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Abstract—An important issue during an engineering design
process is to develop an understanding which design parameters
have the most influence on the performance. Especially in the
context of optimization approaches this knowledge is crucial in
order to realize an efficient design process and achieve high-
performing results. Information theory provides powerful tools
to investigate these relationships because measures are model-free
and thus also capture non-linear relationships, while requiring
only minimal assumptions on the input data. We therefore
propose to use recently introduced information-theoretic methods
and estimation algorithms to find the most influential input
parameters in optimization results. The proposed methods are
in particular able to account for interactions between param-
eters, which are often neglected but may lead to redundant
or synergistic contributions of multiple parameters. We demon-
strate the application of these methods on optimization data
from aerospace engineering, where we first identify the most
relevant optimization parameters using a recently introduced
information-theoretic feature-selection algorithm that accounts
for interactions between parameters. Second, we use the novel
partial information decomposition (PID) framework that allows
to quantify redundant and synergistic contributions between
selected parameters with respect to the optimization outcome to
identify parameter interactions. We thus demonstrate the power
of novel information-theoretic approaches in identifying relevant
parameters in optimization runs and highlight how these methods
avoid the selection of redundant parameters, while detecting
interactions that result in synergistic contributions of multiple
parameters.

Index Terms—feature selection, information theory, partial
information decomposition, aerospace design optimization, en-
gineering data mining

I. INTRODUCTION

Optimizing the performance of systems of parts is a central
task during an engineering design process. For example, in
automotive or aerospace engineering, the shape of individ-
ual parts is commonly optimized to improve aerodynamic
performance using computer aided design (CAD) methods.
Typically, engineers wish to understand which changes in
a shape, carried out during the optimization, lead to the
improved behavior. Hereby, it is often of interest to account
for interactions between parameters such as to identify which
parameters influence a shape’s fitness only when considered

jointly [1], [2]. We therefore present a novel, information-
theoretic approach for the identification of optimization param-
eters most relevant to changes in a shape’s fitness, which ac-
counts for interactions between parameters with respect to the
fitness, such as to identify parameters that interact jointly with
the target. We further utilize recently introduced information-
theoretic measures to quantify interactions between features.
We demonstrate the applicability of our approach on a set
of realistic turbofan rotor blade optimization runs [3], but
strongly believe that it is of interest for a wide range of
engineering design optimization scenarios.

Information theory [4] is a powerful tool for the analy-
sis of dependencies between variables. Information-theoretic
methods, such as the mutual information (MI), are model-free
and are able to capture dependencies of arbitrary order, while
requiring only minimal assumptions about the data for their
estimation when using state-of-the-art estimators [5]. These
properties make information-theoretic measures particularly
promising tools for the analysis of data in the engineering
domain [6], for example, results from optimization runs [7].
Here, the relationship between parameters and the optimization
objective is expected to be highly non-linear and the number of
data samples is typically rather limited because the evaluation
of fitness functions is costly. Furthermore, data distributions
are typically not known and are expected to be highly biased
due to the fact that data are generated by an optimization
algorithm. As a result, high-quality global surrogate models
that cover substantial parts of the search domain are most
likely not available to understand optimization runs [3]. Thus,
there is a need for methods that allow for a post-hoc analysis
of optimization parameters and their influence on the opti-
mization outcome.

We use a recently introduced algorithm for inferring re-
lationships between variables that uses a conditional mutual
information criterion (CMI) as a selection criterion [8], [9].
Using the CMI for selecting variables allows to account
for interactions between variables such as redundancies, but
also synergistic contributions [10]. Furthermore, we use the
recently introduced partial information decomposition (PID)
framework to investigate selected variables for interactions
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with respect to the target variable. We apply our approach to
data from realistic turbofan blade aerodynamic optimization
runs that use computational fluid dynamics (CFD) to evaluate
a shape’s fitness [3]. We propose a parametrization of the
turbofan blade geometry that allows for application of the
proposed algorithm and compare our algorithm’s performance
to related information-theoretic feature selection criteria. To
our knowledge, this work is the first using PID for sensitivity
analysis in aerodynamic optimization data.

II. METHODS

A. Optimization and Simulation Setup
We use data from realistic optimization runs on turbofan

rotor blade geometries that was previously described and
published in [3]. For details on the data generation process
refer to the original publication. Fig. 1A shows a schematic
of a turbojet engine and the corresponding turbofan rotor blade
geometry.

Fig. 1. Turbofan blade, modification and feature sets. A Investigated turbofan
blade and Honda HF 120 jet engine, orange lines indicate cross-sections at
which shape modifications were performed (LE: leading edge, TE: trailing
edge). B Features selected form one blade section. C Modification of one
blade section through addition of Hicks-Henne functions used during the
shape optimization. D Location of the extracted feature sets, defined by
varying numbers of sectional cuts through the geometry and number of points
per section (red markers). Blue markers indicate leading and trailing edge
features, each comprising two features for the x- and y-coordinate of the
edge, respectively.

A rotor blade is optimized by starting with a baseline-shape
that is modified under the objective of minimizing a target
function. The shape is modified by deforming three cross-
sections of the shape, where each section is a cylindrical cut of
the geometry. We consider one section at the hub, one at mid-
span height, and one at the shroud of the blade as indicated
by the red lines in the inset of Fig. 1A.

Each section is deformed independently by the following
manipulations: (i) rotation of the section around the leading

edge (LE) point, (ii) movement of the section in the axial-
meridional plane, and (iii) deformation of the section profile by
adding Hicks-Henne shape functions [11], which is a common
approach in 2D airfoil design and is illustrated in Fig. 1C. The
Hicks-Henne function is defined as

b(x, x0) =
[
sin
(
πx

log(0.5)
log(x0)

)]2
, (1)

where x ∈ [0, 1] parametrizes the chord length of each section
and x0 is the location of the maximum of each shape function.
We placed the maxima of NHH shape functions per section
at equally spaced locations along the cord length, x0(i) =

i
NHH+1 where i = 1, . . . , NHH . Considering all three possible
manipulations, section rotation, movement, and deformation
with Hicks-Henne functions, the total number of free shape
parameters is N = 3 (NHH + 3).

For the optimization of shape parameters, we used a covari-
ance matrix adaptation evolutionary strategy (CMA-ES) [12]
with a population size of λ = 12 and µ = 4 parents which we
ran for 161 generations, which amounts to 1932 evaluations,
i.e., data samples, per run. We used an initial step size of
σ = 0.05 in relative units of the maximal allowed variation
(i.e., a 5% initial variation). We performed four optimization
runs, where two runs were performed with NHH = 3 and
two runs with NHH = 7, which lead to 18 and 30 free
parameters to be determined by the optimization, respectively.
Each run was initialized using a different random seed. These
parameter settings are derived from best practices which try to
balance the exploration and exploitation capabilities of each
optimization run, to arrive at manageable optimization run-
times (each CFD simulation of a blade takes about 2 hours on
32 cores), and utilize the HPC infrastructure most efficiently.

The optimization target was to maximize the aerodynamic
efficiency of the rotor blade at cruising conditions, which is
estimated by calculating the isentropic efficiency of the blade,

η =

(
PT,outlet
PT,inlet

) γ−1
γ − 1

TT,outlet
TT,inlet

− 1
, (2)

where PT and TT are the mass-flow averaged total pressure
and total temperature at the specified location and γ = 1.4 is
the heat capacity ratio (see, for example, [13]).

The boundary conditions of the CFD simulation mimic
the behavior of a jet engine under cruising condi-
tions. Each blade was evaluated with a CFD sim-
ulation which employed the compressible flow solver
steadyCompressibleMRFFoam from the OpenFOAM
CFD suite (version foam-extend-3.2), adapted to be more
robust for trans-sonic simulations [14]. The fitness of a blade
was calculated as

f = 1− ηavg + P, (3)

where ηavg denotes the isentropic efficiency of the blade of
Eq. (2), averaged over the last 100 iterations of the solver. P
represents a penalty term that increases and thus worsens the
fitness if the CFD simulation does not show good convergence



or if the generated blade geometry is not feasible. See the orig-
inal publication [3] for more details on the simulation setup,
the optimization and the data generation. The fitness values
during the optimization runs as function of the generations is
shown in Fig. 2.

Fig. 2. Raw fitness values over generations for four investigated optimizations.

B. Feature Extraction of Turbofan Blade Geometries for Sen-
sitivity Analysis

We ran four optimizations with varying numbers of param-
eters for shape modification. In a next step, we wished to
identify the locations at which modifications were most rele-
vant to a blade’s fitness. To apply the proposed information-
theoretic approach, we first had to find suitable features that
represented the blade geometry’s surface and could be used as
input features for the algorithm (e.g., [15]). To this end, we
considered multiple sectional cuts through the blade geometry.
At each sectional cut n, we placed Npoints points equally
spaced along the chord line and recorded the absolute distance
from the actual blade surface to the chord line at these
locations (Fig. 1B). Furthermore, we considered the x- and
y-coordinates of the leading edge (LE), xLE

n and yLE
n , as well

as the x- and y-coordinates of the trailing edge (TE), xTE
n and

yTE
n . We varied the number of points and sections used for

the features to investigate the stability of results over various
representations of the geometry. We used 3 sectional cuts with
2 points, resulting in 18 features, 3 cuts with 3 points, resulting
in 21 features, 5 cuts and 5 points resulting in 45 features, and
10 cuts and 8 points, resulting in 120 features (Fig. 1D).

C. Information-Theoretic Preliminaries

Before introducing the algorithm used to identify the most
relevant locations of modification, we introduce the necessary
information-theoretic preliminaries (for a more detailed intro-
duction see [16]).

The algorithm uses a conditional mutual information (CMI)
to quantify the influence a single feature has on the fitness, in
the context of further features. The CMI is defined as

I(X;Y |Z) =
∑

x∈AX ,y∈AY ,z∈AZ

p(x, y, z) log
p(x|y, z)
p(x|z)

, (4)

where X , Y , Z are random variables with realizations x, y,
z, and p(x) is a shorthand for the probability distribution
p(X = x). The CMI quantifies the average information that
X has about Y , given the outcome of Z is known. The CMI
is symmetric in X and Y , and I(X;Y |Z) ≥ 0. Further, each
random variable may also be replaced by a set of variables,
e.g., X, and thus quantifying the information a set of variables
provides about a second variable, Y or set of variables, Y.

Note that conditioning the information X provides about
Y on a third variable, Z, I(X : Y |Z) may have two effects:
first, information that is redundantly present in both X and Z
about Y is removed from the information X alone provides
about Y (as measured by the unconditioned MI, I(X;Y )).
Second, information that is provided synergistically by X and
Z together about Y is added to the information X alone
is providing about Y [17]. Hence, the CMI quantifies the
information X provides uniquely about Y and the information
X and Z provide jointly about Y in a synergistic fashion; at
the same time, redundant contributions in X and Z about Y
are excluded. See also [10] for a discussion of the use of the
CMI for feature selection.

As an example of synergistic information contribution,
consider a binary xor-gate with iid. inputs, X and Z, and
output Y . Inputs X and Z alone, each provide no information
about the output Y , such that I(X;Y ) = I(Z;Y ) = 0. Only
by conditioning on the second input, the information the first
input provides is “decoded” and I(X;Y |Z) = I(Z;Y |X) =
1. Here, the two inputs provide information about the output
in an exclusively synergistic fashion.

The framework to decompose the information two variables
contribute about a third into unique, redundant, and synergistic
contributions has only recently been introduced and is termed
Partial Information Decomposition (PID) [17] (Fig. 3A, see
also [18], [19]). PID extends classical information theory by
providing axioms that allow to decompose the joint informa-
tion two input variables X and Z provide about a target vari-
able Y , I(Y ;X,Z), into the information provided uniquely by
each X and Y , information provided redundantly by X and Y ,
and information provided synergistically when considering X
and Y jointly. Note that such a detailed decomposition of the
information contributed by two variables about a third was not
possible using existing information-theoretic concepts, e.g., the
(C)MI or Shannon entropy, as shown by Williams and Beer
[17] and illustrated in Fig. 3B.

In the present work, we use the PID framework to iden-
tify interactions between features with respect to the blade’s
fitness. In particular, we estimate the synergistic information
contribution of features and sets of features to identify those
feature combinations that provide information about the fitness
primarily when considered jointly.

D. Identification of Most Relevant Features using Information-
Theoretic Feature Selection Algorithm

We used a recently introduced forward-selection algorithm
for feature selection [8]–[10] to identify the most relevant
blade features with respect to the optimization outcome. The



Fig. 3. A Partial information decomposition diagram: decomposition of the joint mutual information, I(Y ;X,Z) into unique information of each input
variable (light and dark blue), redundant information (green), and synergistic information (red). B Corresponding, classical information-theoretic terms.

algorithm uses a CMI criterion for iterative feature selection,
which measures the MI between a feature to be selected
and the fitness, conditional on all already selected features.
Thus, the CMI criterion, includes features not only based
on their individual (unique) information contribution to the
fitness, but also accounts for synergistic effects between the
currently considered feature and the already selected feature
set. Lastly, the inclusion criterion ensures that redundancies
between features are avoided. For a detailed discussion of the
algorithm and the CMI as a feature-selection criterion see [10].
See algorithm 1.

Algorithm 1 Forward feature selection
1: function SELECTFEATURES(X, Y, αcrit)
2: S← ∅ . Initialization of feature set
3: while X 6= ∅ do . Find next candidate feature
4: F ← maxX∈X I(X;Y |S)
5: α← permutationtest(I(F ;Y |S))
6: if α < αcrit then . Contribution is significant
7: S← S ∪ F . Add candidate to feature set
8: X← X \ F
9: else . Contribution is not significant

10: break . Terminate inclusion
11: return S . Final feature set

The algorithm starts with an empty feature set S = ∅, the
set of all input variables, X0 = X, and the target variable Y .
Features are selected iteratively, where in each iteration, i, the
algorithm selects the feature that maximizes the criterion,

Fi = max
X∈Xi

I(X;Y |Si), (5)

where Xi ⊆ X denotes the remaining input variables in
iteration i, and Si the set of already selected features. The
identified maximum contribution is tested for statistical signif-
icance using non-parametric permutation testing and a testing
scheme that controls the family-wise error rate (see [9] for a
detailed description of the test). If the information contributed
by Fi as measured by the CMI is statistically significant, Fi is
included in the set of selected features, Si and removed from
the set of remaining variables, Xi,

Si+1 = Si ∪ Fi ,

Xi+1 = Xi \ Fi .
(6)

Note that statistical testing of the CMI estimate is necessary
because while in theory the CMI is zero for (conditionally)

independent variables, this may not be the case when esti-
mating the CMI from finite data, due to the known bias of
information-theoretic estimators (e.g., [20]). Instead, the test
evaluates whether the estimate significantly differs from the
distribution of estimates from permuted data and thus tests the
Null-hypothesis of no dependence between the feature and the
target in the context of the already selected feature set. The
statistical test not only handles the estimation bias, but also
provides an automatic stopping criterion for feature selection,
because the algorithms stops if no remaining variable provides
significant information about the target, given the already
selected feature set. The number of features included in the
selected feature set can indirectly be influenced by changing
the critical alpha-level, αcrit, of the statistical test, i.e., the
threshold an individual test in iteration i has to pass to
allow for inclusion of candidate feature Fi. We here used
acrit = 0.05, where lowering αcrit leads to a more strict
criterion and thus to the selection of fewer features in general,
and vice versa.

For practical estimation, we use an implementation of the
algorithm as part of the IDTxl python toolbox [8]–[10],
which uses a k-nearest-neighbor-based estimator for MI and
CMI estimation from continuous data [5], which—while not
being bias-free—has shown to provide the most favorable bias
properties compared to other approaches [5], [21], [22].

E. Post-hoc Analysis of Feature Interactions by Estimating
Synergistic Information Contribution

After selecting the most relevant geometric features for each
optimization run using the presented forward-selection algo-
rithm, we identify interactions between features with respect
to the fitness by estimating the synergy between all pairs
of selected features and the fitness. We use a PID estimator
introduced in [23], also implemented in the IDTxl toolbox [8].

III. RESULTS

A. Identified Features and Interactions Between Features

The locations of features for the four optimization runs and
the four extracted feature sets of the blade surface are shown
in Fig. 4. Here, the first two markers in each row indicate the
x- and y-coordinates of the leading edge, xLE

n , yLE
n , while

the last two markers indicate the coordinates of the trailing
edge, xTE

n , yTE
n (both are in blue). The bottom row indicates

the section closest to the hub, while the top row indicates the
section closest to the shroud. Markers between the first and
last two markers in each row indicate geometric features from
left to right, pmn , where n ∈ {1, . . . , N} indicates the section



number from hub to shroud and m ∈ {1, . . . ,M} indicates
the feature index. Hence, the total number of input variables
per feature set was Nfeat = NM +4N . Panels A and B, and
panels C and D each show optimization runs with identical
setup but different random initialization for NHH = 3 (A and
B) and for NHH = 7 (C and D).

Colored markers indicate relevant features identified by the
algorithm. Dashed lines indicate the three pairs of features
with highest synergy over all feature pairs.

Fig. 4. Locations of selected features and identified interactions for four runs
(rows A to D). Each column shows a different feature set, using 18, 21, 45, or
120 features respectively. Colored markers indicate selected features, dotted
lines indicate the three pairs with the highest interaction wrt. the blade’s fitness
as measured by the synergistic information. The meaning of the colors is the
same as in Fig. 1D.

We first note that the selected features are not completely
consistent between runs which is expected. The data for each
case was generated by an optimization run which is a highly
structured process, and therefore, the feature space is sampled
very inhomogeneously. Additionally, the blade regions with
the largest deformations differ between runs [3], leading to
variations in the extracted features. However, there are regions
which are identified to be important in all runs, for example,
at around 30% chord length from the LE in the region from
mid-span to blade tip (i.e. the upper forward region). This
region is expected to have high influence due to the shock-
system built-up [24]. Similarly, the region near the TE, and in
particular close to the tip, is directly influencing the exit-flow

angle and thus affecting the efficiency strongly. The location
at the hub is also consistently identified as important, but the
exact location along the chord line varies between the runs.

Comparing the selected features of each run between the
different feature sets provides a consistent picture for the
smaller feature sets Nfeat = 18, 21, and 45. The apparent
differences can be understood by considering the peculiarities
of the data and the PID-based selection method. First of all,
it is expected that for each feature set strong correlations
and redundancy are present in the features, due to the de-
formation method used to generate the blades. Only three
sections (at hub, mid-span and shroud) were allowed to change
independently and the changes were linearly interpolated in-
between, leading to many features being linear combinations
of others. In addition, the Hicks-Henne-based deformations of
each section also induces smooth changes with possibly highly
correlated and thus potentially redundant neighboring features.
Also, the optimization algorithm induces correlated changes
of parameters, i.e., blade regions, once it starts to converge to
some (local) optimum. Therefore, the features from the feature
set with Nfeat = 21 selected on the mid-span section are
replaced by (Fig. 4A and B) or augmented with (C and D)
more informative features on the second section from the tip.
For Nfeat = 45, high values of the redundancy are observed
between the selected features and the not selected features
which are close to the locations of the selected features form
the smaller sets (not shown).

For the largest feature set with Nfeat = 120 the selected
features are consistent with the smaller feature sets in the
above described manner for the case D, but are only partially
consistent or even seem inconsistent for the other cases A,
B and C. This is understandable from the insights described
above. Extracting 120 features from designs which are created
with only 18 (A and B) or 30 (C and D) independent
parameters constitutes a vast over-parametrization of the inde-
pendent influence factors, and results in huge redundancy in
the feature set. In that case, the selected features are strongly
influenced by the statistical variations of the rather few and
highly structured 1932 data samples. Multiple sets of features
could be selected which would be almost equally informative
regarding the fitness, but which have different distribution of
selected features over the blade region. Which set will be
finally selected is strongly influenced by its ability to describe
the statistical fluctuations of the data set. From the theoretical
perspective this is correct, as the selected features represent the
most informative features with respect to the fitness values for
the given data set. However, the value to the engineer might
be limited, as the most informative set does not necessarily
represent the most important engineering design changes.

B. Prediction of Optimization Results

To validate the identified set of relevant parameters for
each combination of number of features and optimization run,
we used the selected features to predict the fitness values
of each blade across the optimization run. We compared the
features selected by our algorithm to features selected by



the FEAST toolbox [25] and features selected by standard
machine learning approaches (linear Pearson correlation, MI,
decision trees, extra trees, random forest, LARS).

The FEAST toolbox implements a variety of information-
theoretic feature selection criteria based on the MI and applies
them to rank features. These criteria do not consider inter-
actions between features, i.e., features are evaluated solely
based on their individual contribution to the target. Hence,
synergistic effects as well as redundancies are not accounted
for (see also [10] for a comparison of the selection criteria
to the regular CMI). Also, the toolbox does neither provide
means to handle estimator bias nor an automatic stopping
criterion for feature inclusion. As the toolbox only handles
discrete variables, we binned the data prior to feature selection.

We used the following selection criteria implemented in
FEAST: Joint MI (JMI) [26], MI Maximization (MIM) [27],
Max-Relevance Min-Redundancy (MRMR) [28], Conditional
MI Maximization (CMIM) [29], Double Input Symmetrical
Relevance (DISR) [30], Conditional Infomax Feature Extrac-
tion (CIFE) [31], Interaction Capping (ICAP) [32], Condi-
tional Redundancy [25], Relief [33], and the CMI estimated
from binned data. We predicted the fitness from the different
selected feature sets using k-nearest-neighbor regression with
number of neighbors, k = 1. Since the FEAST toolbox does
not provide a stopping criterion, but just ranks the features by
importance, we performed predictions from feature sets up to
a size of 10 features, which was the maximum feature set size
identified by our algorithm through statistical testing.

Prediction results for various identified feature sets using
the FEAST toolbox, a selection of standard feature-selection
methods from machine learning, and our proposed algorithm
are shown in Fig. 5. The algorithms we compared our approach
against, do not provide a stopping criterion, but only rank
features by their importance. Hence, for each algorithm we
predicted the fitness using various sets S of the highest-ranked
variables to allow for comparison to our solution. The plots
show the prediction error from various sets of sizes up to
10, i.e., |S| = 1, . . . , 10. In many cases, the feature sets from
standard machine learning approaches did not provide accurate
predictions. Only for run C and D with Nfeat = 18, run
A with Nfeat = 45 and for runs B and C with the largest
feature set, the predictions of one standard method allowed for
rather accurate predictions compared to selected feature sets
of the same size. The features sets selected with the MRMR
method, as one of the best performing methods from the
FEAST toolbox, performed quite well, but only when a small
number of features was selected and the relative performance
dropped for larger sets of selected features. The proposed
method based on CMI feature selection performed well for
all studied situations as it consistently gave a good trade-
off solution with respect to feature set size and prediction
accuracy. In 14 out of the 16 considered runs and number
of features, our algorithms selected the best feature set among
all feature sets of the same or smaller size. In 6 of these cases,
the selected feature set performed best across all feature sets
of any size. The other methods did not provide feature sets

with such consistently good prediction performance, as can be
seen, for example, for the LARS (blue crosses) and MRMR
(red crosses) method in Fig. 5, which performed well for some
configurations, but did not return good results consistently.

Generally, we observed that many different feature sets led
to similar prediction performance, especially for the largest
feature set with Nfeat = 120, which supports our previous
analysis that this parametrization lead to highly redundant and
correlated features. Nevertheless, the proposed CMI-based fea-
ture selection algorithm still managed to identify meaningful
feature sets which were not too large and which allowed for
good prediction performance.

IV. DISCUSSION

We applied a recently introduced information-theoretic ap-
proach to feature selection [10] in sensitivity analysis for opti-
mization data. A strong conceptual and practical advantage of
the proposed feature selection approach is its ability to account
for interactions between variables when selecting features,
such that the selection of redundant features is avoided while
features that contribute information in a synergistic fashion
together with other features are included. A further significant
advantage of the used algorithm for the present application is
the ability to automatically determine the number of relevant
features by means of statistical testing, whereas for most
established methods the number of features has to be fixed in
advance. Furthermore, we used the recently introduced partial
information decomposition (PID) framework [17] to identify
feature interactions.

We successfully applied the approach to four realistic aero-
dynamic optimization runs, where we showed that the feature
sets identified by the proposed algorithm always provided a
good trade-off solution with respect to feature set size and
prediction performance. We showed that in most of the cases
(14 out of 16) the selected feature set could be used to predict
the optimization’s objective function with smaller error than
using feature sets of the same size or smaller identified through
existing approaches.

Central to the proposed approach is its ability to identify
feature sets while accounting for interactions between features
and to identify synergistic interactions. This property is es-
pecially desirable in application domains where optimization
parameters are expected to show interactive effects on the
target function. Such an analysis was previously not possible
using the MI or its extensions, for example, the interaction
information [34], which was proposed for the analysis of
interactions in design data in earlier studies (e.g., [1], [2]).
However, it was shown that these measures are not able to
disentangle redundant and synergistic contributions and that
such a contribution required the axiomatic extension of classi-
cal information theory as was done in the PID framework [17]
(see also [18]). Accordingly, the development of information-
theoretic filtering methods accounting for interactions has not
advanced in recent years such that the methods employed
here, which often assume variable independence, are still a
common approach (e.g., MRMR [35], [36]). We believe that



Fig. 5. Validation of feature set through k-nearest-neighbor-prediction of optimization outcome from selected feature sets (mean absolute error, MEA, y-axis).
The x-axis indicates the size of the feature set, |S| (see main text). Each row shows results for one optimization run A-D. Each column shows one feature
set with Nfeat = 18, 21, 45, and 120 features. Orange markers indicate prediction results for FEAST feature sets of different size, blue markers indicate
prediction results from machine learning approaches. Blue crosses are the feature sets selected with LARS while red crosses are those selected by MRMR.
The black star (F) indicates results from our algorithm. Annotations indicate the two cases where another method gave better prediction results than our
method for a smaller or equally large feature set.

this stagnation is partially due to the inherent lack in classical
information theory to describe multivariate information contri-
butions that has only become available with the introduction of
PID [10], [17]. Hence, PID enables the information-theoretic
quantification of interactions in design applications as defined
in [6]: “a design interaction is defined as a unique dependency
between design and objective parameters from which all
dependencies of lower ordinality are removed”.

The algorithm used for feature selection employs statistical
testing to handle the bias in information-theoretic estimates.
Statistical testing furthermore provides an automatic stopping
criterion as it can reveal that an estimate is not significantly
different from an estimate from data with no relationship.
Using statistical testing in feature selection has been proposed,
for example, by [37]. However, the approach used here is
the first to rigorously control the family-wise error rate when
testing repeatedly during iterative feature selection [9].

The used algorithm accounts for redundant and synergistic
contributions during the identification of relevant features by
conditioning on the set of all already selected features. A
limitation is here that due to the iterative inclusion, variables
that provide purely synergistic information can not be detected.
To handle this latter scenario, one may start feature selection

with a non-empty set, e.g., some random subset or a subset
informed by prior information. Alternatively, one may include
variable tuples instead of individual variables [38].

A further limiting factor is the number of features that the
algorithm is able to select given a certain amount of data. If the
selected feature set becomes too large, CMI-estimation suffers
from the curse of dimensionality such that the CMI can no
longer be estimated reliably from the available. As a result, the
estimate fails to reach statistical significance and the algorithm
terminates. However, in sensitivity analysis it is typically the
goal to identify the set of most relevant features that can still
be meaningfully interpreted by a human. As shown here, the
algorithm was able to identify up to 10 informative variables
from less than 2000 highly biased samples.

Regarding the engineering task of identifying the most
influential regions of the shape design the proposed approach
gave satisfactory results, as features located at known highly
influential region were successfully identified. Also, the high
degree of redundancy and correlations in the features sets,
which is a natural consequence of the smoothness of the shape
deformations, is handled well by the approach.

Future work may focus on a visualization and interpretation
of the results to provide a more intuitive picture to the engineer



who is potentially not vell-versed in information theory.
We conclude that the proposed algorithm [8]–[10], together

with the recently introduced PID framework [17]–[19] and
suitable estimators [5], [23], provides a valuable tool for the
assessment of optimization outcomes in practical applications.
In particular, the interaction-aware feature selection together
with the estimation of synergistic effects allows to identify
interactions between optimization parameters that was previ-
ously not possible using information-theoretic methods. Thus,
the novel extension to information-theoretic analysis presented
here provides powerful tools for quantifying relationships in a
wide area of application domains that are concerned with the
analysis of data from non-linear systems.
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