 achieved the best results
concerning both datasets, supporting that LSTMs may benefit
from broader than narrower searches.

VI. CONCLUSION

This work presented an early draft of how to fine-tune neural
networks’ performance through meta-heuristic techniques. Es-
sentially, after training architectures through standard gradient
descent algorithms, meta-heuristic algorithms attempt to ex-
plore the trained search space and find more suitable positions.

The experimental results showed that Multi-Layer Per-
ceptron applied to image classification tasks could benefit
from weights fine-tuning. While the meta-heuristics (GA and
PSO) performance were statistically similar to the standard
trained architecture, they could attain a higher mean accuracy
and a lower standard deviation over the CIFAR-10 dataset
(52.54± 0.52 against 52.40± 0.62) while obtaining a higher
mean accuracy and higher standard deviation over the CIFAR-
100 dataset (24.96± 0.33 against 24.93± 0.30). Such results
strengthen the ability of meta-heuristics to fine-tune and better
adjust the learned weights.

Regarding the sentiment analysis task conducted by the
LSTMs, one can perceive that none meta-heuristic could
obtain better metrics than the standard architecture, yet all
results were statistically similar according to the Wilcoxon
signed-rank test. Such behavior might be explained due to
only fine-tuning the last fully-connected layer (layer before the
Softmax activation) instead of fine-tuning the recurrent layer
and ignoring the biases fine-tuning, which may help meta-
heuristics in achieving more competitive results.

Finally, glimpsing through future works, we aim to extend
the current framework by using new sets of meta-heuristics



TABLE III
EXPERIMENTAL RESULTS (%) OVER CIFAR-10 (TOP) AND CIFAR-100 (BOTTOM) DATASETS.

Model Accuracy Precision Recall F1-Score

MLP 52.40± 0.62 52.73± 0.57 52.40± 0.62 52.45± 0.60

α-GA-MLP 52.54± 0.52 52.76± 0.54 52.54± 0.52 52.54± 0.52

α-PSO-MLP 52.51± 0.56 52.72± 0.57 52.51± 0.56 52.50± 0.56

β-GA-MLP 52.49± 0.57 52.70± 0.57 52.49± 0.57 52.48± 0.58

β-PSO-MLP 52.53± 0.56 52.73± 0.57 52.53± 0.56 52.52± 0.56

γ-GA-MLP 52.52± 0.59 52.73± 0.62 52.52± 0.59 52.51± 0.60

γ-PSO-MLP 52.52± 0.59 52.73± 0.61 52.52± 0.59 52.51± 0.60

MLP 24.93± 0.30 25.59± 0.35 24.93± 0.30 24.74± 0.29

α-GA-MLP 24.96± 0.33 25.64± 0.40 24.96± 0.33 24.77± 0.32

α-PSO-MLP 24.93± 0.31 25.59± 0.33 24.93± 0.31 24.73± 0.30

β-GA-MLP 24.91± 0.33 25.63± 0.40 24.91± 0.33 24.75± 0.33

β-PSO-MLP 24.96± 0.34 25.61± 0.37 24.96± 0.34 24.76± 0.32

γ-GA-MLP 24.92± 0.31 25.65± 0.38 24.92± 0.31 24.78± 0.32

γ-PSO-MLP 24.92± 0.31 25.52± 0.39 24.92± 0.31 24.70± 0.31

TABLE IV
EXPERIMENTAL RESULTS (%) OVER IMDB (TOP) AND SST (BOTTOM) DATASETS.

Model Accuracy Precision Recall F1-Score

LSTM 49.21± 2.05 49.17± 1.69 49.21± 1.23 48.54± 1.98

α-GA-LSTM 48.98± 1.76 48.91± 1.75 48.98± 1.62 48.14± 1.81

α-PSO-LSTM 48.97± 1.54 48.93± 1.60 48.92± 1.81 48.10± 1.90

β-GA-LSTM 48.98± 1.93 48.91± 1.90 48.98± 1.97 48.14± 1.77

β-PSO-LSTM 48.98± 1.88 48.90± 1.78 48.97± 1.99 48.16± 1.73

γ-GA-LSTM 49.03± 1.88 48.96± 1.77 49.03± 1.90 48.18± 1.81

γ-PSO-LSTM 48.99± 1.84 48.95± 1.73 48.97± 1.71 48.13± 1.77

LSTM 55.31± 2.64 50.24± 1.48 48.89± 1.71 48.41± 1.92

α-GA-LSTM 54.90± 2.85 49.95± 1.36 48.44± 1.89 47.95± 2.08

α-PSO-LSTM 54.93± 2.86 49.98± 1.38 48.47± 1.93 47.99± 2.13

β-GA-LSTM 54.91± 2.87 49.96± 1.38 48.45± 1.91 47.96± 2.10

β-PSO-LSTM 54.92± 2.89 49.97± 1.36 48.45± 1.93 47.98± 2.13

γ-GA-LSTM 54.90± 2.87 49.96± 1.39 48.44± 1.93 47.96± 2.12

γ-PSO-LSTM 54.95± 2.88 50.00± 1.38 48.48± 1.94 48.00± 2.14

algorithms, including fine-tuned biases, and extending the
number of fine-tuned layers. Additionally, we aim at extending
the current work to other neural network architectures, such as
Convolutional Neural Networks and Transformers. We believe
that the key to proper fine-tuning lies in selecting the most

informative layer (a layer that is responsible for extracting the
most important information) and a not so overwhelming search
space (fewest feature spaces).



(a) (b)
Fig. 4. IMDB weights matrix comparison between: (a) LSTM and (b) γ-GA-LSTM.

(a) (b)
Fig. 5. SST weights matrix comparison between: (a) LSTM and (b) γ-PSO-LSTM.
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