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Abstract—How the performance of autonomic physiological, 
and human vestibular network (HVN)-based brain functional 
connectivity (BFC) features differ in a VR sickness classification 
task is underexplored. Therefore, this paper presents an AI-
aided comparative study of the two. Results from different AI 
models all show that autonomic physiological features 
represented by the combined heart rate, fingertip temperature 
and forehead temperature are superior to HVN-based BFC 
features represented by the phase-locking values of inter-
electrode coherence (IEC) of electroencephalogram (EEG) in 
the same VR sickness condition (that is, as a result of 
experiencing tunnel travel-induced illusory self-motion 
(vection) about moving in-depth in this study). Regarding EEG 
features per se (IEC-BFC vs traditional power spectrum), we 
did not find much difference across AI models. 

Keywords—Virtual Reality, Cybersickness, EEG, Autonomic 
Physiological Signals, Machine Learning 

I. INTRODUCTION 
In 2013, the Neuroscape centre at the University of 

California, San Francisco (UCSF), published a cover story in 
Nature. This cover story, called Game Changer by Nature 
editors, described how a driving video game (NeuroRacer) 
could enhance cognitive control in older adults [1]. In recent 
years, and with the rise of the consumer-friendly Virtual 
Reality (VR), research bodies, including UCSF Neuroscape 
[2], [3] , are increasingly using consumer-grade VR headsets 
to deliver gamified cognitive and rehabilitation therapies 
instead of using standard personal computer (PC) monitors. 
However, a frequently encountered problem, requiring some 
participants to withdraw from the ongoing therapies is VR-
induced illusory self-motion (that is, vection, such as the 
illusory moving in-depth in VR driving tasks), which results 
in a general discomfort or even nausea for some simulator 
sickness-susceptible participants (about 60% of the general 
population). Therefore, objective and automatic VR sickness 
assessment is a very important step before developing any 
targeted intervention measures if porting a well-established 
cognitive paradigm (e.g., NeuroRacer) from a traditional 2D 
platform to an immersive VR platform is our final goal. 

Since autonomic responses (such as sweating, increased 
heart rate and nausea) are the most obvious symptoms, there 

are many autonomic physiological signal-based solutions for 
objective and automatic VR sickness assessment [4]–[7]. 
However, the current state-of-the-art approach in motion 
sickness and simulator sickness assessment (including but not 
limited to pure VR sickness) is AI-integrated multimodal 
biosensing including behavioural and autonomic 
physiological data and neural data [8], [9]. For example, Prof 
Gargiulo et al. from the motion sickness lab at the Reykjavik 
University are using EMG (Electromyography, that is, 
behavioural physiological signals), EEG 
(electroencephalogram, that is, neural signals) and heart rate 
(autonomic physiological signals) together to evaluate VR-
based simulator sickness. Here, the difference between VR-
based simulator sickness and pure VR sickness is that the 
former involves real physical motions that to some extent 
match with the motion cues in VR (e.g., in [8], the VR shows 
a boat surrounded by waves whose frequency and amplitude 
are synchronized with the simulator platform movement.); 
while pure VR sickness refers to visually induced motion 
sickness without the involvement of real physical motions. 
They concluded that EMG features are the most correlated 
with self-reported simulator sickness levels, which are 
followed by EEG features; while the heart rate features 
showed the poorest performance. In another study [9], Prof  
Marcus et al. from the Technical University of Braunschweig 
used EEG and a set of autonomic physiological signals 
(including finger-mounted heart rate, respiration as well as 
electrodermal activity (EDA) signals) to assess simulator 
sickness. They found that EDA may be a solid indicator of 
simulator sickness if compared to EEG features. The 
inconsistent findings about simulator sickness in [8] (which 
shows that EEG data is superior to autonomic physiological 
data) and [9] (which showed that autonomic physiological 
data is superior to EEG data) leads to a research question of 
how autonomic physiological and neural data differs in the 
context of pure VR sickness assessment. This is especially 
pertinent given that both [8] and [9] did not explore brain 
network-based EEG features, which we believe are more 
correlated with VR sickness levels compared to conventional 
EEG power spectrum if according to the recently proposed 
human vestibular network (HVN) [10]. 

HVN is a widespread brain network including at least the 
autonomic, sensorimotor and cognitive domains [10]. Given 
the close relationship between HVN and one of the widely-
accepted motion sickness aetiology — visual-vestibular 
sensory conflict theory (SCT [11]), we hypothesized that 
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HVN-based EEG brain functional connectivity (BFC) 
features would be superior to traditional EEG power spectrum 
features. Also, it is worthy to explore whether the HVN-based 
BFC features could achieve better performance than 
autonomic physiological features. Therefore, the goal of the 
present study was to explore the VR sickness classification 
performance of autonomic physiological and HVN-based 
neural features with the aid of AI models. The present study 
does not involve the most advanced AI models. Instead, we 
employed some basic structures from the commonly used AI 
models to compare the autonomic physiological and neural 
data features in the context of the same framework (that is, the 
moving in-depth-induced VR sickness). 

II. SYSTEM ARCHITECTUE AND SETTINGS 
Our signal acquisition system was equipped with 

continuous monitoring of multi-modal signals (e.g. EEG, 
EOG (electrooculography), PPG (blood volume pulse), 
contact-type fingertip temperature, and non-contact infrared 
forehead temperature) of the participant. As shown in Table 
I, the EEG and EOG data were recorded by a medical-grade 
device. Other data were collected by Arduino-compatible 
commercial sensors. More technical information about these 
experimental facilities can be found in the following 

subsections A to C. Regarding the VR device, we used the 
newly released all-in-one Oculus Quest 2 (72Hz display 
refresh rate and 89° horizontal field of view). 

A. Apparatus for Autonomic Physiological Signals 
PPG data were recorded from the fingertip of the left index 
finger using a set of reflective-type photoelectric sensors 
(including light transmitter and receiver; 
https://pulsesensor.com/). The more blood volume in the 
fingertip, the more light can be absorbed, and thus the less the 
receiver can sense. According to the circuit design, the 
voltage output of the receiver and the amount of received 
light is negatively related. Thus, the voltage reaches peak 
level when heart pumps blood to fingertip (that is the peak of 
the PPG signal). Therefore, HR can be extracted and analyzed 
from continuous cardiac cycle-driven PPG signals.  Fig. 2 
shows the examples of detected crests and troughs from the 
PPG signals using our custom MATLAB script.  

 
Fig. 2. The examples of detected crests and throughs from the PPG signals 
using our custom MATLAB script. By this script, HR was calculated.  

 

 
Fig. 3 The forehead temperature data in the initial baseline session (5 mins) 
in our pilot test where the power of the VR headset had already been turned 
on for 2 hours at the testing moment. As we can see that the forehead 
temperature was stable and not affected by the hermetic VR environment 
when room temperature was set to 18°C. 

 
Forehead temperature data were collected from the 
participant’s forehead skin (see Fig. 3) using a non-contact 
infrared temperature sensor (MLX90614, Melexis, Inc.). The 
position of the forehead temperature sensor was just above 

TABLE I 
SUMMARY OF THE TECHNICAL PARAMETERS OF THE SENSOR SYSTEM 

Experimental facilities Parameters Value 

Fully 
Commercial 

Device 

VR Oculus Quest Ver 2.0 

EEG/EOG 

Electrodes Conventional 
wet electrodes 

Sampling rate 500 Hz 
Analog-to-

digital (ADC) 24 bit 

Communication WiFi/USB 

Arduino-
compatible 
prototype 

PPG Sensing type reflective 

Contact 
temperature Accuracy 

±0.5℃ from -
10°C to +85°C 

±0.5℃ from 
0°C to +50°C Non-contact 

temperature 

Arduino 

ADC 10 bit 

Communication USB at 
115200bps 

Sampling rate 50 Hz 
 

 
Fig. 1. Sample experimental environment.   

 



the Quest 2’s built-in proximity sensor). Fingertip 
temperature data were collected from the fingertip of the left 
middle finger using digital thermometer (DS18B20, Maxim 
Integrated, Inc.). Both fingertip and forehead temperature 
sensors have a ±0.5℃ measurement accuracy which is 
acceptable in the context of up to 2-4℃ CS-induced 
difference [12]. It is important to note that the non-contact 
infrared temperature could simultaneously detect the target 
(the forehead) and ambient (VR hermetic environment) 
temperature. Through our pilot test we did not find any 
confounding effect of the VR hardware heat (26-27°C) on 
forehead skin temperature (higher than 30°C, see Fig. 2), 
where 26-27°C was the steady VR hardware heat we 
observed after two hours of continuous usage.  

B. Apparatus for EEG Signals 
EEG data were collected through an eight-channel EEG 

recording device (NE® StarStim 8™, Neuroelectrics Inc, 
Barcelona, Spain), which uses a high-resolution, high-speed 
analog-to-digital converter (24 bit at 500Hz sampling rate). 
Conventional wet electrodes were used and placed at seven 
EEG channels (see Fig. 4). The remaining one channel (EXT) 
was used to collect EOG using a disposable electrode from 
the left lower eyelid. The ground and reference electrodes 
were connected and placed on the right earlobe by an ear clip. 
Note, we did not use medium or high-density EEG, since the 
reduced seven EEG channels were carefully selected by our 
previous study for the cognitive domain (Fz, Cz, Pz [3]) and 
other researchers’ studies on the sensorimotor domain (To be 
more specific, that is, P3 and P4-based parieto-insular 
vestibular cortex (PIVC) and CP5 and CP6-based  
temporoparietal junction (TPJ) [13]–[16]). 

 

 
 

Fig. 4. The channel location for EEG and EOG. 
 

III. METHODS 

A. The Estimation of the Ground Truth 
The fast motion sickness (FMS) scale was used to estimate 

the ground truth of VR sickness in the present study. FMS is 
a single item questionnaire that requires participants to focus 
on nausea, general discomfort, and stomach problems only 
and finally give an overall single score ranged from 0 (not at 
all) to 20 (severe) at 1-minute intervals [17]. Here, a digital 
version of the FMS was directly implemented inside the VR 
scene (see Fig. 5) so that participants could report their FMS 
scores while wearing the VR headset by moving the virtual 
slider immediately after VR tasks finished. The purpose of the 
use of digital questionnaires was to minimize the opportunities 
for subjects to remove the VR headset which could 
temporarily alleviate their symptoms and create a confound to 

the relationship between sickness ratings and objective 
measures. 

B. Experimental Procedure and VR Sickness Induction 
The experiment contained a 5-minute baseline 

measurement and a 10-minute tunnel travel task. During the 
baseline measurements, participants were required to close 
their eyes and listen to soft music (slow instrumental 
featuring traditional Chinese instruments). During the tunnel 
travel task, participants were required to keep their body and 
head  
still, and watch the VR scene and perceive the moving in-
depth-induced illusory self-motion. The route of the tunnel 
was set as a normal driving scenario, including curves, uphill 
and downhill paths, but without upside down and off-axis 
paths. The moving speed was uniform without any 
acceleration but adjustable. To be more specific, it would be 
increased by 20% in the second time window if the same 
FMS score was reported in consecutive two-minute periods, 
in order to match with participant’s different susceptibility 
threshold. The maximum value of FMS score is 20. Unlike 
[18], which brought participants to the point of retching, in 
order to minimize the confounding effect of such 
symptomatic behavior and to comply with ethics requirement 
(that is, no more than moderate nausea symptoms), we would 
stop the experiment once the FMS score exceeded 11. 

The procedure was approved by the ethics panel of the 
University of Glasgow (No. 300200009), College of Science 
and Engineering. 

C. Signal Pre-Processing and Feature Extractions 
For EEG and EOG, a low-pass filter with a cutoff frequency 

of 40 Hz and high-pass filter with a cutoff frequency of 0.1 
Hz were applied to remove power line noise and DC drift, 
respectively. The filtered EEG data were then corrected using 
the mean of each channel and EOG-based independent 

 
Fig. 5. The screenshot of the tunnel travel scene and digital FMS 
questionnaire. Note, the FMS questionnaire pops-up every minute. The 
tunnel travel will stop moving at the moment of the appearance of the FMS 
questionnaire and resume after participant’s rating is finished. The time a 
participant spend on FMS rating was not counted in the 10-minute tunnel 
travel task. 



component analysis. Regarding PPG, a band-pass filter 
(0.2Hz-5.6Hz) was used and then a 1st-order differential 
operation was used to remove the baseline wander (more 
details can be found in our previous study [19]). For 
temperature, we used the raw data without any pre-
processing. Next, the features shown in Table II were 
extracted respectively for AI model-based classification. 
Note, Cz-related features (not shown) are reserved for 
another ongoing study. 

 

The IEC-based PLV is a commonly used measure of phase 
consistency across electrodes in EEG, which can be used as a 
measurement of brain functional connectivity [1], [20]. To be 
more specific, we created 1 frontal (Fz) and 2 parietal 
composite electrodes of interest (EOI) from the average of the 
following electrodes: left TPJ and PIVC-based CP5 and P3 
as well as right TPJ and PIVC-based CP6 and P4, with PLVs 
calculated for each frontoparietal EOI combination 
separately. The specific equations for PLV calculation can be 
found in Eq.1-3. 

 
φ1(f, n)=Hilbert transform (EEG(f, n)Fz)                   (1) 

 
φ2(f, n)=Hilbert transform(EEG(f, n)Parietal)                  (2) 

 
 PLV(𝑓, 𝑛)= 1

N
| ∑ eφ1

i (𝑓,𝑛)-φ2
i (𝑓,𝑛)N

i=1 |                        (3) 
 

Where 𝜑1  is the phase time course of EEG samples (data 
points) of that epoch (the length = n) at the Fz channel after 
Hilbert transform; 𝜑2  is the phase time course of EEG 
samples (data points) of that epoch (the length = n) at the 
averaged left or right parietal channel after Hilbert transform; 
N is the total number of the EEG epoch; 𝜑𝑖 is the phase time 
course of the ith  EEG epoch; f  ∈ {𝛿 (0.1 − 3Hz), 𝜃(4 −
7Hz), 𝛼(8 − 12Hz), 𝛽(13 − 20Hz)}. In this study, the length 
of the EEG epoch is 2 sec. 

D. Baseline Corretion and Normalization 
We took the values in the first minute of the tunnel travel 

task as the baseline, and then all features and FMS scores 
were normalized (see Eq. 4 and 5). The baseline-corrected 
and normalized data provided a means to normalize results so 
that the assessment of sickness severity was not confounded 
by individual differences. 

 
Normalized Features= Raw -Baseline

Baseline
×100%                (4) 

 
Normalized  Score= Raw -Baseline

Full Score
×100%                     (5)  

 
Where, the full score used in Eq. 5 was to avoid division 
errors just in case the baseline score was zero. 

E. Participants 
A total of twenty-four healthy right-handed young adults 

attended this study. Two participants were excluded onsite 
for the following reasons: 1) The PPG signals from one of 
them were abnormal due to very cold hands; 2) One 
participant’s data were unable to be normalized since their 
FMS score in the first minute had already exceeded the pre-
defined threshold. Therefore, finally twenty-two participants 
(range 20-31 years; 4 males) took part in the entire study. 

F. AI Model-based Prediction 
We set up two tasks to predict the FMS score/label through 

regression and classification based on the input feature sets. 
The goal is to identify which prediction models work best on 
each individual feature set. For the regression task, we made 
predictions against the FMS score; whereas we create FMS 
class labels for the classification task and classification 
models to predict the FMS class. In order to select the 
parameter values for each estimator in both regression and 
classification, we used the grid search cross validation library 
provided by sklearn [21] for model selection. The parameters 
explored for the support vector machine (SVM) using grid 
search include the kernel (linear, poly and rbf), the 
polynomial degree (2,3,4), and c (0.1, 1, 10, 100, 1000). In 
the artificial neural network (ANN) grid search setup, we 
explored activation functions in the hidden layer ('logistic', 
'tanh', 'relu'), hidden layer sizes ((1), (10), (50), (10,10), 
(50,50), (10,10,10,10,10), (50,50,50,50,50)) and solvers 
('lbfgs', 'sgd', 'adam'). The grid search for each estimator was 
run for a maximum of 500 iterations using cross validation 
with 10 splits. The results shown in Table III-VI below are all 
the best results after the grid search-based model selection.  

When applying the data to each model selected, we used 
cross validation with ten splits (k=10). For the regression 
task, we applied linear regression and ANN to each feature 
set in the dataset. The accuracy metric applied is the Adjusted 
R2 score. The adjusted R2 instead of R2, root mean square 
error as well as mean absolute error was used here as the 
metric to judge the performance of regression in the context 
of minimizing the overfitting problem. For the classification 
task, we grouped the normalized FMS scores (%)  into target 
classes using the following scheme:  

 
• Class I: normalized FMS scores that are <=0 (LOW)  

• Class II: normalized FMS scores that are >0 and 
<=15% (MEDIUM)  

TABLE II 
SUMMARY OF THE EXTRACTED FEATURES IN THIS STUDY 

Features Feature Sources 

EEG  

Relative band power 
(RBP)* 

(δ~β) 
CP5, P3, P4, CP6 

Inter-electrode 
coherence (IEC)-based 
phase-locking values 

(δ~β) 

1. Frontal cognitive to Left 
sensorimotor  

(Fz to averaged CP5 & 
P3); 

2. Frontal cognitive to 
Right sensorimotor 

 (Fz to averaged CP6 & 
P4); 

3. Frontal cognitive to 
Central posterior cognitive 

(Fz to Pz) 
4. Right sensorimotor to 

Left sensorimotor 
(Averaged CP5 & P3 to 

averaged CP6 & P4) 

Autonomic 
Heart rate Left index fingertip 

Fingertip temperature Left middle fingertip 
Forehead temperature Non-hairy forehead 

Where, *RBP was calculated by dividing the FFT power of one EEG band 
by the sum of the FFT power of all four EEG bands (δ, θ, α and β). 



• Class III: normalized FMS scores that are >15% 
(HIGH) 

Since we collected a dataset of 203 feature points (extracted 
from 203 1-minute autonomic physiological and EEG 
signals), labelling the data using this scheme yields the 
following class counts: 

• LOW: 57  

• MEDIUM: 65 

• HIGH: 81 

   Finally, based on the selected models, we investigated 
whether reduced autonomic physiological and EEG IEC 
features could achieve better results. To do so, for autonomic 
physiological feature set, heart rate, fingertip temperature and 
forehead temperature was input into the AI models separately 
instead of the combined one. Given that the number of IEC 
features is larger (N=4 feature sources* 4 EEG bands=16), we 
did not try it one by one. Instead, we measured the importance 
of the different features in the IEC feature set using the 
coefficients of a linear regression model for the regression task 
and a logistic regression model for classification task. We 
explored different thresholds when selecting the features and 
identified that using a threshold of 0.15 and 0.01 on the 
absolute values of the coefficient produces the best results for 
regression and classification task, respectively. 

Note, we were using Google Colab 
(colab.research.google.com) as the computing platform for AI 
modelling, training and validation throughout the whole 
study. 

IV. RESULTS 

A. Linear Regression 
As can be seen in Table III, the linear regression results 

show that the autonomic physiological feature set achieved 
the best performance with adjusted R2 score = 29%. All EEG 
features got negative values of adjusted R2 score, indicating 
the failure of using EEG features to establish the regression 
model for VR sickness prediction. The superiority of 
autonomic physiological signals presented here is consistent 
with previous study [9]. 

 
TABLE III  

REGRESSION RESULTS 
Feature set R2 score Adjusted R2 

score 
Autonomic 0.30 0.29 
EEG Power 

spectrum 
0.11 -0.02 

EEG IEC -0.06 -0.14 
 

TABLE IV  
NON-LINEAR REGRESSION RESULTS 

Feature set R2 score Adjusted R2 
score 

Autonomic 0.05 0.05 
EEG Power 

spectrum 
0.10 -0.04 

EEG IEC -0.12 -0.21 
 

B. Non-linear Regression (NNs) 
Similarly, the ANNs-based non-linear regression results 

show that the autonomic physiological feature set achieved 

the best performance. However, as shown in Table IV, the 
value of adjusted R2 was reduced from 29% to only 5%, 
indicating that the autonomic physiological feature set 
primarily presented a linear rather than non-linear 
relationship with VR sickness severity. Regarding EEG 
features, we still got the negative values of adjusted R2 for 
both IEC and power spectrum features. Taking Table III’s 
results together, this suggests that EEG features per se did not 
contain adequate information for regression modeling in the 
present study, which has nothing to do with the regression 
model’s structure. However, apparently, the performance of 
EEG feature set in linear regression model marginally 
exceeded non-linear regression model, indicating that EEG 
features also present a linear relationship with VR sickness 
severities. Here, the architecture selected during grid search 
was a ANN with 1 hidden layer of 50 units with ReLU 
activation function and the Adam optimizer. 

 
TABLE V  

SVM-BASED CLASSIFICATION RESULTS 
Feature set Accuracy 
Autonomic 0.48 
EEG Power 

spectrum 
0.46 

EEG IEC 0.46 
 

TABLE VI  
ANN-BASED CLASSIFICATION RESULTS 

Feature set Accuracy 
Autonomic 0.55 
EEG Power 

spectrum 
0.49 

EEG IEC 0.48 
 

C. Classification 
Unlike the obvious difference in feature performance in 

regression analysis, autonomic physiological and EEG 
features did not show too much difference in the classification 
task. However, as shown in Table V and VI, the autonomic 
physiological feature set still maintains its superiority if 
compared to EEG features. To be more specific, the 
autonomic physiological feature set achieved 48% and 55% 
classification accuracy by using SVM and ANN, respectively; 
while EEG power spectrum feature set achieved the exact 
same classification accuracy (46%) with that achieved by 
EEG IEC in SVM condition. Regarding ANNs, EEG power 
spectrum and IEC got 49% and 48% accuracy, respectively. 
These results perhaps indicate that EEG features are 
comparable to autonomic physiological features in a discrete 
label prediction-based classification task. For SVM, the best 
kernel identified using grid search was rbf with the default 
values of C=1 and gamma (g) set to ‘scale’ resulting in 
g=1/(n_features * X.var()) as outlined in the sklearn API 
(https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html), 
where “n_features” and “X.var()” stand for the number of 
features and variance of features, respectively. The 
architecture of the best ANN was 1 hidden layer with 50 units 
with ReLU and Softmax activation functions. 

D. Reduced IEC features 
1) Regression 
The EEG IEC features selected using the aforementioned 

threshold for regression analysis were as follows: 
 



⚫ 'Frontal_Central_beta';  
⚫ 'Frontal_Central_alpha';  
⚫ 'Frontal_Left_beta'; 
⚫ 'Frontal_Right_delta'.  

 
The importance of each feature is plotted in the figure below 

(see Fig. 6). We applied the same estimators used for the 
regression task above to the reduced feature set. Table VII 
shows that the reduced IEC features achieved better result 
(adjusted R2 score=5%) if compared to full IEC feature set 
(negative value of adjusted R2 score). This result perhaps 
indicates that full IEC feature set contains some noisy 
(irrelevant) information for VR sickness assessment, for 
example the features at theta band and all features about Right 
sensorimotor to Left sensorimotor. We are not clear why IEC 
features at theta band were not selected, but a reasonable 
explanation for the unselected Right sensorimotor to Left 
sensorimotor features is very likely that the range of right-left 
IEC is too short so that the volume conduction issue in EEG 
become a confounding factor. 

 

   
Fig. 6. IEC feature importance obtained from Linear regression coefficients. 

 
TABLE VII  

REGRESSION RESULTS USING REDUCED AUTONOMIC PHYSIOLOGICAL 
AND EEG IEC FEATURES 

Feature set Estimator R2 score Adjusted R2 
score 

Fingertip 
temperature 

Linear 
Regression 0.05 0.06 

ANN -0.23 -0.25 

Forehead 
temperature 

Linear 
Regression 0.01 0.01 

ANN -0.56 -0.54 

Heart rate 
Linear 

Regression 0.20 0.20 

ANN -0.09 -0.09 

Reduced 
IEC 

Linear 
Regression 0.06 0.05 

ANN -0.07 -0.08 
 
However, as can be seen in Table VII, the improved IEC 

features (whose adjusted R2 score=5%) are still much inferior 
to the reduced autonomic physiological feature, like heart rate 
whose adjusted R2 score is 20%. Of course, for autonomic 
feature per se, the reduced feature set leads to reduced 

regression performance (from 29% of full set to present 20% 
of heart rate, 6% of fingertip temperature and 1% of forehead 
temperature), indicating that each feature in the autonomic 
feature set has their uniqueness, so the combined autonomic 
feature set should be maintained. 

 
2) Classification 
The image below shows the coefficient values when the IEC 

feature set was fit on a logistic regression model. The features 
included in the reduced feature set are as follows: 

⚫ 'Frontal_Central_alpha'; 'Frontal_Left_beta';  
⚫ 'Frontal_Left_alpha'; 'Frontal_Right_delta';  
⚫ 'Right_Left_theta'; 'Right_Left_alpha';  
⚫ 'Right_Left_delta'; 'Frontal_Central_delta';  
⚫ 'Frontal_Central_beta'; 'Frontal_Left_theta';  
⚫ 'Right_Left_beta'.  

 

 
Fig. 7. IEC feature importance obtained from Logistic regression coefficients. 
 

TABLE VIII 
CLASSIFICATION RESULTS USING REDUCED AUTONOMIC 

PHYSIOLOGICAL AND EEG IEC FEATURES 
Feature set Estimator Accuracy 

Fingertip 
temperature 

SVM 0.43 
ANN 0.45 

Forehead 
temperature 

SVM 0.35 
ANN 0.35 

Heart rate SVM 0.48 
ANN 0.48 

Reduced IEC 
SVM 0.48 
ANN 0.52 

 
Table VIII shows the results when applying the same 

estimators used in the classification task with the full feature 
set. Interestingly, we found that IEC features achieved better 
performance (52% accuracy) than autonomic physiological 
features (heart rate with 48% accuracy) for the first time 
throughout the whole study. The learning curve for the best 
IEC result is shown in Fig.8. However, the improved 
accuracy of IEC is still lower than that when full autonomic 
physiological feature set was using (accuracy=55%, see 
Table VI). 
 



 

V. DISCUSSION  

A. Primary Results 
Using FMS-based estimation of VR sickness ground truth, 

the current study used basic AI models to compare the 
regression and classification performance of autonomic 
physiological and neural (EEG) feature sets, with an attempt 
to optimize the sensor inputs in the context of multimodal 
bio-sensing-centric objective and automatic VR sickness 
detection. Overall experimental results show that the 
autonomic physiological feature set is superior to neural ones 
in both the regression and classification tasks. This result 
leads to questions of whether 1) autonomic physiological 
sensors alone are effective enough to detect VR sickness; 2) 
the superiority of autonomic physiological signals can be 
maintained if other approaches are used to estimate the 
ground truth; 3) the superiority of autonomic physiological 
signals can be maintained if the VR sickness level is not at a 
moderate level as induced by the tunnel travel (e.g, a more 
severe level induced by rollercoaster scenes or on the 
contrary just a mild level induced by relatively neutral VR 
scenes) . 

B. Regression 
Apparently, EEG features perhaps did not capture sufficient 

granularity if compared to autonomic physiological features 
to establish a regression relationship with FMS scores in this 
study. A possible reasoning behind this result is that FMS is 
only a measurement (estimated ground truth) of autonomic 
responses during VR sickness induction. Thus, the 
conclusion about a predominant position of the autonomic 
domain during VR sickness induction could provide different 
results if other neural responses-based questionnaires are 
used. However, to the best of our knowledge, except for FMS, 
currently no questionnaires are regularly used to evaluate VR 
sickness with a shorter time window. For example, although 
the simulator sickness questionnaire (SSQ) is a questionnaire 
with 16 items including assessments of participant’s 
cognitive aspects, such as fatigue, headache and difficulty 
concentrating, it is just a pre-post experiment questionnaire, 
not designed for an automatic assessment-oriented study. 
Also, although prior motion sickness research has utilized 
physical continuous inputs (e.g., sliders) to ask participants to 
indicate the sickness ratings when they feel better or worse in 

a manner that is very likely faster than using FMS at 1-minute 
intervals [22], the drawback is that the participants tend to 
forget to indicate their scores and thus leading to data 
missing. Therefore, it is imperative to design a proper real-
time or near real-time questionnaire (the ground truth) for 
neurotechnology-centric and AI-aided VR sickness 
detection. 

C. Classification 
Since the reduced requirements of the classification task for 

the granular capture ability (if compared to the regression 
task), EEG feature set was finally able to achieve a 
comparable level now with those autonomic physiological 
feature set. However, an interesting question is that why non-
linear rbf kernel-based SVM stood out if both autonomic 
physiological and EEG features present a linear relationship 
with FMS scores. Apart from this, we found that the 
performance of non-linear activation function-based ANN 
model marginally exceeded SVM in both full and reduced 
feature set conditions. Future studies can be planned for 
explaining these results. 
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