
Deep Neural Networks for Railway Switch Detection and Classification
Using Onboard Camera Images

Kanwal Jahan, Joshua Niemeijer, Nils Kornfeld and Michael Roth1

Abstract— Recent years have seen major advances in Ar-
tificial Intelligence (AI) methods for environment perception
in intelligent transportation systems. Although most of them
have been achieved in the automotive sector there is a similar
demand in the railway domain. This paper investigates Deep
Neural Network (DNN) based environment perception using
vehicle-borne camera images from the rail domain. Specifically,
railway switch detection and classification are addressed as a
relevant example for a DNN application with potential use for
landmark positioning, environment perception, and condition
monitoring. The lack of large training data sets in the railway
sector (in contrast to the automotive domain) is compensated
by an appropriate DNN architecture, an anchor box ratio
optimization scheme, and transfer learning. The presented
experimental results advocate for the adopted approach.

I. INTRODUCTION

The railway environment, as recorded by an onboard
camera contains many objects of interest, including level
crossings, traffic signs and signals, buffer stops, and railway
switches. For selective regions, some of these assets are
listed by OpenStreetMap2. In such areas, the correct detec-
tion of listed objects contributes to landmark recognition,
localization, and navigation. Awareness about the objects like
level crossings, buffer stops, traffic signals, and the presence
of nearby railway vehicles ensures the safety and smooth
operation of the railway system.
The recent advancement in Graphics Processing Unit (GPU)
technology and the availability of big training data sets
have enabled the researchers to use Deep Neural Networks
(DNNs) on camera images for extracting useful features.
Currently, there is a broad spectrum of applications ranging
from simple object detection to providing artificial perception
to a transportation system. Most of the achievements have
been made in the automotive sector mainly due to the
availability of a huge amount of training data. There is a
similar demand in the railway domain too.
Attaining such advancement in the railway sector is rather
straightforward due to the restricted motion of the vehicles on
railway lines as there is no need to have a lane keeping, lane
change, and intersection assistance system. The controlled
motion of the vehicle on rail tracks limits the direction of
motion except for the railway switches. Switches are special
structures that enable railway vehicles to change the direction
of motion. The blade position of a switch determines the
driven path in the rail network [1].

1Kanwal Jahan, Joshua Niemeijer, Nils Kornfeld and Michael
Roth are with the Institute of Transportation Systems, German
Aerospace Center (DLR), 38108 Braunschweig, Germany
firstname.lastname@dlr.de except M.Roth@dlr.de

2 https://www.openstreetmap.org

In the context of condition monitoring, switches are more
prone to failure and bear higher costs for maintenance [2].
However, they appear on the rail tracks infrequently so their
detection can help to focus on the preventive measures of
the selective railway tracks only. The task of switch detection
has multi-fold benefits like providing support in environment
perception leading to autonomous driving, landmark naviga-
tion, condition-based monitoring, and path prediction. As a
DNN can solve the detection and classification of the blade
position simultaneously, switches are the focus of our work.
The main contributions of this paper are as follows.

• We reduce the dependency on labeled data by using
very few images during the training phase.

• We investigate the methods of transfer learning [3]
and perform anchor box aspect ratio optimization to
compensate for the use of a small dataset.

• We have generated a small data set comprising publicly
available camera videos to be able to perform the
supervised learning.

Finally, our work should be seen as an effort to reduce
the technology gap in the railway sector. Even though it
appears much more conservative, there is great potential for
novel technologies to create a competitive and environment-
friendly rail sector.
The outline of the paper is as follows. Section II lists
related literature and similar work. Section III describes the
implemented approach. Experimental results are provided in
Section IV.

II. RELATED WORK
The researchers usually divide the neural networks used

for object detection into two categories i.e. one-stage detec-
tors and two-stage detectors. Two-stage region-based convo-
lutional neural networks are promising in terms of accuracy
but introduce a trade-off in prediction speed [4]. As the
name suggests, they perform the detection with the help
of two networks. Firstly, a region proposal network is used
to generate regions of interest. In the second step, feature
extraction and object classification is performed on the
proposed regions. One such widely used model is Faster R-
CNN [5].
One-stage detectors like YOLO V3 [4] achieve high infer-
ence speed by considering the detection task as a regression
problem. An image is divided into grid cells, each grid cell
has a fixed number of anchor boxes. For each anchor box the
network learns, (1) to predict the location offset of the anchor
box, (2) if the predicted box contains any object (objectness
score), and (3) the probability of the class the detected

object belongs to. All three tasks are normally taken care
of by only one network which accelerates their processing.
One-stage neural networks improve the speed of detection
but, in general, suffer from the problem of class imbalance
during the training phase and have lower detection accuracy.
However, RetinaNet [6], is a one-stage detector that performs
well on both the criteria of speed and accuracy by addressing
the problem of class imbalance with the appropriate choice
of the loss function.
There are different motivations for the detection of the
switches, for instance, [7] and [8] analyze condition monitor-
ing of switches, where they used classical image recognition
approaches for distinguishing the switches from a regular
straight rail. While we aim to use a deep neural network
to detect and classify a switch into its states to support the
task of autonomous driving mainly. So far, AI-based work
in the railway domain is used for condition monitoring and
fault detection in railway assets [9], [10] than the task of the
switch detection itself.
Another important component is the availability of domain-
specific data. In their survey paper, Hang Yin and Christian
Berger [11] describe there are at least 27 data sets applicable
to the automotive sector. Unlike the automotive sector, the
railway sector lacks publicly available data [12], while some
of the big training data sets for example CIFAR-100 [13],
Pascal VOC 2012 [14], Microsoft COCO [15], and Open
ImageNet [16] do contain limited labeled data representing
the railway environment. For instance, in CIFAR-100 [13]
only one out of the 100 classes is labeled as train with
a total of 600 images. Similarly, PascalVOC-12 [14] has
one class named train out of total 20 classes. The widely
used COCO data set by Microsoft [15] has more than 200K
images with 80 object categories. Only traffic sign and
train subcategories are usable in the railway context. So far
the most comprehensive dataset in the railway domain is
provided as RailSem19 [12] containing labels on four topics
out of which only one addresses switches. Out of 8500 total
images, there are 1965 and 2083 instances of the left and
right switches respectively.
An insufficient amount of training data in the railway sec-
tor has motivated us to investigate the critically important
concept of transfer learning [3].

III. RAILWAY SWITCH DETECTION

This section describes our proposed approach to address
the switch detection and classification task. Our application
platform includes two cameras in total, placed at the back and
front of the test vehicle to record video data from the cabin,
capturing the perspective of a driver. The collected camera
data is used to detect and classify the switches appearing on
the path of the moving railway vehicle.

A. Definitions

Geometrically, a switch consists of two movable blades
known as the switch rail [1] which distinguish a switch from
the straight rail. A distinction of a switch from the straight
rail is addressed as switch detection in this paper.

If the gap between the switch rail and stock rail is on the
right side, the vehicle will take the right path as depicted in
Fig. 1 and a left path if the gap is found at the left side.
The only difference between the left and right configuration
of a switch is made based on the gap present between a
straight stock rail and switchblade. The task of identifying
the state of a switch into a left and right configuration is
termed a classification task. The further classification of a
switch into its states helps to predict the driven path which
is an important element to achieve autonomous driving.

Fig. 1: A Representative Image of Right Switch.

B. DNN Architecture

There are many factors to consider for selecting a suitable
network. For example, the confidence in the accuracy and
speed of the prediction both are vital criteria for the system
to work in real-time. Moreover, the switches appear on the
straight rails infrequently which introduces an imbalance
in the background (straight rail) and foreground (switches)
classes. If the skewed class distribution is not addressed
properly it leads to the network ignoring the non-dominating
class completely and still achieving a good reduction of
training loss. In such situations, the network ends up learning
the background (dominating) class which has no practical
use. RetinaNet [6] not only performs well on speed and
accuracy criteria but also handles the class imbalance. The
backbone framework consists of a residual network (ResNet-
50) [17] and a Feature Pyramid Network (FPN) [18]. In
the architecture of RetinaNet, two subnetworks running in
parallel. One is termed as box regression head and the other
as classification head.
In the box regression head, a small Fully Convolutional
Network (FCN) is attached to each pyramid level. For every
anchor box, on every pyramid level, the subnetwork outputs
four offset values. These offset values are optimized during
training to bring the difference between the ground truth
object location and the anchor box as low as possible.
Smooth L1 loss [19] is used to optimize the weights of
the regression head. It is a combination of regular L1 and
L2 loss. It behaves as L2 loss near the minima which is a
quadratic loss and is sensitive to outliers. For the rest of the

graph, it acts like L1 (linear) loss with a steady gradient and
with more tolerance to outliers.
The classification subnetwork estimates the probability for
the presence of a particular class instance, for each anchor
box and total object classes. Generally in one-stage detectors,
the class imbalance is present between foreground (positive)
and background (negative) classes. In RetinaNet the intro-
duced [6] α-balanced focal loss not only balances negative
and positive cases but also gives more importance to complex
examples over the simple cases.

FL(pt) = −αt(1− pt)
γ log(pt) (1)

The focal loss Eq. (1) [6], with hyper-parameter αt (the
weight assigned to the rare class) takes care of the class
imbalance. It also down weights the loss contribution of
easily classified examples and focuses on a sparse set of
hard examples through the modulating factor γ.

C. Anchor Box Ratio Adaptation and Transfer Learning

During the regression task of RetinaNet [6], a small FCN
draws several anchor boxes at each location. To make the
learning efficient the width to the height aspect ratio of
the drawn bounding box can be fed as a configuration
parameter. K-means clustering is the simplest and most
popular unsupervised learning algorithm used to divide a
data set into a total of Kclusters. To compute the appropriate
aspect ratios K-means clustering is used [20]. We estimate
the best suited n number of centroids to represent the aspect
ratios of the whole data set as much as possible. This helps
to minimize the difference between the learned anchor box
shapes and ground truth bounding boxes of the data set used.

Deciding on the number of anchor boxes is a crucial factor,
as the number of boxes drawn at each location is a multiple
of the number of ratios and used scales. Even though more
aspect ratios represent the data set better but it comes with a
trade-off in the training speed and computational overhead.
For our generated data set, when the number of anchor boxes
is 5, 7 and 9 they represent 77.70%, 80.30% and 85.42% of
the total bounding boxes respectively. For RailSem19 [12]
the same number of anchor boxes represent 59.80%, 61.10%
and 64.32% of total bounding boxes. We use three fixed
values of scales [18] and 9 aspect ratios which result in 27
boxes drawn at each location during the training.
DNNs have a strong dependence on big training data set
but in our case, the major challenge is the lack of any such
data. To address this, network-based transfer learning [3] is
performed by initializing the weights of the network with
the weights from a pre-trained network. In transfer learning
knowledge gained with the help of a bigger data set can
be transferred to a smaller but to some extent similar data
set. Additionally, the lower layers of the backbone network
which contain basic features (lines, edges, etc) can be frozen
too. This helps the network to perform well on unseen data
as during pre-training the model learns the generic features.
It also introduces generalization and avoids the network to
overfit on smaller data set.

D. DLR labelled Dataset

We have labeled a small data set at DLR which consists of
2500 instances of switches. The images are collected from
a DLR-owned railroad vehicle and publicly accessible video
platforms capturing the view from the driver’s cabin. The
data is not only collected from different vehicles, but also
different rail tracks of various countries, with changing light
(day, evening, and night time) and weather conditions (sunny,
rainy, and snowy). Also, the cameras are installed at different
heights on the vehicles with varying camera settings. These
conditions introduce an enormous amount of diversity in the
collected data. There are 1272 instances of switch left and
1218 instances of switch right. The reason to label only a
few images is to keep the labeling cost and time minimal.

IV. EXPERIMENTS

We deploy our proposed approach on two datasets i.e.
RailSem19 [12] and the DLR generated dataset respectively.
Datasets are divided into 80 %, 10 %, and 10 % for
train, validation, and test set correspondingly. We use the
validation set to monitor the training performance and early
stopping to avoid overfitting. The appropriate number of
anchor box aspect ratios, as described in Sec. III-C, for each
dataset is found to be 9. For performing the network-based
transfer learning [3] and to initialize the weights of the
training network, the weights of ResNet-50 previously
trained on COCO data set are used. The images are resized
to a lower dimension of 960x540 to speed up the training
time. To further accelerate the training process and reduce
the generalization error we use batch normalization [21].
The batch size of 8 is selected which is the maximum size
supported by the used NVIDIA GPU- GeForce GTX 1080
Ti. The values used for hyper-parameters like γ and α (Eq.
1) are 2.0 and 0.25 [6]. Adam [22] with initial learning rate
of 1e−5 and clipping norm .001 is used for the optimization.

A. Evaluation Protocol

To evaluate the detection performance of the network we
use the Intersction over Union(IoU) metric. A total of 3
IoU thresholds are used i.e. 0 %, 50 %, and 75 %. An
IoU threshold at 0 % interprets to, any detected object is
considered for the classification irrespective if the predicted
anchor box and ground truth bounding box have an overlap.
Similarly, an IoU set at 100 % means the drawn anchor box
and the ground truth bounding box have an exact match of
coordinates.
To assess the classification performance we use the
Precision-Recall (PR) curve which is more sensitive to
misclassification of minority classes [23]. A PR curve closer
to the upper right corner of the graph depicts the good
classification performance by the network. As we already
have the precision and recall values from the PR curve,
we also calculate the F1 score which not only evaluates
the network performance but also helps to determine the
classification threshold. An F1 score of 1 is considered ideal
and a 0 score means the network has not learned anything

rational. Similarly, precision and recall values closer to 1
indicate the high positive predictive value and sensitivity of
the network.

B. Results on RailSem19

The first set of experiments is performed on RailSem19
[12]. It has labels on four topics, one of the topics is switches.
Out of 8500 total images, there are 1965 and 2083 instances
of the left and right switches respectively. The network is
trained for 100 epochs and the training performance does not
improve after the 30th epoch. The highest mAP achieved on
the validation set is only 8 % at 30th epoch.
Fig. 2 shows the PR curve of the selected model, on the
test set (214 instances of switch-right and 201 of switch-
left) of RailSem19 [12] dataset. The curves for all three
IoU thresholds tend to remain on the lower-left corner
illustrating the low values for precision and recall both. The
best performing PR curve, with a larger area under the curve,
is at 0% IoU.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

Recall

Pr
ec

is
io

n

IoU0 %

IoU50 %

IoU75 %

Fig. 2: Precision-Recall Curve of RailSem19.

TABLE I: F1 Score of RailSem19 Test Set

CT F1 F150 F175

0.15 0.352 0.135 0.030
0.20 0.415 0.160 0.0344
0.25 0.426 0.176 0.0377
0.30 0.401 0.147 0.041
0.35 0.337 0.119 0.028

As shown in Tab. I too, the F1 score is highest at
0 % yet we select the threshold at 50 % giving equal
importance to classification and detection tasks. F1 score
at the classification threshold of 25 % shows the maximum
score of 0.176. So, the selected values are 50 % and 25 %
for IoU and classification thresholds, respectively. At the
best settings, the precision and recall values are very low
(ref: Fig. 2) i.e. 0.19 and 0.15 representing the number of
false negatives and false positives both are high as compared
to the true positives. The mAP among the classes for the

test set is 5.13% and the average inference time is 40.1 ms
i.e. the prediction speed of 24.95 fps.
The training results are not promising and do not improve
much by using a larger network, introducing dropouts
between dense layers, another optimizer, and varying batch
size. We observed that the irregularity in the sizes of the
bounding boxes is too high. Only 64% of the total bounding
boxes are represented with 9 anchor box aspect ratios. Sizes
of ground truths are sometimes too small to contain enough
information about the geometrical details of the switch
states. In rare cases, labels are incorrect too. In the original
work [12], detection and classification of the left and right
switches is stated as a challenging task with lower accuracy
as compared to other classes.

C. Results on DLR Labelled Dataset

The training is performed for 100 epochs on labeled
switched from the DLR-labelled dataset. The network
reaches the highest training accuracy after the 30th epoch.
We use early stopping and select 27th epoch which shows
an mAP of 93.92% for the validation set.
Fig. 3 represents the PR curve of the selected model on the
test set (125 instances of left switches and 130 instances
of right switches). The gap between curves of 0% IoU and
50% IoU thresholds is minimal depicting good performance
by classification network.

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

Recall

Pr
ec

is
io

n

IoU0 %

IoU50 %

IoU75 %

Fig. 3: Precision-Recall Curve of DLR Generated Data Set.

TABLE II: F1 Score of DLR Generated Test Set

CT F10 F150 F175

0.35 0.911 0.892 0.778
0.40 0.918 0.893 0.770
0.45 0.921 0.898 0.768
0.50 0.890 0.886 0.759
0.55 0.876 0.871 0.741

Tab. II shows the F1 score of the test set with the
respective IoU and classification thresholds.

� True label
� Switch right
� Switch left

(a) (b)

(c) (d)

(e) (f)

Fig. 4: Images predicted by network trained on self-generated data set at DLR. Fig. (a), (b), and (c) show correctly classified
right, left and left switch with a confidence of 77%, 95% and 93%respectively. Fig. (d) shows wrongly classified switch-left.
Fig. (e) and (f) are the predictions made on images from RailSem19 data set with a confidence of 90% and 62%.

The classification threshold which better represents the test
set is 45 % for all three IoU thresholds. We select the IoU
threshold to be at 50 %. At the selected IoU threshold the
detection rate of a switch irrespective of its classification
is 95.9%, representing the network can distinguish a switch
from the straight rail with high accuracy. Fig. 5 shows the
confusion matrix for the switch detection.

Predictions
Switch Not-switch

Ground Truth Switch 237 13
Not-switch 0 0

Fig. 5: Confusion matrix for switch detection.

While considering the classification task the precision and
recall values at the selected thresholds are (ref: Fig. 3) 0.90
and 0.86, meaning the number of true positives is very high
as compared to the false positives and false negatives. The
F1 score of the test set with the 50 % IoU and 45 %
classification thresholds is 0.898.
Fig. 6 shows the confusion matrix for the classification of
the switch into left and right.

Predictions
Switch-right Switch-left

GT Switch-right 122 8
Switch-left 18 107

Fig. 6: Confusion matrix for switch classification.

Individually, the switch-left and switch-right classes have an
average precision of 93% and 87.41%, respectively. Fig. 7
shows the precision, recall and F1 score for each class.

Precision Recall F1
Switch-right 0.87 0.94 0.90
Switch-left 0.93 0.86 0.89

Fig. 7: Precision and recall values for switch classes.

While the mAP among classes is 90.21% with an average
inference time of 49.5 ms i.e a prediction speed of 20.2
fps. As the cameras are installed on a shunter locomotive
which move with a maximum speed of 20km/h the inference
speed is good enough to deploy the approach real-time. The
approach can be extended to high speed railway vehicles too
with the help of advance GPU.
Fig. 4 shows the predictions made by the network on the test
set are shown.Fig. 4(a) and 4(b) show correctly classified
right and left switch respectively. Fig4(c) shows not only
correctly classified switch left but also detects a switch right
which was not labeled as we are interested in the driven
rail track only. However, Fig 4(d) shows wrongly classified
switch-left instead of switch-right as predicted anchor box
fails to include the gap between the rails altogether. Fig 4(e)
and 4(f) are the predictions made on RailSem19 data set.

The network (trained on DLR data set) performs well when
RailSem19 and our labeling policies match.

V. CONCLUSION

In this paper, we were able to detect and classify the
railway switches, with accuracy, using transfer learning, an-
chor box optimization, and appropriate network selection to
address existing challenges like the lack of suitable training
data, and class imbalance while maintaining a good balance
between prediction accuracy and inference time. This work
resulted in the high accuracy of classification (90.21 %)
and even higher accuracy (95.9 %) for the detection of a
switch from the background by utilizing only 2000 images
during the training phase. The high inference speed (20 fps
enables the presented approach to be deployed for online
applications.
In the future, we aim to compare the accuracy and inference
speed using other state-of-art approaches like Faster R-CNN
[5]. We also aim to improve the classification accuracy by
benefiting and combining both the data sets while ignoring
the smaller anchor boxes from RailSem19 [12] data set. We
intend to deploy the gained insights for the detection of other
railway objects too, to gain useful insights into the railway
environment and profit from the deep learning methods in
the railway domain.

ACKNOWLEDGMENT

This research is part of the project 5G Real-World Labo-
ratory. The 5G Real-World Laboratory has received funding
from the Federal Ministry of Transport and Digital Infras-
tructure.

REFERENCES

[1] Jürgen Janicki, “DB Manual: Railway system knowledge – How the
German rail system works,” Tech. Rep., 2018.

[2] Robert Schuil Eric Baars Joern Christoffer Groos Daniela Narezo Guz-
man, Edin Hadzic, “Turning data driven condition now- and forecast-
ing for railway switches into maintenance actions,” In: Transport
Research Arena 2018 Conference Proceedings, 2018.

[3] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang,
and Chunfang Liu, “A Survey on Deep Transfer Learning,” The
27th International Conference on Artificial Neural Networks (ICANN
2018), 2018.

[4] Joseph Redmon and Ali Farhadi, “YOLOv3: An Incremental Improve-
ment,” Computer Vision and Pattern Recognition (CVPR), p. 6, 2018.

[5] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, “Faster
R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks,” NeurIPS 2015, Jan. 2016.

[6] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr
Dollár, “Focal Loss for Dense Object Detection,” Computer Vision
and Pattern Recognition (CVPR), 2018.

[7] Mehmet Karakose, Erhan Akin, and Orhan Yaman, “Detection of
Rail Switch Passages through Image Processing on Railway Line and
use of Condition-Monitoring Approach,” International Conference on
Advanced Technology and Sciences (ICAT), 2016.

[8] Canan Taştimur, Mehmet Karaköse, and Erhan Akın, “A Vision
Based Condition Monitoring Approach for Rail Switch and Level
Crossing using Hierarchical SVM in Railways,” International Journal
of Applied Mathematics, Electronics and Computers, pp. 319–319,
2016.

[9] Wasim Ahmad, Artificial Intelligence-based Condition Monitoring of
Rail Infrastructure, Ph.D. thesis, University of Twente, 2019.

[10] Jinbeum Jang, Minwoo Shin, Sohee Lim, Jonggook Park, Joungyeon
Kim, and Joonki Paik, “Intelligent Image-Based Railway Inspection
System Using Deep Learning-Based Object Detection and Weber
Contrast-Based Image Comparison,” Sensors (MDPI), vol. 19, no.
21, 2019.

[11] Hang Yin and Christian Berger, “When to Use What Data Set for Your
Self-Driving Car Algorithm: An Overview of Publicly Available Driv-
ing Datasets,” in IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), Yokohama, 2017, pp. 1–8.

[12] Oliver Zendel, Markus Murschitz, Marcel Zeilinger, Daniel Steininger,
Sara Abbasi, and Csaba Beleznai, “RailSem19: A Dataset for Semantic
Rail Scene Understanding,” Computer Vision and Pattern Recognition
(CVPR), p. 9, 2019.

[13] Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny
Images,” Tech. Rep., 2009.

[14] Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I.
Williams, John Winn, and Andrew Zisserman, “The Pascal Visual
Object Classes Challenge: A Retrospective,” International Journal of
Computer Vision, vol. 111, no. 1, pp. 98–136, 2015.

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross
Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence
Zitnick, and Piotr Dollár, “Microsoft COCO: Common Objects in
Context,” Computer Vision and Pattern Recognition (CVPR), 2015.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” in
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2009, p. 8.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
Residual Learning for Image Recognition,” IEEE Conference on
Computer Vision and Pattern Recognition, 2015.

[18] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath
Hariharan, and Serge Belongie, “Feature Pyramid Networks for Object
Detection,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 936–944.

[19] Ross Girshick, “Fast R-CNN,” IEEE International Conference on
Computer Vision (ICCV), 2015.

[20] Yuanyi Zhong, Jianfeng Wang, Jian Peng, and Lei Zhang, “Anchor
Box Optimization for Object Detection,” Computer Vision and Pattern
Recognition, 2020.

[21] Andrew Ilyas Aleksander Madry Shibani Santurkar, Dimitris Tsipras,
“How does batch normalization help optimization?,” NIPS’18: Pro-
ceedings of the 32nd International Conference on Neural Information
Processing Systems, 2018.

[22] Diederik P. Kingma and Jimmy Ba, “Adam: A Method for Stochastic
Optimization,” ICLR 2015, 2015.

[23] Jesse Davis and Mark Goadrich, “The relationship between Precision-
Recall and ROC curves,” in Proceedings of the 23rd international
conference on Machine learning - ICML ’06, Pittsburgh, Pennsylvania,
2006, pp. 233–240.

