
Exploring Beyond-Demonstrator via Meta Learning-Based Reward
Extrapolation

Mingqi Yuan1 and Man-on Pun2

Abstract— Extrapolating beyond-demonstrator (BD) perfor-
mance through the imitation learning (IL) algorithm aims to
learn from and subsequently outperform the demonstrator.
To that end, a representative approach is to leverage inverse
reinforcement learning (IRL) to infer a reward function from
demonstrations before performing RL on the learned reward
function. However, most existing reward extrapolation methods
require massive demonstrations, making it difficult to be
applied in tasks of limited training data. To address this
problem, one simple solution is to perform data augmentation
to artificially generate more training data, which may incur
severe inductive bias and policy performance loss. In this
paper, we propose a novel meta learning-based reward extrap-
olation (MLRE) algorithm, which can effectively approximate
the ground-truth rewards using limited demonstrations. More
specifically, MLRE first learns an initial reward function from a
set of tasks that have abundant training data. Then the learned
reward function will be fine-tuned using data of the target task.
Extensive simulation results demonstrated that the proposed
MLRE can achieve impressive performance improvement as
compared to other similar BDIL algorithms. Our code is
available at GitHub1.

I. INTRODUCTION

Imitation learning (IL) aims to recover an expert policy
from demonstrations of a specific task. IL is very effective
for solving complex tasks with minimal expert knowledge
when it is simpler for an expert to demonstrate the expected
behavior [1]. The simplest form of IL is behavioral cloning
that straightforwardly learns the mapping relationship from
observations to actions using supervised learning. However,
behavioral cloning requires massive demonstration data and
suffers from the compounding error problem, i.e., the learned
policy may be invalid if the data distribution is vastly distinct
from the training set. Alternatively, inverse reinforcement
learning (IRL) was leveraged to first learns a reward function
from demonstrations before performing RL with the inferred
reward function [2]. However, the recovered policy has been
consistently found sub-optimal, failing to outperform the
demonstrator as IRL is designed to find the reward function
making the demonstrations appear optimal.

*This work was supported by National Key Research and Development
Program of China under Grant No. 2020YFB1807700. (Corresponding
author: Man-On Pun.)

1Mingqi Yuan is with the School of Science and Engineering, The
Chinese University of Hong Kong, Shenzhen, 518172 China, and also
with Shenzhen Research Institute of Big Data, Shenzhen, 518172 China
mingqiyuan@link.cuhk.edu.cn

2Man-on Pun is with the School of Science and Engineering, The
Chinese University of Hong Kong, Shenzhen, 518172 China, and also
with Shenzhen Research Institute of Big Data, Shenzhen, 518172 China
simonpun@cuhk.edu.cn

1https://github.com/yuanmingqi/MLRE

Learning from and outperforming the demonstrator via IL
is commonly referred to as beyond-demonstrator (BD) IL in
the literature. The concept of extrapolating BD performance
from demonstrations was first proposed in [3] by designing a
trajectory-ranking-reward-extrapolation (TREX) framework.
TREX first collects a series of ranked trajectories before
training a parameterized reward function that matches the
rank relation. After that, the reward function is employed to
learn a policy via RL. By fully excavating the rank infor-
mation, TREX can accurately approximates the ground-truth
reward function to learn BD polices. In particular, TREX
was further extended to the multi-agent task in [4]. However,
it is always difficult to get well-ranked trajectories in real-
world scenarios. To address this problem, [5] proposed a
disturbance-based-reward-extrapolation (DREX) framework
to automatically generate the ranked demonstrations. How-
ever, it was found that DREX incorrectly assumes an ordinal
and homogeneous noise-performance relationship across the
noise-injected policies, resulting in severe learning errors [6].

To reduce the dependency of demonstrations, [7] proposed
an intrinsic-reward-driven-imitation-learning (GIRIL) frame-
work, which only takes a one-life demonstration to learn
a family of reward functions using variational autoencoder
(VAE) [8]. In particular, [7] first introduced the intrinsic
reward to IL to explore the BD policies. In sharp contrast
to the rewards explicitly given by the environment, intrinsic
rewards characterize the inherent learning motivation of
the agent. Extensive experiments demonstrated that intrin-
sic rewards could significantly improve the exploration of
the environment and result in higher performance, even in
complex environments with high-dimensional observations
[9]. However, despite its many advantages, GIRIL suffers
from poor interpretability and low robustness as the intrinsic
rewards may have less correlation with the ground-truth
rewards. Moreover, the excessive exploration may lead to
the television dilemma reported in [10]. Finally, the one-life
demonstration configuration is delicate that heavily depends
on the quality of the collected demonstration.

Inspired by the discussions above, we consider developing
a few-shot reward extrapolation framework to learn high-
quality reward functions based on limited demonstrations.
Our key insight is to fully extract and exploit the original
information of the demonstrations via meta learning, which
aims to learn to learn and effectively solves the few-shot
learning problem. Our main contributions are summarized
as follows:
• We propose a meta learning-based reward extrapolation

(MLRE) algorithm that overcomes the problem of lim-

ar
X

iv
:2

10
2.

02
45

4v
12

 [
cs

.L
G

]
 2

3
Fe

b
20

22

ited demonstrations. MLRE first learns an initial reward
function from a set of training tasks that have abundant
training data. Then, the learned reward function will
be fine-tuned using data of the target task. In addition,
we improve the loss function of the trajectory-ranking
method. We demonstrate that MLRE can accurately
approximate the ground-truth rewards even with fewer
demonstrations.

• Extensive simulation is performed to compare the pol-
icy performance of MLRE against existing methods
using Atari games with high-dimensional observations.
Simulation results confirm that the proposed method
achieves superior performance with higher efficiency
and robustness.

II. PROBLEM FORMULATION

In this paper, we study the BDIL problem considering the
Markov decision process (MDP) defined by a tuple M =
〈S,A, P,R∗, ρ(s0), γ〉, in which S is the state space, A is
the action space, P (s′|s,a) is the transition probability, R∗ :
S × A → R is the ground-truth reward function, ρ(s0) is
the initial state distribution, and γ ∈ (0, 1] is a discount
factor. Note that R∗ is solely determined by the task, and
the performance of agent is only evaluated by R∗. Finally,
we denote by π(a|s) the policy of the agent that selects
an action from the action space based on the state of the
environment. Equipped with these definitions, we first define
the objective of RL:

π∗ = argmax
π∈Π

J(π|R∗), (1)

where J(π|R∗) = Eτ∼π
∑T−1
t=0 γtR∗t (st,at), Π is

the set of all possible stationary policies, and τ =
(s0,a0, . . . ,aT−1, sT) is the trajectory collected by the
agent.

In contrast, IL aims to learn a generation policy π̂ that can
provide comparable performance as a given demonstrator.
Denote by D = {τ1, . . . , τN} the set of demonstrations, the
objective of IL can be defined as a reduction to maximum
likelihood estimation (MLE):

π̂ = argmax
π∈Π

∑
(s,a)∈τ,τ∈D

log π(a|s). (2)

In this paper, we aim to learn a BD policy through
IL, which requires the agent to imitate and outperform
the demonstrator. Mathematically, such an objective can be
defined as follows:

Definition 1. Given a set of demonstrations D =
{τ1, . . . , τN} drawn from a demonstrator, BDIL aims to learn
a generation policy π̂ based on D, such that

J(π̂|R∗) > J(D|R∗) =
1

|D|
∑
τ∈D

J(τ |R∗), (3)

where J(τ |R∗) =
∑

(st,at)∈τ γ
tR∗(st,at), J(D|R∗) is

the estimation of the expected discounted return of the
demonstrator policy.

Clearly, it is analytically intractable to derive the optimal
generation policy via simple imitations. In the following
sections, we first demonstrate a theoretical justification of
the BD objective before proposing a novel and efficient
algorithm to learn a BD policy.

III. THEORETICAL JUSTIFICATION OF BDIL

Considering an IRL scenario, whose objective is to learn
the reward function of the demonstrator and then use it to
optimize a policy. A common approach is to represent the
reward function as a linear combination of features:

R(s) = wTφ(s), (4)

where w is a weighting vector and φ(·) is an encoding
function.

The expected return of a policy evaluated by R(s) is given
by:

J(π|R) = wTEπ

[∞∑
t=0

γtφ(st)

]
= wTΦπ. (5)

The following theorem provides a theoretical condition for
realizing the BD objective:

Theorem 1. If the estimated reward function is R̂(s) =
wTφ(s), the true reward function is R∗(s) = R̂(s) + ε(s)
for an error function ε : S → R and ‖w‖1 ≤ 1, then
extrapolating BD policy is guaranteed if:

J(π∗|R∗)− J(D|R∗) > εΦ +
2‖ε‖∞
1− γ

(6)

where εΦ = ‖Φπ∗ −Φπ̂‖∞, π∗ is the optimal policy under
R∗, π̂ is the generation policy, and ‖ε‖∞ = sup{|ε(s)| : s ∈
S}.

Proof. See proof in [5].

To extrapolate a BD policy, Theorem 1 indicates that
the demonstrator should be sufficiently suboptimal, and the
error of the learned reward function should be sufficiently
small. In particular, the generation policy has to approximate
the optimal policy as accurate as possible. Therefore, our
objective is to precisely recover the ground-truth reward
function, and the RL can guarantee that εΦ is small.

IV. META LEARNING-BASED REWARD
EXTRAPOLATION

In this paper, we learn the reward function following
the trajectory-ranking approach proposed in [3]. Given a
sequence of N ranked demonstrations τ1 ≺ τ2 ≺, . . . ,≺ τN ,
TREX performs reward inference using a neural network
R̂θ(s), such that ∑

s∈τi

R̂θ(s) <
∑
s∈τj

R̂θ(s), (7)

where τi ≺ τj . The reward function is learned by minimizing
a pairwise ranking loss as follows:

LRE(θ,P) = − 1

|P|
∑

(i,j)∈P

log
S(j)

S(i) + S(j)
, (8)

where P = {(i, j) : τi ≺ τj}, S(i) = exp{
∑
s∈τi R̂θ(s)}.

After that, the derived reward function can be combined with
any RL algorithms to learn a policy.

However, learning an accurate reward function via
trajectory-ranking requires massive high-quality demonstra-
tions, which is impractical in real-world scenarios. Further-
more, self-generated demonstrations amy introduce detri-
mental inductive bias. To address this problem, we introduce
the following meta learning method to realize efficient re-
ward extrapolation with limited demonstrations. Traditional
supervised learning methods let the model recognize the
samples in the training set and then generalize to the test
set. In contrast, meta learning aims to learn to learn and
effectively solve the few-shot learning problem [11].

A. Meta Learning

Consider a model fθ represented by a neural network
with parameters θ, which maps observations x to outputs
y. Meta learning aims to train this model to be able to
adapt to a set of tasks. Each task can be defined as a tu-
ple T = 〈L(x0,y0, . . . ,xT ,yT), q(x0), q(xt+1|xt,yt), T 〉,
where L is a loss function, q(x0) is an initial distribu-
tion, q(xt+1|xt,yt) is a transition distribution, and T is
an episode length. In particular, the episode length is one
for independent identically distributed supervised learning.
Furthermore, we denote by p(T) the distribution of tasks
that we want the model to adapt to. During meta-training,
we first sample a new task Ti from p(T) before training
the model with training data Ti. After that, the model is
improved by evaluating the test error with respect to the
parameters, which serves as the training error of the meta-
learning process. These procedures are repeated for multiple
times before the learned parameters are saved. Finally, we
can perform fine-tuning on the learned parameters to adapt
to our target task.

B. MLRE

In this section, we propose a meta learning-based reward
extrapolation (MLRE) framework. Our key insight is to
fully exploit the original information extracted from the
demonstrations to recover high-quality reward functions via
meta learning. Our reward extrapolation task can be defined
as

T = 〈D, LRE〉. (9)

Moreover, we redefine the pairwise ranking loss as follows:

LRE(θ,P) = − 1

|P|
∑

(i,j)∈P

[
log

S(j)

S(i) + S(j)

+

∣∣∣∣Len(τi)

S(i)
− λ
∣∣∣∣+

∣∣∣∣Len(τj)

S(j)
− λ
∣∣∣∣],

(10)

where Len(τi) is the length of τi and λ > 0 is a scaling
coefficient. The regularization term indicates that the agent
can get higher scores if it lives longer. Moreover, it can limit
the output range of the learned reward function.

To perform meta learning, several training tasks are re-
quired with each task containing a support set (training data)

Task 1
Space Invaders

Task N
Beam Rider

𝜏𝑖 ≺ 𝜏𝑗

Support
set

𝜏𝑖
′ ≺ 𝜏𝑗

′

Query
set

𝜏𝑖 ≺ 𝜏𝑗

Support
set

𝜏𝑖
′ ≺ 𝜏𝑗

′

Query
set

⋯⋯

Testing Task
Assault

𝜏𝑖 ≺ 𝜏𝑗

Support
set

𝜏𝑖
′ ≺ 𝜏𝑗

′

Query
set

Training Tasks

Fig. 1. An example of the training tasks and the testing task.

and a query set (testing data). Take the Atari games for
instance, we want to recover the reward function of the
Assault game shown in Fig. 1. However, we only have few
demonstrations drawn from a trained demonstrator. Fortu-
nately, there are some demonstrations of other games, such as
Beam Rider and Space Invaders, which have similar playing
methods and reward mechanisms. Therefore, Beam Rider and
Space Invaders are set as the training tasks, and Assault is set
as the testing task. Equipped with additional demonstrations
from the other two games, we can leverage meta learning to
learn a better reward function for the Assault game.

MLRE is designed using a model-agnostic meta learning
(MAML) method in [11]. Recall the parameterized reward
function R̂θ, and sample a new task Ti from p(T). When
the reward network R̂θ adapts to the new task, its parameters
change from θ to θ′i. MAML computes θ′i using one or
multiple gradients with respect to task Ti. For one-step
update, we have

θ′i = θ − α∇θLRE(θ,Pi), (11)

where LRE is evaluated on the demonstrations of task Ti,
and α is a step size. Finally, the model parameters are trained
by minimizing the following loss function across from tasks
sampled from p(T):

LMeta =
∑

Ti∼p(T)

LRE(θ′i,Pi). (12)

Using the stochastic gradient descent, the model parameters
are updated as follows:

θ ← θ − β∇θLMeta, (13)

where β is the meta step size. Equipped with the learned
reward function, any RL algorithms can be used to learning
a policy. We illustrate the complete workflow of MLRE in
Fig. 2. In practice, we maintain an independent model ψn
for the n-th task that has identical architecture with R̂θ, and
let ψ0 = θ. During the meta-training, we only focus on the
initialization parameters θ. Finally, we summarize the full
algorithm of MLRE in Algorithm 1.

Reward Network
෠𝑅𝜽

𝜽
Init.

Training Data

Update

Compute
Gradients

∇𝝍

𝝍1

Training Data

Update

Compute
Gradients

∇𝝍

𝝍2⋯

𝝍𝑛: Model learned
from task 𝑛, it
depends on 𝜽

Fig. 2. The overview of the MLRE framework.

Algorithm 1 MLRE
1: Collect demonstrations D;
2: Randomly initialize the reward network R̂θ;
3: Initialize a set of training tasks;
4: Initialize the step size hyper-parameters α, β;
5: while not done do
6: Sample batch of tasks Ti ∼ p(T);
7: for all Ti do
8: Construct training dataset Pi using Di;
9: Evaluate ∇θLRE(θ,Pi) with respect to Pi;

10: Compute adapted parameters with gradient descent
using Eq. (11);

11: end for
12: Update the reward network using Eq. (13);
13: end while
14: Optimize the generation policy π̂ via any RL algorithms

on the learned reward function.

V. EXPERIMENTS

In this section, we evaluate the MLRE on six Atari games
of OpenAI Gym library, namely Assault, Battle Zone, Kung
Fu Master, Phoenix, Riverraid, and Space Invaders. For
benchmarking, several most representative algorithms are
carefully selected, namely GIRIL, DREX, and Wasserstein
adversarial imitation learning (WAIL) [12]. The first two
methods are BDIL algorithms, while the latter is an IL
algorithm. With WAIL, we can validate that the MLRE can
imitate and outperform the demonstrator. With GIRIL and
DREX, we can validate that the MLRE can realize higher
performance with higher efficiency and robustness. As for
hyper-parameters setting, we only report the values of the
best experiment results.

A. Demonstrations

To generate suboptimal demonstrations, we trained a prox-
imal policy optimization (PPO) agent using the ground-truth
reward for ten million steps [13]. More specifically, we used
a PyTorch implementation of the PPO created by [14] with its
default hyper-parameters. After that, we generate 50 one-life
demonstrations using the trained PPO agent for all the games.
A one-life demonstration only has the states and actions
performed by the demonstrator until it dies for the first time
in a game, while the full-episode demonstration is derived
after demonstrator losing all available lives. Therefore, the
one-life demonstration data is more limited and challenging
for reward extrapolation.

TABLE I
THE ARCHITECTURE OF THE MODULES.

Module Policy network Value network
Input States States

Arch.

8×8 Conv 32, ReLU
4×4 Conv 64, ReLU
3×3 Conv 32, ReLU
Flatten
Dense 512
Categorical Distribution

8×8 Conv 32, ReLU
4×4 Conv 64, ReLU
3×3 Conv 32, ReLU
Flatten
Dense 512
Dense 1

Output Actions Predicted values
Module Reward function
Input States

Arch.

8×8 Conv 32, ReLU
4×4 Conv 64, ReLU
3×3 Conv 32, ReLU

Flatten
Dense 512, ReLU

Dense 1
Output Estimated rewards

B. Experiment Setup

Assume we selected Assault as the testing task, then the
remaining five games were set as the training tasks. For
training task, we subsampled 1000 trajectory pairs by random

0 200 400 600 800 1000
Ground-Truth Returns

0

200

400

600

800

1000
Pr

ed
ict

ed
 R

et
ur

ns
Assault

MLRE
DREX

0 1000 2000 3000 4000 5000
Ground-Truth Returns

0

1000

2000

3000

4000

5000

Pr
ed

ict
ed

 R
et

ur
ns

Phoenix
MLRE
DREX

0 200 400 600 800 1000
Ground-Truth Returns

0

200

400

600

800

1000

Pr
ed

ict
ed

 R
et

ur
ns

Space Invaders
MLRE
DREX

Fig. 3. Reward extrapolation for three Atari games. The black dashed line represents the performance range of the demonstrator.

selection, and 80% of the pairs were used as the support
set. For testing task, we subsampled 500 trajectory pairs by
random selection, and 80% of the pairs were also used as
the support set.

The first step is to train the parameterized reward func-
tion on the derived demonstrations. As shown in Table I,
R̂θ has three convolutional layers and two fully-connected
layers, and each convolutional layer is followed by a batch
normalization layer. Furthermore, ReLU is used as the ac-
tivation function. Note that ”8 × 8 Conv. 32” represents a
convolutional layer that has 32 filters of size 8 × 8. To
reduce the computational complexity, we propose to stack

four consecutive frames as an input before resizing the input
into patches of size (84, 84).

In the first iteration step, we sampled a training task T
and built an identical reward network for it. After that, T
conducted training on its support set, in which an Adam
optimizer with a learning rate of α = 0.0005 was used to
perform gradient descent-based updates. Next, we calculated
the test loss with its query set followed by the gradient
computation with respect to the updated parameters, and
updated R̂θ using an SGD optimizer with a learning rate
of β = 0.0001. We repeated the procedures above for 100
times, and saved the model weights for the subsequent fine-

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (x107)

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

Ep
is

od
e

R
et

ur
n

Assault
Expert
MLRE
DREX
GIRIL
WAIL

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (x107)

0

5000

10000

15000

20000

25000

30000

35000

Av
er

ag
e

Ep
is

od
e

R
et

ur
n

Battle Zone
Expert
MLRE
DREX
GIRIL
WAIL

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (x107)

0

10000

20000

30000

40000

Av
er

ag
e

Ep
is

od
e

R
et

ur
n

Kung Fu Master
Expert
MLRE
DREX
GIRIL
WAIL

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (x107)

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

Ep
is

od
e

R
et

ur
n

Phoenix
Expert
MLRE
DREX
GIRIL
WAIL

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (x107)

0

2000

4000

6000

8000

10000

Av
er

ag
e

Ep
is

od
e

R
et

ur
n

Riverraid
Expert
MLRE
DREX
GIRIL
WAIL

0.0 0.2 0.4 0.6 0.8 1.0

Environment Steps (x107)

0

250

500

750

1000

1250

1500

Av
er

ag
e

Ep
is

od
e

R
et

ur
n

Space Invaders
Expert
MLRE
DREX
GIRIL
WAIL

Fig. 4. Comparison of average episode return as a function of the environment steps. The solid lines demonstrate the average performance over eight
random seeds while the shaded areas depict the standard deviation from the average. Finally, the dashed lines stand for the best performance of the
demonstrator.

TABLE II
AVERAGE RETURN COMPARISON IN ATARI GAMES.

Game Demonstrations Algorithms
Best Average MLRE DREX GIRIL WAIL

Assault 3.94k 3.41k 4.56k± 1.88k 3.89k±1.49k 3.72k±1.61k 0.8k±0.17k
Battle Zone 19.76k 17.72k 21.38k± 5.59k 21.00k± 8.11k 19.62k±7.3k 3.75k±1.57k
Kung Fu Master 23.59k 11.63k 28.02k± 11.92k 27.04k± 11.52k 16.95k±4.15k 1.96k±0.47k
Phoenix 7.87k 6.34k 8.89k± 3.25k 8.81k± 3.13k 8.46k± 1.83k 1.97k±0.55k
Riverraid 8.85k 7.47k 9.74k± 0.9k 8.72k±1.3k 9.57k± 1.13k 1.63k±0.29k
Space Invaders 0.82k 0.65k 1.06k± 0.29k 0.85k± 0.35k 0.86k± 0.41k 0.26k±0.09k

tuning procedure. Equipped with the parameters learned from
the previous stage, we continued training the reward function
using the support set of the testing task, and the number of
epoch was set to 100. After that, the reward function was
saved to perform policy optimization.

For the policy update, we used a PPO method with a
learning rate of 0.0025, a value function coefficient of 0.5,
an entropy coefficient of 0.01, and a generalized advantage
estimation (GAE) parameter of 0.95. In particular, a gradient
clipping operation with threshold [−5, 5] was performed to
stabilize the learning procedure. To make a fair comparison,
we used an identical policy network and a value network for
all methods. The detailed architectures are illustrated in Table
I. For benchmarking schemes, we trained them following
the default configurations reported in their literature [7], [3],
[12].

C. Results

1) Reward Extrapolation: We first investigated the capa-
bility of the learned reward function via MLRE and DREX.
To that end, we compared the ground-truth return and the
inferred return of MLRE on multiple collected trajectories,
and the results are shown in Fig. 3. For Assault, MLRE
performed considerable prediction in the whole performance
range, while DREX produced large variance for ground-truth
high returns. For Phoenix, the predicted returns of DREX
were always higher than that the ground-truth returns when
the demonstrations had shorter lengths. Finally, both MLRE
and DREX made reasonably good predictions for Space
Invaders. But MLRE achieved higher prediction accuracy.

2) Policy Performance: For performance comparison, the
average one-life return is utilized as the key performance
indicator (KPI). Table II illustrates the performance com-
parison over eight random seeds, in which the beyond-
demonstrator performance is shown in bold. MLRE outper-
formed the best demonstration in all the six games, achieving
an average performance gain of 15.8%. DREX and GIRIL
outperformed the best demonstration in four and three games,
producing an average performance gain of 10.9% and 6.83%,
respectively. In comparison, WAIL performed worse than
the average performance of the demonstrations in all games.
Despite abundant training data, WAIL performed poorly in
complex environments with high-dimensional observations.
Finally, we provide detailed learning curves of all the games
Fig. 4. It is obvious that BDIL algorithms realized stable and
rapid performance growth, while the IL algorithm is futile
with limited training data.

VI. CONCLUSION

In this paper, we have investigated the problem of
beyond-demonstrator imitation learning, and proposed a
meta learning-based reward extrapolation framework entitled
MLRE. By exploiting the meta learning mechanism, MLRE
can learn high-quality reward functions even for limited
demonstrations, which makes MLRE attractive for real-
world applications. Extensive simulation using multiple Atari
games was performed to confirm that MLRE outperforms
the existing BDIL algorithms with higher efficiency and
robustness.

REFERENCES

[1] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning:
A survey of learning methods,” ACM Computing Surveys (CSUR),
vol. 50, no. 2, pp. 1–35, 2017.

[2] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement
learning.,” in International Conference on Machine Learning, vol. 1,
p. 2, 2000.

[3] D. S. Brown, W. Goo, P. Nagarajan, and S. Niekum, “Extrapolating
beyond suboptimal demonstrations via inverse reinforcement learning
from observations,” arXiv preprint arXiv:1904.06387, 2019.

[4] S. Huang, B. Yang, H. Chen, H. Piao, Z. Sun, and Y. Chang, “Ma-
trex: Mutli-agent trajectory-ranked reward extrapolation via inverse
reinforcement learning,” in International Conference on Knowledge
Science, Engineering and Management, pp. 3–14, Springer, 2020.

[5] D. S. Brown, W. Goo, and S. Niekum, “Better-than-demonstrator
imitation learning via automatically-ranked demonstrations,” in Con-
ference on Robot Learning, pp. 330–359, PMLR, 2020.

[6] L. Chen, R. Paleja, and M. Gombolay, “Learning from suboptimal
demonstration via self-supervised reward regression,” arXiv preprint
arXiv:2010.11723, 2020.

[7] X. Yu, Y. Lyu, and I. Tsang, “Intrinsic reward driven imitation learn-
ing via generative model,” in International Conference on Machine
Learning, pp. 10925–10935, PMLR, 2020.

[8] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114, 2013.

[9] Y. Burda, H. Edwards, D. Pathak, A. Storkey, T. Darrell, and A. A.
Efros, “Large-scale study of curiosity-driven learning,” arXiv preprint
arXiv:1808.04355, 2018.

[10] N. Savinov, A. Raichuk, R. Marinier, D. Vincent, M. Pollefeys,
T. Lillicrap, and S. Gelly, “Episodic curiosity through reachability,”
arXiv preprint arXiv:1810.02274, 2018.

[11] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on
Machine Learning, pp. 1126–1135, PMLR, 2017.

[12] H. Xiao, M. Herman, J. Wagner, S. Ziesche, J. Etesami, and T. H.
Linh, “Wasserstein adversarial imitation learning,” arXiv preprint
arXiv:1906.08113, 2019.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[14] Kostrikov, “Pytorch implementation of the reinforcement learning al-
gorithms,” URL https://github.com/ikostrikov/ pytorch-a2c-ppo-acktr-
gail, 2018.

http://arxiv.org/abs/1904.06387
http://arxiv.org/abs/2010.11723
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1808.04355
http://arxiv.org/abs/1810.02274
http://arxiv.org/abs/1906.08113
http://arxiv.org/abs/1707.06347

	I INTRODUCTION
	II PROBLEM FORMULATION
	III THEORETICAL JUSTIFICATION OF BDIL
	IV META LEARNING-BASED REWARD EXTRAPOLATION
	IV-A Meta Learning
	IV-B MLRE

	V EXPERIMENTS
	V-A Demonstrations
	V-B Experiment Setup
	V-C Results
	V-C.1 Reward Extrapolation
	V-C.2 Policy Performance

	VI CONCLUSION
	References

