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Abstract—Vehicle Occupant Detection has gathered 

attention with the advancement of Connected Automated 

Vehicles (CAVs) since it enhances vehicular safety features and 

contributes to Vehicle-to-Everything (V2X) communication 

features. In this paper, a novel Frequency Modulated 

Continuous Wave (FMCW) radar-based occupancy detection 

utilizing Convolutional Neural Networks (CNN) is introduced. 

The proposed methodology tackles disadvantages posed by 

visual and sensor-based methods when privacy, computational 

complexity, line-of-sight requirements, and robustness are 

concerned. The system uses time-domain raw radar data signals 

to form visual heatmaps based on signal intensity variation 

caused by presence of a target. The heatmaps developed for each 

data frame acts as an input to the neural network. Visually 

generated signal based heatmaps differentiate three classes of 

vehicle occupancy: vacant, driver seat and rear passenger 

occupancy. The adapted CNN architecture is an implementation 

of transfer learning where a version of the VGG-16 pretrained 

model consisting of 16 convolutional layers is used. A validation 

accuracy of 96.88% is achieved with a dataset containing 1000 

heatmap images for each class. The results conclude that radar 

generated time domain heatmaps efficiently detect vehicle 

occupancy employing transfer learning even with smaller 

datasets.  

Keywords—FMCW, CNN, Radar, Transfer Learning, 

Classification, Vehicle safety, Vehicle Occupancy. 

I. INTRODUCTION  

       Successfully determining vehicle occupancy has been an 

area of interest for auto-manufacturers and transport 

regulatory boards. As the industry is moving towards highly 

automated vehicles, active and passive safety systems in 

vehicles are of major concern. While active safety systems 

try to avoid catastrophic accidents and crashes, passive safety 

systems try to protect passengers or occupants during or after 

the crash [1]. Seat belt warning (SB), Airbag deployment 

(AB) and Child Safety Systems (CSS) are some examples of 

passive safety systems in vehicles. Statistics have suggested 

that the use of seat belts and airbags have saved thousands of 

lives and have decreased accident fatality by nearly 12% [2]. 

On similar grounds, child presence system installation has 

been strongly recommended by the European New Car 

Evaluation Program (NCAP) in new cars starting from 2020 

[3]. At the base level, vehicle occupant detection was initially 

implemented to provide passive safety features such as seat 

belt reminders [4]. Recent advancements in the automotive 

domain have given rise to several modern applications of 

occupancy detection. The passenger operation of electric 

vehicles and futuristic autonomous vehicles depend highly on 

vehicle occupancy to provide better user experience [5] or 

effective use of Driver State Monitoring (DSM) systems [6]. 

 

      In literature, various attempts have been made to detect 

occupants in vehicles. Early implementations involved 

pressure sensors embedded in seats to enhance occupant  

protection [7] [8]. These methods pose disadvantages when 

dynamic observations are required. Capacitive seat sensors 

were developed to solve this issue as they determine the 

electric field distribution to capture information of mass 

distribution. The principle of capacitive sensing has been 

improved and developed to work on low electric field 

radiation systems [9] and multiple transmitting and receiving 

electrodes [10]. However, systems developed based on 

electric fields, capacitive or inductive methods have posed 

high false alarm rates which led to users often disabling these 

features [11]. On-board motion sensors that depend on the 

opening and closing of doors have also been used for 

occupant detection and counting which pose similar 

false positive issues [12].  

 

      Vision based methods using optical devices such as 

cameras have proven to be a feasible solution for occupant 

detection. External image data obtained through cameras set 

along roadways have been often used for vehicle occupant 

counting in high occupancy vehicles lanes [13] [14]. Such 

methods seem impractical when off roadway occupancy 

sensing in concerned. Detection and localization of 

passengers have been implemented efficiently with image 

data obtained from in-vehicle cameras in combination with 

machine learning and deep learning algorithms such as SVM 

(Support Vector Machine) [15], AdaBoost [16], CNN 

(Convolutional Neural Networks) [17], Clustering and Linear 

Regression based classifiers [18]. Although vision-based 

methods provide promising results, they invade users’ 

privacy and do not perform well in occluded scenarios. The 

issue of user privacy has been attempted to be resolved using 

thermal cameras [19] but are sensitive to external temperature 

conditions and occupant clothing.  

 

In recent times, radar systems have gained attention due 

their reliability in detecting targets under different conditions 

and their ability of seamless hardware and software 

integration [20]. Human sensing with UWB (Ultra-

Wideband) radar technologies have been utilized for in-room 

applications for several applications such as vital sign 

monitoring [21] and gesture recognition [22]. Currently, 

classes of Ultra-Wideband (UWB) radars such as IR-UWB 

(Impulse Radio Ultra-Wideband), CW (Continuous Wave) 
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and FMCW (Frequency Modulated Continuous Wave) radars 

have become popular choices for such applications. The 

feasibility and robustness of UWB radar for human 

occupancy detection in indoor applications can be extended 

to other confined environments such as vehicle cabins. The 

IR-UWB radars have been used in vehicle cabins to detect 

passenger vital signs [23] but has difficulty in classifying 

stationary and moving objects. CW radars are another 

popular choice due to their simple architecture and ease of 

use. Applications such as human life detection have been 

implemented using CW radars [24], however, these radars 

have only been able to detect moving targets and not their 

range [25]. At present, FMCW radars are employed 

in applications such as adaptive cruise control as they are 

capable of detecting range, angle and the 

velocity of objects [26]. Previous FMCW literature in the 

automotive domain suggests limited use of the radar for in-

vehicle applications. 

 

Machine learning and Deep learning has been 

incorporated with FMCW signals for various applications. 

The time domain FMCW signals have been effectively used 

for target range estimation using ANN (Artificial Neural 

Networks) [27] with synthetically generated radar data 

signals. Some other implementations focused on phase-based 

characteristics of reflected FMCW signals from pedestrians 

and vehicles to classify respective targets [28]. Deep CNN 

image based architectures such as YOLO [29] has been used 

for external target detection in cars using 2D images created 

in the range-angle (RA) domain from raw FMCW signals. 

VGG-16 [30] which is another image based CNN architecture 

has also been used on range-angle images generated from 

FMCW signals for human detection and classification in 

indoor environments.  Range-azimuth estimation have also 

been implemented for in-vehicle occupant detection using 

FMCW features and Support Vector Machines (SVM) but 

suffered resolution issues [31].  

 

In this paper, the method of transfer learning is applied 

where the VGG-16 [32] based CNN network is modified for 

vehicle occupant detection on visual heatmaps created with 

time-domain FMCW radar signals. The system poses several 

advantages over previously discussed implementations: 

1. Contactless, non-intrusive system that is robust to 

slight movements in targets. 

2. Secures users’ privacy as it eliminates the concept 

of in-cabin images.  

3. Performs well in occluded scenarios due to FMCW 

radar signals’ ability to penetrate through objects. 

4. Low-cost implementation that can be performed 

with a single transmitter and receiver based FMCW 

antenna. 

5. The transfer learning approach avoids overfitting 

issues when working with smaller datasets. 

 

The remainder of the paper is organized as follows: 

Section II of the paper outlines the methodology, working of 

FMCW systems and the system setup. Section III outlines 

CNN architecture and software details of the implementation. 

Section IV presents the results, discussion on performance. 

II. METHODOLOGY,  HARDWARE SPECIFICATIONS AND   

SYSTEM SETUP   

A. Methodology 

      The detailed methodology is summarized in figure 1. The 

received FMCW reflected off targets are further processed to 

eliminate effects of static clutter. The method of background 

subtraction where an array of average signal values collected 

in the absence of the target is subtracted from the acquired 

signal is employed. Signal intensities of each frame is 

calculated to form heatmaps that correspond to target 

detection. The heatmaps form the input to the CNN where 

classification takes place.  

 
 

Figure 1. Block diagram of the proposed algorithm 

 

B.  FMCW - Hardware specifications 

The basic working of radars involves the emission of EM 

(Electromagnetic) waves into surrounding environment 

where an identical echo of the transmitted wave is reflected 

at the receiver. The FMCW radar emits waves that are 

commonly called “chirps”. Chirps emitted by FMCW are 

either sinusoidal or sawtooth waveforms whose frequency 

linearly increases and is swept between the start (fmin) and 

end (fmax) frequency bands. The relation between increasing 

frequency and time can be observed in figure 2. It is notable 

that the extent of linearity with respect to time depends on the 

start and end frequencies.  

 
Multiple chirps can be emitted in certain modules that are 

reflected to the receiver from the targets in the radar arena. 
The received and transmitted chirps are mixed to generate an 
IF (Intermediate Frequency) signal or Beat signal that has a 
constant frequency. Multiple tones of IF signals are produced 
when multiple targets are present in the arena. The range of 
the target from the radar can be calculated as frequencies of IF 
signals are directly proportional to distance. Lower 
frequencies correspond to targets present close to the radar and 
vice versa. 



 
Figure 2. FMCW signal and Time-Frequency relationship 

 

 The FMCW radar module selected in this paper is the 
off-shelf commercially available Walabot Developer Kit [32] 
that is an integrated radar and signal processing unit. The 
module consists of 18 pairs of transmit/receive antennas that 
are used for 2-dimensional object detection. The version 
selected in this paper can output both raw radar data as well as 
processed data that is accessed through the Walabot software 
development kit. The Walabot emits a single chirp per frame 
and has a frequency sweep of 3.3-10GHz. Each frame 
captured by the module consists of 8192 samples classified as 
range bins. The sampling rate of the module is 4Hz. 

 

 

Figure 3. Multiple FMCW chirps and frequency relationship 

C.  System setup and Data Acquisition 

The radar data obtained from the Walabot contains 

received signal voltage in a matrix form whose dimension 

depends on the number of active antennas. The code used for 

data acquisition is a modified version of the open-source 

python code for a project called ‘People and Fall detection’ 

available on the Walabot Community website [33]. The 

proposed system uses four pairs of active antennas for data 

collection out of which the data representing horizonal plane 

is selected. It was observed that the AntennaPair-2 

(txAntenna=1, rxAntenna=3) represents strong signal 

strength in the horizontal plane [33]. Hence, further signal 

processing and heatmap generation is done using the signal 

obtained from AntennaPair-2.  To replicate the vehicle 

environment, the radar was placed in a Driver-in-loop 

simulator as shown in the figure 5. Position of the radar 

remained fixed throughout the data collection experiment.  

 

Figure 4. Walabot hardware antenna array 

Clutter suppression is an important step in processing 

radar data. In this case, signal reflections from seats and other 

in-vehicle objects are considered static clutter interference. 

The raw data acquisition code including a background 

subtraction function is applied to eliminate signal energy 

from static clutter and other objects. The target arena for the 

radar is specified in spherical coordinates where Phi and 

Theta are measured in degrees with a resolution of 4.5 

degrees per pixel whereas R is measured in centimeters with 

a resolution of 5cm per pixel. The Walabot arena setting for 

occupant sensing is as follows:  

• Phi = (-60,60,4.5) 

• Theta = (-45,45,4.5) 

• R = (10,400,5.0) 

 
 

Figure 5. Hardware positioning and setup  

 

FMCW data has been captured for 3 occupant scenarios: 

1. Driver seat occupancy  

2. Rear passenger seat occupancy  

3. No vehicle occupancy 

 

Equal number of data points have been collected for all 

the three scenarios with two participants ensuring at least 

1000 frames in each class for training and 200 images for 

validation with the neural network. The participants in the 

driver seat performed a brief driving activity during data 

acquisition whereas participants in the rear passenger seat 

performed non-driving activities. The vehicle accommodated 

one participant at a time for data collection ensuring single 

occupancy for each scenario described. The raw data 

recorded has been processed to generate horizontal plane 

heatmaps based on reflected signal intensities. The band 



representing highest signal intensity in each case indicates the 

presence of a target. The comparison of heatmaps produced 

for each class is represented in the figure 6. The heatmaps 

produced act as input to the CNN.  

III. CNN ARCHITECTURE AND TRAINING 

The proposed CNN model is designed to work efficiently 

with smaller datasets as it has been pretrained on larger 

datasets for different problem statements. The architecture 

used in this paper is a modified version of the VGG-16  [32] 

CNN model trained on a subset of the ImageNet dataset 

consisting of over 14 million images belonging to 22000 

classes. The subset of the ImageNet dataset contains different 

images of vehicles and contains 1000 output labels.  

 

 
 

Figure 6. FMCW heatmaps for occupant detection 

 

The model contains 16 convolutional and max pooling 

layers and three fully connected dense layers. Each 

convolution layer filter has kernel size of 3*3 and pooling 

region of 2*2. The input layer and the final layer has been 

modified to perform classification on the three classes of 

vehicle occupancy defined in the section above. The 

activation function at the final layer is set to Softmax with a 

three-class output. The CNN architecture is shown in the 

figure 7. The implementation of the VGG-16 CNN network 
has been done with 3000 input images and 600 validation 

images. In this paper, the all the pre-trained convolutional 

layers are frozen for training except the last two layers for 

fine-tuning purposes. The final fully connected layer has been 

modified to output three occupancy classes in the architecture 

as shown in figure 7.  

 
 

Figure 7. VGG-16-CNN Architecture  

IV. RESULTS 

The CNN model defined in the previous section has been 

trained with radar signal heatmaps produced for each frame 

in the preprocessing stage with 119,558,147 parameters. The 

model was trained for 75 epochs to attain a maximum training 

accuracy of 98.96% and a maximum validation accuracy of 

96.88%. Figure 8 depicts the model performance in terms of 

accuracy and loss function. As observed, the loss decreases 

0.0708 at maximum validation accuracy. The issue of 

overfitting which is often the case when smaller datasets are 

concerned has been solved by transfer learning in the 

proposed algorithm.  

 

 
Figure 8. CNN results 

 

Along with the validation results the model has been 

tested on several test image heatmaps generated which were 

not used for training and validation to test the performance on 

unseen data. A group of 120 images consisting of 40 images 

from each class that constitutes to 10 seconds of data in each 

class has been selected.  

TABLE I.  CNN CLASSIFICATION TEST RESULTS 

Class No. of true predictions 

No Occupancy 37/40 

Driver seat occupancy 34/40 

Passenger seat occupancy  31/40 

 



It was observed that some heatmaps contained severe 

passenger motion which causes disruptions in the heatmap 

distributing peak signal energy to several other range bins. In 

such cases, the maximum intensity ring is not observed in 

specific frames. Some examples of energy intensity 

distributions caused by motion is shown in the figure 9. As 

observed in the driver occupancy heatmap, the signal 

intensity (according to the scale) is spread across several bins 

below 1m.  

 
Figure 9. Energy distribution cause by target motion 

 

      The issue of signal intensity distribution can be solved by 

employing movement cancelling pre-processing steps with 

raw radar signals. However, practical implementation of 

occupant detection is a real-time application that requires the 

detection over a span of seconds. The overall accuracy of the 

system would not be affected as the algorithm can be 

improved to classify occupants based on probabilistic 

methods considering the high sampling rate of 

4frames/second if the adjacent frames detect occupants 

successfully. Alternatively, the neural network can be trained 

with a larger dataset fine-tuned to avoid false negatives.  

V. CONCLUSION AND FUTURE WORK 

In this paper, an efficient vehicle occupant detecting 
system employing Frequency Modulated Continuous Wave 
(FMCW) radars and Convolutional Neural Networks (CNN) 
in the form of transfer learning has been investigated. The 
results suggest that the system can successfully detect 
occupants in driver and rear passenger seats with a validation 
accuracy of 96.88%. The proposed algorithm is a 
computationally less complex, cost effective and non-line-of-
sight implementation that overcomes drawbacks posed by 
sensor based and vision-based occupant detection methods. 
The drawbacks of the system proposed in this paper include 
signal intensity distribution in the heatmaps when quick target 
motion is identified. However, it was observed that the overall 
accuracy of the system does not degrade as the module has a 
good sampling rate of 4 frames/second and the system would 
not be affected by minimal number of false negative frames in 
real-time applications. The error rate of the system remains 
within 5% even if two wrong predictions occur in every 
interval of 10 seconds.  

The proposed system is based on horizontal plane data 
obtained from a specific radar antenna pair from the Walabot 
module. It can be further improved for multiple occupant 
detection and localization systems by processing radar data in 
the horizontal and vertical planes. The applications of vehicle 
occupant detection fall beyond vehicle safety with the current 
advancements in the automotive industry as user interaction 
and experience has gained attention. The scope of the 
proposed system can be further broadened to in-vehicle 
physiological sensing applications as FMCW radars are 
efficient in measuring signals such as heartrate and respiratory 
rate with frequency domain analysis of raw radar signals.   
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