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Abstract—We propose a new procedural content generation
method which learns iterative level generators from a dataset of
existing levels. The Path of Destruction method, as we call it,
views level generation as repair; levels are created by iteratively
repairing from a random starting level. The first step is to
generate an artificial dataset from the original set of levels by
introducing many different sequences of mutations to existing
levels. In the generated dataset, features are observations of
destroyed levels and targets are the specific actions that repair the
mutated tile in the middle of the observations. Using this dataset,
a convolutional network is trained to map from observations to
their respective appropriate repair actions. The trained network
is then used to iteratively produce levels from random starting
maps. We demonstrate this method by applying it to generate
unique and playable tile-based levels for several 2D games (Zelda,
Danger Dave, and Sokoban) and vary key hyperparameters.

Index Terms—procedural content generation, neural networks,
supervised learning, games, level generation, data augmentation

I. INTRODUCTION

Procedural Content Generation (PCG) in games refers to
algorithmic methods for generating game content such as quests,
items, and levels. Such methods need to generate content
that fulfill multiple criteria, both aesthetic and functional. In
this paper, we address the question of how can we learn
an iterative game level generator from a dataset of existing
levels. Unpacking this statement requires to consider two recent
developments in PCG research: PCG via machine learning
(PCGML) and PCG via reinforcement learning (PCGRL).

PCGML refers to the use of machine learning, mainly
through self-supervised learning on existing content, to learn
content generators [1]. This provides an alternative to building
content generators from scratch, either through ad-hoc methods
or using search, optimization, or constraint satisfaction as a
principle [2]–[4]. Content generators trained via self-supervised
learning tend to produce a whole artifact (such as a level) at
the same time; in particular, this is true for deep learning
methods such as autoencoders [5] or generative adversarial
networks [6]. In cases where a level has a natural sequential
encoding, a sequence learning architecture such as n-grams [7]

or LSTM networks [8] can be used, but such encodings are
not universally applicable.

PCGRL provides a different way of using machine learning
to learn content generation [9], [10]. In the absence of training
data, reinforcement learning is used to learn to generate
by trial and error. The generator is seen as an agent that
takes actions to change its environment, and at the end of
an episode it gets rewarded based on the quality of the
artifact created by its actions. Interestingly, the resulting
generator is fundamentally different from those learned by self-
supervised learning, as it produces content iteratively, action by
action. Iterative content generators have different affordances
than one-shot generators. In particular, it can be easier to
build mixed-initiative systems around iterative generators [11].
However, reinforcement learning can be slow and unreliable,
and designing appropriate rewards is a non-trivial task.

In cases where some prior content already exists, how could
we learn an iterative content generator? This paper proposes
one of several possible solutions to this problem and applies
it to the generation of 2D game levels. Our approach is to
artificially destroy levels, framing content generation as the
problem of repairing these destroyed levels by learning a repair
agent trained from the destruction process.

The first step in our approach is to destroy the levels, which
is accomplished by iteratively making destructive edits on the
goal map until it is transformed into a randomly generated
starting map. This sequence of destructive edits forms the Path
of Destruction (PoD), which is then used to form a dataset of
desirable repair actions. In this dataset, each instance consists
of a feature set, which is a part of the level after destruction,
and a target, which is a part of the level before destruction.
Using standard supervised learning methods, we can train a
classifier to act as a repair agent by reversing the Path of
Destruction. By judiciously choosing the feature set–i.e., the
observation space of the agent–and other parameters, we can
achieve a high degree of generalization, such that the trained
agent not only repairs broken levels but also generates new
playable levels from unseen randomized starting levels.
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II. THE PATH OF DESTRUCTION

We introduce a technique which we refer to as the Path
of Destruction (PoD) in order to train generators to produce
unique and playable levels 12. As previously explained, PoD
is a technique that consists of generating a training dataset
by iteratively destroying goal levels until they reach random
noisy levels. During each of these destructive sequences, a
repair sequence is iteratively produced with each destructive
step and added to the training trajectory, which is used to train
the repair agent.

A. Training set generation
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Fig. 1: System diagram explaining the training set generation
step in the Path of Destruction method.

The steps for generating the training set is at the heart of
the Path of Destruction technique. The goal of this step is
to generate a large artificial dataset that can be used to train
an agent to repair destroyed levels and create new levels by
“repairing” from noise. Figure 1 shows the system diagram that
illustrates the main loop of generating the training set. To start
this step, we need two datasets:

• Starting set: This is a set of “levels” that will be used
later as the starting level for generation. In this project,
the starting set consist of noise (random tiles) that is
produced from a predefined distribution such as a uniform
distribution.

• Goal set: This is a set of levels that we want our generator
to learn to repair towards them. In this project, the goal
set is a set of human designed levels that are playable
and unique.

From this dataset, we generate the training dataset by
executing the following algorithm:

1) Generate a noisy random level from a predefined distri-
bution (StartLevel).

1https://github.com/matt-quant-heads-io/path of destruction
2The name comes from the fact that the dataset is formed from a trace of

destructive events (random tile changes), which is then retraced.

2) Select the closest goal level (GoalLevel) from the goal
set to the start level (StartLevel).

a) Calculate the hamming distance between each level
in the goal set and the start level (StartLevel).

b) Select the level with the smallest hamming distance
to be the goal level (GoalLevel)

3) Set the current level (Levelt) to be equal to the goal
level (GoalLevel).

4) Destroy the current level (Levelt) until it is equal to the
start level (StartLevel).

a) Select the next tile location on the level (can be
random or sequential starting from location (0,0)).

b) Save the tile value at the selected location from
both the current level (RepairActiont) and from
the start level (DestroyActiont).

c) Update the current level (Levelt) with the tile value
saved from the start level (DestroyActiont).

d) Add the current level and the original tile value
before destruction (Levelt, RepairActiont) to the
training set.

e) If the current level (Levelt) and the start level
(StartLevel) are not the same then go back to
step 4a.

5) Repeat the entire process until the training set reaches
the appropriate size.

In our experiments, the destruction process (step 4) stops
when the current level (Levelt) is the same as the start level
(StartLevel). However, this is not a requirement. The only
stopping requirement is that the current level (Levelt) is close
to the starting set distribution. This allows the network to learn
to repair (generate) levels from any sampled starting level that
follows that distribution which is explained in section II-C.
One could imagine the stopping criteria be when the current
level (Levelt) is close enough to the start level (StartLevel)
instead of identical or the tile distribution of the current level
(Levelt) is close enough to that of the starting set.

B. Level generator training

For this project, we train a neural network that takes a
cropped observation of the current level as input, and predicts
the appropriate repair action. The action space is defined as
the set of possible game tile values. The cropped observation
consists of the tiles surrounding and including the current tile
location. The observation is parameterized by a number, which
we refer to as the crop size. The crop size determines the
number of tiles surrounding the current tile location that are
observable by the agent at each step. The input observation
consists of the tiles cropped around the changed tile such
that the changed tile is in the center (shown in figure 3). We
experimented with different crop sizes as previous research [12],
[13] showed that neural networks with local observation are
cable of learning a more general strategy compared to networks
that have access to the full observation.

C. Level generation

https://github.com/matt-quant-heads-io/path_of_destruction
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Fig. 2: System diagram explaining the level generation step in
the Path of Destruction method.

The inference, or level generation step, is the final step of
the Path of Destruction. This step focuses on converting a noisy
starting level to a playable level. Figure 2 shows the main loop
of generating a new level. The level generator modifies the
current level iteratively with following these steps:

1) Initialize the current level (Levelt) via generating a noisy
level from a predefined tile distribution.

2) Select the next tile location either randomly or sequen-
tially starting from (0,0) location.

3) Feed the cropped current level (Levelt) to network,
which outputs a repair action (RepairActiont).

4) Update the current tile location in the current level
(Levelt) with the repair action (RepairActiont).

5) If the current level (Levelt) isn’t playable and the number
of steps hasn’t reached the threshold, go to step 2.

This process enables the agent to transform a starting noisy
level into a playable level (Levelt) over sequential iterations
of repair. The stopping condition for the generation process is
usually defined by the user based on the current application.
In our project, we used playability as the stopping condition
since we are trying to generate playable levels.

III. EXPERIMENTS

We conduct 4 different experiments. In the first experiment,
we measure the effect of constraining the observation size. In
the second experiment, we constrain the goal set size to measure
its impact on agent performance. In the third experiment, we
evaluate the robustness of the PoD technique by applying it to
additional game types. Finally, we benchmark our PoD algo-
rithm against a state of the art level generation method that uses
Conditional Embedding Self-Attention Generative Adversarial
Networks (CESAGAN) [14]. For our level generator, we used
a convolutional neural network. The network consists of 3
convolution layers, each with 3x3 kernels of size 128, 128,
and 256, respectively. A 2x2 max pooling layer is used after
the second convolution layer, followed by a fully connected

layer and a softmax activation function. The network is trained
using the Rmsprop algorithm with a batch size of 64 and a
learning rate of 0.001. Training consists of 500 epochs and
employs categorical cross entropy as the loss function. For
every experiment, we trained 3 networks and calculated the
mean and standard deviation to show training stability.

For the first two experiments, and the last experiment, we
used the Zelda version from PCGRL as our test bed. The
games tested and their playability conditions are described
in section III-C. After we trained the level generators, we
evaluated each agent’s performance over 10, 000 independent
inference trials. We calculated the percentage of generated
playable levels, as well as, the percentage of generated playable
and unique levels. For measuring uniqueness, we used the
hamming distance between all the playable levels (generated
or goal) and removed all of the levels that were less than 10%
different. For the benchmarking experiment, we computed the
number of duplicate levels instead of similarity to align with
the metrics used in the original CESGAN experiments.

A. Constraining observation size

(a) Actual Map (b) Obs Size 15 (c) Obs Size 9 (d) Obs Size 5

Fig. 3: Example of the different observation sizes for a certain
goal map. The red rectangle is the current tile that is going to
be acted upon by the agent.

In this experiment, we explored the effect of crop size in the
training set on agent performance. As explained in section II,
we converted the destroyed levels into observations by setting
the center of the observation around the destroyed tile and
cropping the surrounding tiles. This is similar to the narrow
representation presented in the PCGRL framework [9]. To
measure the effect of crop size on agent performance, we
tested 3 different observation sizes: 15, 9, and 5. These sizes
were selected based on the map size of Zelda (7x11). A crop
size of 15 gave a full view of the level, whereas a crop size
of 9 gave a partial view, and a crop size of 5 gave the most
local view. Figure 3a shows the different observation sizes for
the center location of the map. We hypothesized that a smaller
observation size would help the trained agent to generate a
diverse and unique set of playable levels.

B. Constraining goal set size

In this experiment, we sought to capture the effect of the
size of the goal set used to generate the training data. We
tested 3 different goal set sizes: 1, 5, and 50. We expected that
a larger goal set size would help the agent produce a more
diverse and unique set of playable levels. For each of these
experiments, the observation size was fixed to 5.



C. Different games

(a) Examples of Zelda levels from the goal set used to generate the
training set.

(b) Examples of Sokoban levels from the goal set used to generate
the training set.

(c) Examples of Danger Dave levels from the goal set used to generate
the training set.

Fig. 4: Goal sets for different games used in training

In this experiment, we used the PoD method to train a level
generator across 3 different games. Figure 4 shows the 5 goal
levels used for each of the 3 games. The 3 different games
that we selected were as follows.

• Zelda: is a simple remake of the dungeon system of The
Legend of Zelda (Nintendo, 1986). The goal of the game
is to get the key and go to the door without dying. The
player can either avoid enemies or hit them with their
sword for extra points. The goal set levels that we used
were all 7x11 tiles. To measure playability, we ensured
that there was one key, one door, and one player. Also,
the player must’ve been able to reach the key and the
door.

• Sokoban: is a japanese puzzle game (Thinking Rabbit,
1982). The goal of the game is to push the crates to a
certain target location without getting stuck. The goal
levels that we used were of size 5x5 tiles. To measure
playability, we needed to have one player and a number
of crates equal to the number of targets. Lastly, the A*
algorithm must’ve been able to solve the puzzle in a
reasonable amount of time.

• Danger Dave: is a simple remake of the PC game
Dangerous Dave (John Romero, 1988). This game is
different than the other two games as it is a platformer
game where the player can move left, right, and jump.
The goal of the game is to collect the chalice and then
reach the door while avoiding the spikes. The player can
collect diamonds to get a higher score. The goal levels
used were all of size 7x11 tiles. To measure playability,
there must’ve been one chalice, one door, and one player.
Lastly, the A* algorithm must’ve been able to solve the
puzzle in a reasonable amount of time.

For all 3 games, we used a goal set size of 5 because it is
a reasonable number of levels that can easily be found in

Observation size Playable Playable & Unique

5 37.98 ± 0.18% 37.77 ± 0.1%
9 53.93 ± 2.82% 28.55 ± 1.25%
15 86.82 ± 1.34% 18.34 ± 1.0%

(a) Agent performance by observation size

Goal size Playable Playable & Unique

1 83.84 ± 3.57% 14.4 ± 0.26%
5 38.81 ± 1.85% 28.47 ± 2.08%
50 37.98 ± 0.18% 37.77 ± 0.1%

(b) Agent performance by goal size

TABLE I: Agent performance by observation size and goal set
size

most games. For both Zelda and Danger Dave, we used an
observation size of 5 because both games have the same size
map. For Sokoban, we used an observation size of 3 since the
map size is much smaller.

D. Different Algorithms

In the last experiment, we benchmark our results against
the CESAGAN architecture [14] for Zelda. The authors of this
work introduce a bootstrapping training procedure in which a
Conditional Embedding Self-Attention Generative Adversarial
Network is trained to generate Zelda levels using the same goal
set of 50 Zelda maps that we used in our experiments. The
network performance is evaluated by computing the percentage
of playable levels and the percentage of duplicated levels
generated. Table III shows the percentage of levels generated
that are duplicates. We computed these values to align with
the metrics used in the CESAGAN work. We compared the
CESGAN baseline to the PoD performance, using a goal set
size of 50.

IV. RESULTS

As previously mentioned, for each experiment, we trained 3
networks to ensure stability. Each trained network generated
10, 000 levels, which we used to measure agent performance. In
the following subsections, we show these performance results.

A. Observation size

Table Ia shows the percentage of playable levels and playable
and unique levels generated across different observation sizes.
It is evident that the size of the observation is positively
correlated to the number of playable levels generated, and
negatively correlated to the number of playable and unique
levels generated. This is likely due, in part, to the fact that
a larger observation size makes it easier for the network to
understand and correlate what makes a level playable. However,
the larger observation size also makes the network prone to
overfitting on the training data. This was expressed as a mode
collapse (all levels are similar).



Fig. 5: t-SNE visualization of the unique and playable generated
levels for the different trained models based on observation
size.

Fig. 6: t-SNE visualization of the generated levels for the
different trained models based on using different goal set size.

Figure 5 uses the t-SNE algorithm to plot the generated
unique and playable levels for each observation size. The
purpose of this visualization is to show the relation of these
levels with respect to each other and the goal maps. It is evident
that the generated levels from observation size 15 are mostly
clustered around the goal maps.

B. Goal set size

Table Ib shows the percentage of playable levels and playable
and unique levels generated across different goal set sizes. As
is evident in the results, the behavior is similar to what we
observed in the observation size experiment. We see that a
small goal set size forces the trained generator to overfit on

the training data, resulting in generated levels that are less
diverse. By contrast, as the goal set size increases, so to does
the diversity of the generated levels. Using a larger goal set
size to train the network pushes the network to learn a general
strategy that doesn’t mode collapse.

From the 2D projection of the generated levels shown in
figure 6, we can see that having a larger goal set helps the
network to learn to generate levels that are between the goal
levels. We noticed that since not all of the 50 levels are very
distinct, this could be a limiting factor in the variability of
the generated maps. One interesting direction that we did not
explore deeply was the mechanism for selecting the goal map
in the Path of Destruction method. Since we select the goal
maps that are closest to the respective randomly generated
starting maps, it is not immediately evident how this selection
mechanism affects the diversity of the training set. Furthermore,
some goal levels might be more unique than others. Similarly,
some goal levels might be more difficult than others. We think
the goal level selection method should be investigated in future
work.

C. Different games

(a) Examples of playable and uniquely generated Zelda levels.

(b) Examples of playable and uniquely generated Sokoban levels.

(c) Examples of playable and uniquely generated Danger Dave levels.

Fig. 7: Examples of playable and uniquely generated levels for
Zelda, Sokoban, and Danger Dave.

Figure 7 shows some of the playable and unique levels
generated for each of the three games. The levels are sorted
from left to right based on how different they are relative to
each other and to the goal levels. In comparing these levels to
the 5 trained goal levels shown in figure 4, we can see that
levels for Sokoban and Danger Dave look more similar to the
goal levels than for Zelda. This is also signified in table II,
where the percentage of playable and unique levels is much less
compared to Zelda. We think that the low diversity in Sokoban
is due to the smaller level size which makes the 3x3 observation
window more global. This is similar to the observation size of
9 used in Zelda. On the other hand, the Danger Dave agent has
low scores for both playability and playability and uniqueness
because it is a harder game to generate playable levels for.
Incorporating the solution path as part of the goal maps, like in



Game Playable Playable & Unique

Zelda 38.81 ± 1.85% 28.47 ± 2.08%
Sokoban 53.31 ± 0.58% 4.81 ± 0.02%
Danger Dave 18.2 ± 0.35% 10.48 ± 0.02%

TABLE II: Agent performance across different games

Model Playable Duplicated levels

CESAGAN 47.00% 60.30%
PoD 37.98% 0.00%

TABLE III: Agent performance compared to baseline

the work done using Multidimensional Markov Chains for level
generation [15], could improve the overall quality in platformer
games.

Although the levels look similar to the goal maps, they have
different solutions. This is especially true for Sokoban and
Danger Dave because these games are more strategic and thus
require more planning compared to Zelda. Since our diversity
metric (hamming distance) doesn’t take in account the level
solution, we think that a lot of interesting Sokoban levels were
subsequently removed. For example, if we change just the
target location for one of the puzzles, we could then produce a
more complex level that requires many more steps to solve even
though the hamming distance will be minimally affected. We
think that this is an interesting avenue to explore in future work
as it could be used to influence the training data generation
steps by selecting goal levels that have high diversity more
frequently.

D. Different Algorithms

As is evident from table III, our PoD agent significantly
outperformed the baseline in terms of the percentage of
duplicate levels generated. The PoD agent did so while
remaining competitive in terms of the percentage of playable
levels generated. Figure 8 shows examples from PoD and
CESAGAN, respectively. The levels generated by the PoD
have similar structure to the original levels compared to the
CESAGAN levels. CESAGAN levels are more open with less
connected tiles. We think that the locality of observation forced
the PoD network to learn local patterns such as walls needing
to be connected to each other. By contrast, the CESAGAN
results seemed to learn a general distribution of the positions of
wall tiles. We also noticed that levels generated by CESAGAN
tended to have fewer enemies compared to PoD levels. The
small number of enemies is closer to the actual number of
enemies in the goal levels. We believe that locality is the main
driver of this. Having a local view prevents the network from
easily learning how to count the number of enemies in the map.
The CESAGAN agent, by contrast, learned the distribution of
different tiles from the entire map.

V. DISCUSSION

The core underlying idea of the PCG method described here
is that generation can be seen as repair. The trained generator

(a) Examples of playable and non-duplicated Zelda levels generated
by PoD.

(b) Examples of playable and non-duplicated Zelda levels generated
by CESAGAN.

Fig. 8: Examples of playable non-duplicated levels generated
by Path of Destruction (PoD) and Conditional Embedding
Self-Attention Generative Adversarial Network (CESAGAN),
respectively.

is faced with a sequence of broken level segments, and asked
to determine the edit that would best repair the broken segment.
This is why the levels first need to be “destroyed” in order to
train the model: as we already know the correct form of each
segment, we can create a dataset of repair actions to learn.
Given that any map can be destroyed in a very large number of
different ways, one can view the process of dataset generation
as a form of data augmentation. This helps to explain the
strong results we’ve seen from generation based training on
a very small number of levels. While we have not seen the
idea of creation as repair expressively stated in computational
creativity or creative AI research, it relates to many other ideas.
For example, many schools of art teaching focus on how to
gradually improve an artifact from an imperfect state.

It is interesting to compare the Path of Destruction method
with image inpainting techniques. For centuries, conservators
have studied how to best restore art pieces by inpainting
parts that are missing or destroyed due to e.g. deterioration
or vandalism. In recent years, a burgeoning subfield of AI
poses inpainting as a computational problem and advances
machine learning-based methods to solve it [16]. These methods
typically take a set of images and create training data by
randomly removing parts of the images. The model is thus
tasked with regenerating the missing parts. In that sense, the
overall procedure of image inpainting is similar to the Path of
Destruction method presented here. However, in our method,
each edit action pertains only to a single tile (or pixel) based
on a limited neighboring field of view.

Diffusion Models are another obvious point of comparison3.
Those methods are similar to Path of Destruction in that
an agent learns a task through repair steps generated from
destroyed images [17]. However, there are some differences
between PoD and diffusion models. Perhaps the most significant
difference is that diffusion models add Gaussian noise to portion
of the image in one step. By contrast, in PoD, the level is

3The Path of Destruction technique was developed independently from
Diffusion Models, and the similarity was only pointed out to the authors after
a first preprint of this paper had been posted.



destroyed iteratively, one tile at a time. Moreover, PoD destroys
the level of each episode towards a goal whereas, with diffusion
models, the image is destroyed towards a distribution. While
diffusion models could be trained on levels instead of images,
they normally require extremely large datasets to generalize.
Achieving diffusion model generalization using a small dataset
of levels constitutes an interesting area of future exploration.

We can also contrast our novel method with PCG methods
based on predicting a tile based on immediate neighbor tiles.
This includes the widely-used Wave Function Collapse (WFC)
algorithm 4, a constraint-solving algorithm that learns local
constraints from a small amount of data and uses them to create
new content that recreates local patterns stochastically [18]. It
also includes methods based on cellular automata. Specifically,
a variation known as Neural Cellular Automata (NCA) can be
trained using gradient descent to recreate images [19]. It has
also recently been shown that evolutionary methods can be used
to create NCAs that create playable levels [13]. Yet another
related method is Multidimensional Markov Chains (MdMC),
which directly learn the conditional probabilities of neighboring
tiles [20]. Compared to these methods, the Path of Destruction
takes a larger part of the level into account as part of the
input observation. We believe the data augmentation performed
by the Path of Destruction method leads to better few-shot
generalization compared to methods which learn directly from
the source levels.

VI. CONCLUSION

We have presented the Path of Destruction, a procedural
content generation method which can train iterative level
generators from existing levels. The key innovation is the data
generation (or augmentation) method, which makes a large
number of small changes to destroy a level and creates a dataset
of the destruction played backwards, mapping from a destroyed
level to a single repair action. By training convolutional
networks on the generated data, we created level generators that
reliably produce playable and unique levels for three different
2D games. It is notable that PoD generators can generate a
wide variety of levels even when trained on a limited number
of goal levels. This was most evident when we measured the
PoD agents’ performance against the CESAGAN baseline. The
results illustrated that the PoD agents significantly outperformed
the benchmark in terms of the percentage of unique playable
maps generated.

A number of developments of the method proposed here
are possible and should be investigated. It is worth further
exploring different neural architectures, observation sizes, and
representation types. One could also envision using evolutionary
search or quality diversity to produce a diverse archive of
training episodes to increase the uniqueness of the generated
levels.
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