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Abstract—By combining related objects, unsupervised machine
learning techniques aim to reveal the underlying patterns in a
data set.

Non-negative Matrix Factorization (NMF) is a data mining
technique that splits data matrices by imposing restrictions on the
elements’ non-negativity into two matrices: one representing the
data partitions and the other to represent the cluster prototypes
of the data set. This method has attracted a lot of attention and is
used in a wide range of applications, including text mining, clus-
tering, language modeling, music transcription, and neuroscience
(gene separation). The interpretation of the generated matrices is
made simpler by the absence of negative values. In this article, we
propose a study on multi-modal clustering algorithms and present
a novel method called multi-modal multi-view non-negative matrix
factorization, in which we analyze the collaboration of several
local NMF models. The experimental results show the value of
the proposed approach, which was evaluated using a variety of
data sets, and the obtained results are very promising compared
to state of art methods.

Index Terms—multi-modal multi-view clustering, collaborative
clustering, non-negative matrix factorization

I. INTRODUCTION

The development and everyday use of social media has led
people to share their lives and express their opinions online.
As a result, data (text, images, audio/speech, video, etc.)
generated by social networks users is changing rapidly. As data
collections become highly diversified [1] due to the emergence
of multi-modal data sets, multi-view data sets (i.e. the same
data sample described in various ways) and dispersed data, it
is now critical to effectively extract inherent information from
these multi-source data sets. Data Clustering is an approach
to discover the intrinsic structures of a collection of items by
grouping objects with similar features [2].

Due to the increasing variety and volume of data sets,
clustering algorithms struggle to achieve competitive results
with high certainty. However, similar issues can be addressed
more easily by combining several approaches to improve both
the quality and reliability of the outputs.

NMF has received a lot of attention in recent years [3] [4]
and has been used in a variety of domains including feature
selection, dimensionality reduction, text mining and clustering
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[2]. Paatero (1994) [5] established the NMF method, an
unsupervised clustering methodology in which a data matrix
is factored into (usually) two matrices: a matrix of cluster
prototypes and a matrix of data partitions, such that none of
the matrices has any negative component. The exclusion of
negative values makes it easier to interpret the constructed
matrices. Self-Organizing Map (SOM) is another clustering
algorithm that involves artificial neural networks [16]. To
achieve clustering, this method processes all of the data
samples one at a time and maps the cluster centers to a two-
dimensional space. De Sa (2005) [8] presented a simple and
effective spectral clustering approach and used it to analyse
web page data with two views. The similarity matrix is used
first to combine the features extracted of both views, and then
the standard spectral clustering technique is used to perform
clustering and produce the final clustering result.

In a multi-view setting, a data sample can describe the
same item from different angles and in different ways [6].
Having different views complementing each other, multi-
view clustering algorithms become important for information
extraction. In the literature, we distinguish four categories:

• Multi-view graph clustering. These methods find a fusion
graph (or network) across all views and then applies semi-
automatic segmentation algorithms or other techniques
(e.g., spectral clustering) to the fusion graph to produce
the clustering result. Wang et al. (2017) [12] introduced
a generative model that uses ensemble manifold regular-
ization. In particular, they built a nearest neighbor graph
for each view to encode the corresponding manifold
information, and a multiple graph ensemble regularization
framework was designed to learn the optimal intrinsic
manifold. The PLSA-based multi-view topic model was
then modified to include the manifold regularization term,
producing a unified objective function. Zhang and Mao
(2016) [13] used sparse weights for similarity graph gen-
eration with unreliable neighbors filter in order to identify
accurate neighbors for multi-view clustering efficiently,
by presenting every object as a weighted sum of its
neighbors for each view.

• Multi-kernel learning. This class of methods employs
predefined kernels associated to different views, which
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are then combined either linearly or non-linearly to
improve clustering performance [9]. Zhao et al. (2009)
[10] introduced a multi-kernel clustering algorithm based
on maximum margin clustering, which finds the best
clusterings, the optimal kernels as well as the maximum
margin hyperplane together at the same time. Du et
al. (2015) [11] proposed a robust K-means (with l2,1-
norm) on kernel space and applied a multiple kernel K-
means algorithm that can find simultaneously the optimal
combination of multiple kernels, the best clustering labels
and cluster membership.

• Multi-task multi-view clustering. These methods assign
one or more tasks to each view, transfer inter-task knowl-
edge to one another, and exploit multi-task and multi-
view relationships to improve clustering performance.Gu
and Zhou (2009) [15] presented a cross-domain based
multi-task clustering solution in which each view is
assigned a task. This method aims to learn a subspace that
allows knowledge transfer from one task to another. Xie
et al. (2012) [14] presented a 3-factor NMF-based multi-
task collaborative clustering method. The cost function
was made of two parts: task-specific co-clustering and
cross-task feature space regularization.

• Collaborative clustering algorithms. This approach deals
with multi-view data by adopting a co-training strategy.
It bootstraps the clustering of different views by using
the information extracted from one another. By applying
this method iteratively, the clustering results of all views
tend to converge, leading to the broadest consensus across
all views. Bickel and Scheffer (2004) [7] introduced
a k-means-based multi-view clustering algorithm and
applied it to text clustering data with two conditionally
independent views. Furthermore, Grozavu et al. (2022)
[2] proposed a NMF based multi-view clustering. First,
NMF is applied to each view independently, then a
collaboration phase is added in order to find hidden
structures and patterns, and allow the interaction between
these different views.

However, these approaches are not adapted for the multi-view
multi-modal aspect of the data sets (i.e. multi-source data sets
where each source can have multiple views or representations).
Taking into account the augmenting complexity and volume
of data sets nowadays and the need for efficient information
extraction algorithms, it is important to develop a solution that
tackles this subject.

Our research sets out to propose a new method for multi-
modal multi-view clustering by extending some multi-view
solutions proposed in the literature. The algorithm first applies
a NMF on each view locally; then a collaboration phase
between different views within the same modality allows for
the exchange of information and finally a second collabora-
tion phase is introduced, where each of the other modalities
contributes to the co-clustering.

The remainder of the paper is organized as follows: Section
II discusses the preliminary setting of the proposed approach
and the formal definition of our solution. Section III proposes

optimizations of the solution under different conditions. Fi-
nally, we assess the performances of the proposed algorithm
through experimental results in Section Experiment. The paper
ends with a conclusion and several future works.

II. PROBLEM FORMALIZATION

A. NMF Algorithm

The traditional Nonnegative Matrix Factorization algorithm
is proven to be equivalent to relaxed K-means clustering
method [17]. Given a non-negative data matrix of M features
and N objects, denoted as X = (x1, x2, · · · , xN ) ∈ RM×N

+ ,
such that xn ∈ RM×1

+ represents the nth object of X , the NMF
algorithm gives a low rank approximation of X using two
non-negative matrices product FG, such that F is the matrix
of cluster prototypes and G is the matrix of data partitions
defined respectively as F = (f1, f2, · · · , fk) ∈ RM×K

+ ,
and G = (g1, g2, · · · , gN ) ∈ RK×N

+ , with K a parameter
representing the number of components. Under a constrained
optimization, the NMF cost function to minimize can be
written as:

L(X,F,G) = ∥X − FG∥2 (1)

with L representing the Frobenius norm of the matrix X−FG.

B. Multi-modal Multi-view Setting

In this section, we investigate the exchange of information
between finite clustering results obtained using an NMF model
and those obtained in a multi-modal multi-view context. NMF
clustering algorithm is applied on each data set. We are
interested in the multi-view clustering technique introduced by
Grozavu et al. (2022) [2] because it allows for the comparison
of data that are equivalent but defined by distinct factors,
and we have revised it in order to apply it to the multi-
modal context. All of the distributed views in this case share
the same units but are described differently. Here, all NMF
factorizations will share the same number of centroid vectors.

As stated earlier, let X = (x1, x2, · · · , xN ) ∈ RM×N
+ be a

data set of M features and N objects containing non-negative
values. In the case of multi-modal multi-view framework, we
assume that we have a finite number of modalities p ∈ N, and
each modality has a finite number of views v ∈ N. Locally,
we apply a traditional NMF to each modality views. The local
NMF expression can be rewritten as follows:

L(vp)(X
(vp), F (vp), G(vp)) = ∥X(vp) − F (vp)G(vp)∥2 (2)

where, the subscript vp denotes both the modality and
view dependency. F (vp) = (f

(vp)
1 , f

(vp)
2 , · · · , f (vp)

k ) ∈
RM×K

+ is the cluster centroids matrix and G(vp) =

(g
(vp)
1 , g

(vp)
2 , · · · , g(vp)N ) ∈ RK×N(vp)

+ indicates the data par-
tition matrix.

C. Multi-view collaboration term

Adding extracted information from different views v′ ̸= v to
a view v is a popular collaborative approach [18] [19]. In their
work [2], Grozavu et al. presented a multi-view collaboration
technique that minimizes the distance between a data point



and its corresponding prototypes of local NMF views v′ ̸=
v to incorporate the information from view v′. In order to
achieve this information transfer, they introduced the euclidean
distances matrix D(v) of each data point of X(v) and the set
of centroids F (v), such that D(v)

kn = ∥x(v)
n − k(v)∥.

However, this setting can’t be applied in our multi-modal
context, since the euclidean distance is not suited for image
similarities. As described in [20], the euclidean distance is
highly sensitive to even small image deformations. Since the
traditional euclidean distance is a summation of the pixel-wise
intensity differences, even minor deformations may produce
large euclidean distances. Instead, when dealing with multi-
modalities Hu et al. (2019) [21] suggest to use the inner
product between each data point and the set of centroids.
Taking this into account, we modify the distance matrix D(v)

presented earlier by using the inner product instead of the
euclidean distance, such that dvp

kn = ⟨x(vp)
n , k(vp)⟩.

As a result, the pairwise collaborative term C(vp, v′p) be-
tween the vth and v′th NMFs is defined as follows:

Cvp,v′
p
(F (vp), G(vp)) = ∥(G(vp) −G(v′

p)) ◦D(vp)∥2F (3)

Notice that v′p denotes another view of the same modality. The
collaborative term C(vp, v

′
p) is equivalent to the weighted sum

of the inner product between the data point x(vp)
n and all the

centroids in F (vp), with G(vp)−G(v′
p) representing the weight.

In (3), when G(vp) and G(v′
p) agree, the collaborative term

equals zero and we consider only the vth local NMF

D. Multi-modal collaboration term

In our multi-modal multi-view context, we also want to
include the information extracted from the views of the other
modalities p′ ̸= p. With this additional knowledge transfer, the
NMF algorithm not only include the information from local
views v′p ̸= vp but also the information from distant views vp′

(i.e. views of other modalities).
We define the multi-modal collaborative term as follows:

Ovp,vp′ (F
(vp), G(vp)) = ∥F (vp)(G(vp) −G(vp′ ))∥2F (4)

Having two data partition matrices of different modalities
G(vp) and G(vp′ ), our objective is to minimize the multi-modal
collaborative term. Notice that O(vp, vp′) is equal to zero if
G(vp)=G(vp′ ).

Hence, the set of matrix partitions G(vp) and the set of
centroids F (vp) are estimated iteratively and alternatively by
minimizing the following objective function:

J (F,G) =
∑P

p=1

(∑V
vp=1(Lv(F

(vp), G(vp)) + G(vp, v′p)
)
+H(vp, vp′)

(5)
where

G(vp, v′p) =
∑

v′
p ̸=vp

βvp,v′
p
· C(vp, v′p) (6)

and
H(vp, vp′) =

∑
vp ̸=vp′

γvp,vp′O(vp, vp′) (7)

Here, Lv is the vth local NMF expression introduced in (2).
βvp,v′

p
and γvp,vp′ are the degrees of the multi-view and

multi-modal collaborations respectively, with respect to the
constraints

∑
v′
p ̸=vp

βvp,v′
p
= 1 and

∑
vp′ ̸=vp

γvp,vp′ = 1

III. OPTIMIZATION

A. Algorithm Derivation

Recall that the described cost function in (5) is differentiable
and its derivative exists at each point in its domain. As a
result, there is always a minimum, which can be found using
nonlinear programming.

To minimize the aforementioned cost function (5), we
use the gradient descent technique. For Θ ∈ {F (vp), G(vp)}
st. Θ ≥ 0, the update formula of the cost function (5) is:

Θ = Θ− ηΘ ◦ ∇Θ(J (F,G)) (8)

Due to the presence of the subtraction operator in (8), the
non-negativity condition is violated. To adress this issue,
we consider Lee and Seung’s strategy (2001) [22] by using
an adaptive learning rate for the cost function J and the
parameter Θ ∈ {F (vp), G(vp)}:

ηΘ =
Θ

[∇ΘJ ]+
(9)

The update rule of the partition matrix and centroid matrix is
written as follows:

Θ = Θ ◦ [∇ΘJ ]−
[∇ΘJ ]+

(10)

Such that ◦ and the fraction line represent the element-wise
multiplication and division respectively. Notice that in (10),
the negative terms of the gradient are in the numerator, while
the denominator contains the positive terms.

B. Optimized Weights for the Collaborative terms

Here, we examine how optimizing the degrees of collabora-
tion βvp,v′

p
and γvp,vp′ , introduced in (6) and (7), can produce

the optimal solution for the cost function and reduce the risk
of negative collaboration.

Since βvp,v′
p

≥ 0, we consider the collaboration weight
βvp,v′

p
= τ2vp,v′

p
. Our objective is to find the positive weights

τ2vp,v′
p

that will determine the collaborative term’s strength.

Using the condition ∀vp,
∑V

v′
p ̸=vp

τ2vp,v′
p
= 1 along with the

Karush-Kuhn-Tucker (KKT) conditions [23], the results of the
optimization are presented in (11):

βvp,v′
p
=

|Cvp,v′
p
|2(∑

v′
p ̸=vp

|Cvp,v′
p
|2
) (11)

Similarly, the optimized multi-modal collaborative term is
written as:

γvp,vp′ =
|Ovp,vp′ |

2(∑
vp′ ̸=vp

|Ovp,vp′ |2
) (12)

We propose an interpretation to these results: in the context of
multi-modal multi-view collaboration, overall results should



improve if individual algorithms give more weight to algo-
rithms with the same results as local solutions(higher weight
τ value for a specific NMF model).

Algorithm 1 Multi-modal Multi-view NMF

Convex-initialization: Randomly set the cluster prototypes, v
number of views and p number of modalities.
For all realizations
Local phase:
forall views v of a modality p do

Optimize the NMF cost function (2).
end
Multi-modal Multi-view Collaboration phase:
Compute the optimized βvp,v′

p
with (11)

Compute the optimized γvp,vp′ with (12)
forall views v of all modalities p do

Estimate the partitions matrix of all views (10).
Estimate the centroids matrix of all views (10).

end

IV. EXPERIMENTS

In this section, we assess the performances of our proposed
collaborative strategy on two multi-modal data sets: Multi-
modal Corpus of Sentiment Intensity (MOSI) [24] and NUS-
WIDE [25]. Further details on the data sets are given in order
to illustrate the premise of the presented approach. Since we
have access to these data set labels, the performance of the
multi-modal multi-view NMF clustering is evaluated using two
standard metrics: the silhouette index and purity.

A. Purity Evaluation Procedure

Purity is a metric that measures the extent to which clusters
contain a single class. Let L = {l1, l2, · · · ln}, n ∈ N and
K = {k1, k2, · · · km},m ∈ N be the known data labels
and centroids respectively. The purity score of a clustering
is defined as:

purity =

|K|∑
m=1

max
|L|
i=1 |kim|
|km|

(13)

where |km| denotes the total number of observations associ-
ated with the cluster km, and |kim| denotes the amount of data
of class li related to the cluster km.

The purity of the clustering result is equal to the expected
purity of all clusters. A High purity score indicates a good
clustering process.

B. Silhouette Evaluation Procedure

The silhouette index is the average silhouette coefficient
over each data sample. It is computed using the following
formula:

silhouette =
(b− a)

max(a, b)
(14)

where a is the mean distance between instances of the same
cluster (i.e. the mean intra-cluster distance), and b is the mean

distance to the instances of the successive closest cluster (i.e.
mean nearest-cluster distance).

The silhouette coefficient is defined in the interval [−1, 1];
a value close to 1 indicates that the instance is inside its own
cluster and distant from other clusters, a value close to 0
indicates that it is near a cluster boundary, and a value close
to −1 indicates that the instance may have been mistakenly
assigned to a different cluster.

C. Data Set Descriptions

• NUS-WIDE - contains 269,648 images and their asso-
ciated 5,018 unique tags from Flickr. A ground truth of
81 classes is provided, consisting of events, programs,
animals, objects, people. A semi-automatic process is
used to create the ground truth and human labelers assess
the relevance of the image classes. Six low-level image
features are given: color histogram, color correlogram,
edge direction histogram, wavelet texture, block-wise
color moments and a bag of visual words on SIFT
descriptions.
We extracted two subsets (NUS-2B, NUS-CDF) that we
used for our experimentation (see Tab. I). Experiments are
performed using both modalities (i.e. image and text). For
the image modality, we used the edge direction histogram
and the wavelet texture.

• MOSI - contains 2199 opinion video clips. Each clip has
a sentiment annotation in the interval [−3, 3].For each
opinion video clip, the audio file and transcriptions are
provided. The data set is meticulously annotated with
labels for sentiment intensity and subjectivity.
In our experimentation, we only used the text and audio
modalities. We extracted two views (low-level features)
from the audio modality: the raw audio signal (Raw) and
the Mel-scale spectrogram (MEL), as suggested in [26].
As for the text modality, we used the BERT [27] and
Word2Vec (W2V) [28] views. To illustrate the process
of multi-modal multi-view collaboration, we introduce
a Gaussian noise with a mean of zero and a standard
deviation of one to the Word2Vec view. Finally, in order
to compute the purity score, we transformed the data set
into binary classification by assigning the label ”positive”
to the sentiments in the interval (0, 3] and the label
”negative” to the sentiments in the interval [−3, 0]

TABLE I
SUB-DATASETS OF NUS-WIDE

Data sets Classes Images

NUS-CDF
Cat
Dog
Fish

1425
1486
1019

NUS-2B Bird
Boat

2224
2477

NUS-WIDE 81 classes 269 648



D. Illustration of the proposed solution on the NUS-2B subset

As stated previously, we will use the case of a collaboration
between two views of the same modality (image) and a view
of the other modality (text) to simplify the interpretation of
the collaboration principle.

To allow collaboration between different views and modali-
ties, the structures of all local clustering results must be similar
(i.e. same dimensions). To ensure this condition, we applied
PCA (Principal Component Analysis) on all modalities views.

Fig. 1 represents a projection of the wavelet texture view in a
two-dimensional space using T-SNE (T-Distributed Stochastic
Neighbor Embedding), using the ground truth provided. The
associated cluster for each set of data is displayed with a
specific color.

Using NMF prior to the multi-modal multi-view collabora-
tion, the purity scores achieved on the image views (wavelet
texture and edge direction histogram) and the text view are
52.7%, 71.6% and 85.6% respectively.

We then applied the second phase of the proposed method
(the multi-modal multi-view collaboration) to share the clus-
tering information throughout all NMF clustering results.

Following the collaboration of the edge direction histogram
and text views with the wavelet texture view, the purity
score of the latter rose to 66.4%. Fig. 2 shows the result
of the muti-modal multi-view collaboration on the wavelet
texture image view. Furthermore, we computed the Silhouette
index to evaluate the resulting clustering structure after the
collaboration. The Silhouette index increased from 0.32 to
0.38. Tab. II summarizes these experiments.

In another experiment, we analyzed the impact of the
horizontal collaboration of views with lower purity score on a
view with a higher score. To do so, we introduced a Gaussian
noise to the text view to reduce its clustering quality, which
became 61.85%. Next, by collaborating the noisy text and the
wavelet texture views with the edge histogram texture view,
the purity score of the latter decreased from 71.6% to 63.08%.

We notice that the collaboration between a view with a
low purity score and views and modalities with higher purity

Fig. 1. Wavelet texture view representation prior to collaboration

TABLE II
RESULTS OF THE HORIZONTAL COLLABORATION METHOD ON NUS-2B

Dataset NMF
Metrics

Purity Silhouette

NUS-2B

NMFedh 71,6 0,34

NMFwt 52,7 0,32

NMFtext 85,6 0,37

NMFnoisyText 61,85 0,33

NMFedh,text−>wt 66,4 0,38

NMFwt,noisyText−>edh 63,08 0,3

Fig. 2. Wavelet texture view representation after the collaboration

scores enhances the quality of the initial view. Whereas, a
collaboration between a view with a higher purity score and
views and modalities with lower purity score diminishes the
quality of the initial view.

These findings indicate that while the multi-modal multi-
view collaboration increases or decreases the purity score
based on the clustering quality of distant collaborators, it has a
little impact on the Silhouette index, as the collaboration only
takes in consideration the distant partitions without altering
the local structure of the view.

E. Comparison with other technique

To illustrate the usefulness of the multi-modal multi-view
collaboration approach presented, we compare it with the
multi-view clustering technique proposed in [2]. The compar-
ison is conducted on the NUS-CDF subset.

Tab. III gives the purity score and Silhouette index of
each local NMF clustering and horizontal collaboration algo-
rithm. Regarding the Multi-view NMF clustering technique,
the clustering quality of the edge direction histogram view
decreased from 39.3% to 38.32%, after the collaboration, due
to the local knowledge transfer of the wavelet texture view
(lower purity of 37.98%). Whereas, using our method, the
edge direction histogram view’s clustering quality increased,
after the collaboration, from 39.3% to 57.04% as a result of
the local knowledge transfer of both the text modality and the
intra-modality view (wavelet texture).



TABLE III
COMPARISON OF APPROACHES ON NUS-CDF SUBSET

Algorithms Purity Silhouette

NMF

NMFedh 39,3 0,31

NMFwt 37,98 0,34

NMFtext 94,75 0,59

Multi-view NMF NMFwt−>edh 38,32 0,32

Our approach NMFwt,text−>edh 57,04 0,36

This comparison shows the importance of including the
information from other modalities during the collaboration.

F. Validation using additional data sets

In this part, we applied our solution to the MOSI data set
and computed the clustering purity score before and after the
collaboration.

In Tab. IV, notice that the purity score increases when the
majority of distant collaborators have a strong segmentation.
Similarly, we can see that the collaboration has little impact
on the Silhouette index since the data set structure remains
unchanged.

TABLE IV
RESULTS OF THE HORIZONTAL COLLABORATION METHOD ON MOSI.

Dataset NMF
Metrics

Purity Silhouette

MOSI

NMFBERT 55,34 0,39

NMFW2V 46,2 0,31

NMFRaw 51,79 0,36

NMFMEL 52,88 0,35

NMFB,R,M−>W 53,11 0,33

V. CONCLUSION

In this study, we presented a novel method for multi-modal
multi-view horizontal collaboration by transferring knowledge
between various local Non-negative Matrix Factorizations.
Through this collaboration, various NMFs can interact and
reveal the inherent patterns and structures in data sets.

We presented our proposed technique, which is well-suited
for collaboration between views of various modalities that
represent the same objects but with different attributes.

The experimental findings show that the proposed method,
which has been validated against a variety of data sets,
produces better results than the multi-view NMF clustering.

As part of our future work, we plan to implement an
ensemble technique to find a single consensus partition among
all the local NMFs after the collaboration. We also plan to
analyze the impact of different modalities on the results of the
collaboration by introducing a weight factor for each modality.
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