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Abstract—Physical activity is recognized as an essential com-
ponent of overall health. One measure of physical activity, the
step count, is well known as a predictor of long-term morbidity
and mortality. Step Counting (SC) is the automated counting of
the number of steps an individual takes over a specified period
of time and space. Due to the ubiquity of smartphones and
smartwatches, most current SC approaches rely on the built-
in accelerometer sensors on these devices. The sensor signals are
analyzed as multivariate time series, and the number of steps
is calculated through a variety of approaches, such as time-
domain, frequency-domain, machine-learning, and deep-learning
approaches. Most of the existing approaches rely on dividing
the input signal into windows, detecting steps in each window,
and summing the detected steps. However, these approaches
require the determination of multiple parameters, including the
window size. Furthermore, most of the existing deep-learning
SC approaches require ground-truth labels for every single step,
which can be arduous and time-consuming to annotate. To
circumvent these requirements, we present a novel SC approach
utilizing many-to-one attention-based LSTM. With the proposed
LSTM network, SC is solved as a regression problem, taking the
entire sensor signal as input and the step count as the output.
The analysis shows that the attention-based LSTM automatically
learned the pattern of steps even in the absence of ground-
truth labels. The experimental results on three publicly available
SC datasets demonstrate that the proposed method successfully
counts the number of steps with low values of mean absolute
error and high values of SC accuracy.

Index Terms—step counting, attention mechanism, long short-
term memory, variable-length sequences

I. INTRODUCTION

As the fundamental unit of human locomotion, steps are
the preferred method of quantifying ambulatory physical ac-
tivity [1]. The association between steps per specific time
periods and health variables has been reported in several cross-
sectional studies [2]–[4]. To illustrate, a higher number of steps
is inversely associated with the risk of cardiovascular events
and premature death [5]. Step Counting (SC) is the automated
counting of the number of steps an individual takes over a
specified period of time and space. SC has applications for
telemonitoring/telemedicine to measure the number of steps
and monitor the daily physical activity of patients remotely [6].
There are many other applications for SC, including indoor
navigation where global positioning systems are unreliable,
and pedestrian dead reckoning [7].

The increasing ubiquity of smartphones and smartwatches
equipped with a variety of built-in Inertial Measurement Unit
(IMU) sensors, such as accelerometers, gyroscopes, and mag-
netometers, has led to the development of various SC methods

using the multivariate time series of sensor signals. The exist-
ing SC approaches are broadly categorized into non-machine-
learning- and machine-learning-based approaches. The non-
machine-learning-based approaches can be divided into time-
domain and frequency-domain approaches, Fig. 1.

Time-domain approaches generally rely on thresholding or
peak detection. In thresholding methods, a step is detected
when sensor data satisfy predefined criteria. These methods are
particularly effective when detecting movements at the foot,
where heel strikes can cause large and short-lived accelerations
[9]. Peak detection or zero-crossing methods usually work on
low-pass filtered signals and detect the occurrence of steps
according to the presence of peaks in the signal. Based on
the peaks and the distance between the peaks, some methods
try to find the inherent periods in the signal. Auto-correlation
is another method to detect the period of signal and step
accordingly [10]. Some methods work based on stride in which
the stride template is formed offline and cross-correlated with
the signal [8]. Frequency-domain approaches, on the other
hand, generally use the Fourier transforms of the signals, such
as short-term Fourier transform and wavelet transform, and
utilize the features in the frequency domain to detect steps
[8].

A major limitation of non-machine-learning-based ap-
proaches for SC is that they require careful tuning of several
parameters [7], [8]. For instance, in thresholding, peak de-
tection, and period detection approaches in the time domain,
the main difficulty is finding an optimal threshold/criteria to
detect a specific timestep of the signal as a peak or consider
segments of the signal as a period. Optimizing the window
length for short-term Fourier transform and the parameters of
continuous or discrete wavelet transforms is the issue with
frequency-domain approaches [8].

The machine-learning-based SC approaches are categorized
into feature-based and deep-learning approaches. In the for-
mer, features such as mean, variance, standard deviation, en-
ergy, and entropy are first extracted from the windows of signal
in the time/frequency domain and then classified into step
versus non-step using traditional machine-learning techniques
such as support vector machines and Hidden Markov Model
(HMM) trained on sequences of features [11]. The traditional
machine-learning-based approaches also suffer from the need
for parameter tuning, e.g., the selection of most effective
features and the length of windows in which the features are
extracted [7], [8]. In deep-learning methods, neural networks

ar
X

iv
:2

21
1.

13
11

4v
1 

 [
cs

.C
V

] 
 1

8 
N

ov
 2

02
2



can learn features from raw sensor signals. The existing deep-
learning-based SC methods are mostly based on Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) [12]–[17].

In most of the above-discussed approaches, the steps are first
detected by thresholds, features, CNNs, or RNNs, and then
the total number of steps is output [12]–[17]. One practical
problem with such a setup is that to evaluate the algorithms,
ground truth is needed for every step taken. Manually labelling
such fine-grained labelled data for each step is arduous or
time-consuming. Alternatively, additional hardware may need
to be added (e.g., pressure sensors) on the heels of the shoes,
which is infeasible in a real-world setting. Keeping these
issues in mind, in this paper, we propose a novel SC method
that overcomes the limitations mentioned thus far, namely
the necessity to determine the window size and the need for
ground-truth data for single steps. Our main contributions are
as follows:

• For the first time, SC is formulated as a regression
problem that is solved using an attention mechanism for
many-to-one LSTMs capable of analyzing variable-length
sequences.

• The SC problem is solved at the signal level that is
capable of analyzing the entire input time-series signal
as a whole.

• Extensive experiments conducted on three publicly avail-
able SC datasets [7], [8], [19] show the superiority of
our approach to a variety of machine-learning and non-
machine-learning SC methods.

Our approach does not require windowing or annotation of
individual steps - only the final count of steps is sufficient for
training deep-learning models.

This paper is structured as follows. In Section II, we briefly
study the existing deep-learning SC approaches. Section III,
introduces the proposed method for SC. Section IV describes
experimental settings and results on the proposed method-
ology. In the end, Section V presents our conclusions and
directions for future works.

II. RELATED WORK

In this section, we discuss some of the deep learning meth-
ods for SC from IMU sensors. Unfortunately, there are not
many papers published on SC using deep learning. There are,
however, some preprints available. Shao et al. [17] proposed
a method for SC through step detection. A window is slid
over the input signal, and a CNN classifies the signal in the
window as a left step, right step, or no step. The CNN consists
of a 1-dimensional convolutional layer followed by fully-
connected layers. Chen [13] proposed a SC method using a
many-to-many Long Short-Term Memory (LSTM), having the
sequences of windows extracted from the signal as input and
outputting step vs. non-step for each window. In the method
proposed by Pillai et al. [15], the input signal is first segmented
into windows, and the signal in each window is analyzed by an
LSTM-based neural network. The last timestep of the LSTM is
trailed by fully-connected layers to output left step or right step

Fig. 1: Hierarchical classification of the existing SC ap-
proaches. The proposed method in this paper, dashed box,
is the only deep-learning-based signal-level SC method that
analyzes the entire signal as a whole and solves the SC as a
regression problem (see Sections I, II, and III).

classes. Luu et al. [12] extended the work by Pillai et al. [15],
where instead of the last timestep of the LSTM, the output
of the LSTM over all timesteps followed by fully-connected
layers are used to output step or non-step classes. In addition
to LSTM, Luu et al. [12] have used WaveNet [18] and a 1D
CNN for SC through step detection.

Even though the above deep-learning-based methods do not
require tuning parameters such as a threshold on peak values
to be considered steps as with the time-domain methods, the
window size parameter still needs to be specified manually
in these methods. The window size needs to be adjusted
for different datasets using different sensors, with different
sampling frequencies and with different sensor placements on
the body of individuals, with different walking styles, walking
speeds, ages, and disabilities. To illustrate, the window length
used by Shao et al. [17] is ”length of training step segments”,
Pillai et al. [15] is 0.46 seconds ”based on tuning experiments
and literature”, and Luu et al. [12] is 2 seconds, and 4 seconds
for LSTM, and CNN, respectively. None of the above works
have examined the effect of different window sizes in different
situations.

In the next section, we describe our approach for SC, which
only needs a final count of the steps for training and evaluation
of deep-learning models and does not need window size as a
parameter to tune.

III. STEP COUNTING THROUGH REGRESSION USING
ATTENTION IN LSTM

Input data to the proposed attention-based many-to-one
LSTM architecture for SC is time series of accelerometer
sensor signals of variable length. The neural network solves a
regression problem and outputs the number of specific learned
patterns in the input time series corresponding to the number
of steps in the accelerometer sensor signal. The raw x, y, and
z components of the accelerometer sensor signal or their l2
norm (as multivariate or univariate time series) can be input



to the neural network. The input time series is normalized
into the range of 0 to 1 by subtracting the minimum value
of the signal and dividing it by the range of the signal. We
used LSTM as the main component of the proposed neural
network architecture. It can either be the vanilla RNN, Identity
RNN, or Gated Recurrent Unit [21]. These RNNs are capable
of handling sequences of variable lengths and situations in
which there are sequences of variable lengths in successive
mini-batches of epochs.

The shape of the input tensor as a mini-batch is
(N,Li, input size), i = 0, 1, ..., N in which N is the number
of samples in the mini-batch, Li is the length (number of
timesteps) of the i-th signal sample, and input size is the
dimensionality of the signal at each timestep. The LSTM has
num layers layers where num layers = 2 would mean
stacking two LSTMs together to form a stacked LSTM, with
the second LSTM taking in outputs of the first LSTM and
computing the final results. The LSTM outputs a tensor of size
(N,Li, hidden size), i = 0, 1, ..., N . To make the proposed
method capable of analyzing variable-length sequences, the
output tensor of LSTM for different samples in the current
mini-batch are fed to the attention mechanism sample-by-
sample. The (N,Li, hidden size) output tensor of LSTM
is divided into N tensors hi of size (Li, hidden size), i =
0, 1, ..., N . A linear layer of size hidden size×hidden size
is used as an attention layer, takes the outputs of LSTM
sample-by-sample hi, i = 0, 1, ..., N , and outputs energies ei
of the same size (Li, hidden size). ei then will be multiplied
by the summation of hi over length dimension (si) to output
a vector whose softmax generates weights wi of size Li. wi,
as the result of training the attention layer, is multiplied by hi

to output context ci of length hidden size.
The concatenations of contexts ci and summations si for

all the samples form a tensor of size (N,hidden size × 2).
The concatenation tensor is fed to a linear layer of size
(hidden size × 2) × 1 to generate the final output having
a single real-valued number for each sample in the current
mini-batch. The Mean Absolute Error (MAE) is used as the
loss function of the neural network. During training, the
attention layer and the corresponding weights (generated from
the multiplication of the output of the attention layer and
si) learn to pay attention to the specific patterns (steps) and
their summation in the input time series (accelerometer sensor
signal), see Fig. 2 as an example.

The advantage of the proposed attention mechanism over the
original versions of the attention mechanism for RNNs [22],
[23] is that it can handle variable-length sequences. We provide
the input to the attention layer, followed by multiplications and
concatenations, in a sample-by-sample manner for individual
training samples (with different lengths) successively.

IV. EXPERIMENTS

In this section, the performance of the proposed SC method
is evaluated on three publicly available SC datasets using
different evaluation metrics. We compare different settings of

(a)

(b)

(c)

Fig. 2: (a) The raw x, y, and z components, (b) the normalized
l2-norm of (a), and (c) the energy (corresponding to the input
signal in (b)) of the attention mechanism in a trained attention-
based LSTM, for the first half of an exemplary accelerometer
signal in the WDSC dataset.

the proposed method with the previous machine-learning and
non-machine-learning SC methods.

A. Datasets

WDSC: Brajdic and Harle [8] collected and annotated a
dataset for walk detection and SC. The data was collected
from 27 subjects of different ages and heights using the built-
in accelerometer of an Android smartphone sampled at 100
Hz and under six different smartphone placements. There are
117 samples (x, y, and z accelerometer signals of walks) in
the dataset, each labelled based on the start and end time
of the walk and the number of steps during the walk. The
cropped signals from the start to end time of the walk are
considered as the input, and the number of steps in the cropped
signals is considered as the ground-truth labels. A major
advantage of this dataset is the diversity of the location of
the smartphone accelerometer sensors on the body. Table I
presents the statistics of the samples in this dataset. Due to the
lack of ground-truth labels for individual steps in the WDSC



TABLE I: The statistics, minimum, maximum, mean, standard
deviation (STD), and skew of the ground-truth number of steps
in the WDSC dataset [8], WeAllWalk dataset [7], and the
regular and semi-regular parts of the Pedometer dataset [19].

WDSC
[8]

WeAll
Walk
[7]

Pedometer
Regular
[19]

Pedometer
Semi-regular
[19]

Minimum #steps 63 2 857 548
Maximum #steps 106 136 1100 814
Mean #steps 78 40.71 991.03 704.03
STD #steps 8.46 33.29 54.03 65.57
Skew #steps 0.56 0.81 -0.27 -0.21

dataset [8], the previous deep-learning SC approaches [12]–
[17] cannot be trained and evaluated on this dataset. For the
first time, we show the results of a deep-learning SC approach
on this dataset.
WeAllWalk: Flores and Manduchi [7] collected and annotated
a dataset from 15 subjects. The uniqueness of this dataset
is due to the presence of sighted and blind subjects. Ten
blind subjects (using a white cane or guide dog) and five
sighted subjects contributed to the data collection. While
walking ten different paths, the subjects carried two Apple
iPhone 6S smartphones at two different body locations. Each
smartphone recorded data from its accelerometer, gyroscope,
and magnetometer at a rate of 25 Hz. The accelerometer
signals are used in the experiments in this paper. There are
932 samples in the dataset categorized into three categories
of 290 samples from sighted subjects, 468 samples from
blind subjects with a white cane, and 174 samples from blind
subjects with a guide dog. Table I presents the statistics of the
samples in this dataset.
Pedometer: Mattfeld et al. [19] collected and annotated a
dataset from 30 subjects for SC. The subjects wore three
Shimmer3 sensors on their non-dominant wrist, hip, and non-
dominant ankle. Each sensor recorded accelerometer and gy-
roscope data at 15 Hz. Unique to this dataset is the availability
of different walking regularities, including regular (walking a
path), semi-regular (conducting a within-building activity), and
unstructured (conducting a within-room activity). There are a
total of 270 samples in the dataset, nine ankle-, hip-, and wrist-
placement signals collected during regular, semi-regular, and
unstructured walking from each of the 30 subjects. According
to the authors’ recommendations [20], 180 regular and semi-
regular accelerometer signal samples of this dataset are used
in our experiments, whose statistics are presented in Table I.

B. Evaluation Metrics

The researchers who collected the above datasets also devel-
oped various evaluation metrics for SC. Considering y trues,
and y preds as the ground-truth step count, and predicted step
count, Brajdic and Harle [8] defined an Error Rate (ER) for
each sample as follows. The mean and standard deviation of
Equation 1 over all test samples are reported in this paper.

y preds− y trues

y trues
× 100 (1)

Mattfeld et al. [20] defined a Running Count Accuracy
(RCA) for each sample (defined below) and considered the
prediction as undercount, or overcount if the accuracy is less
than, or greater than 1. The mean and standard deviation of
Equation 2 over all test samples are reported in this paper.

y preds

y trues
(2)

Flores and Manduchi [7] first calculated the number of
samples with y preds − y trues < 0 as undercount and the
number of samples with y preds − y trues > 0 as overcount,
and defined their normalization as percentages of UnderCount
(UC) and OverCount (OC) as follows.

normalized undercount =
undercount

total number of samples
× 100

(3)

normalized overcount =
overcount

total number of samples
× 100

(4)
Luu et al. [12] defined an ACCuracy (ACC) for each sample

as follows. The mean and standard deviation of Equation 5
over all test samples are reported in this paper.

(1− |y preds− y trues|
y trues

)× 100. (5)

Since the proposed SC method solves a regression problem,
the MAE between y trues and y preds is also reported.

C. Experimental Settings

We implemented LSTM with and without attention mech-
anism to evaluate their performance. The proposed method is
implemented with the 3-dimensional time series (x, y, and z
components of the accelerometer signal) input size = 3 or
1-dimensional time series (l2-norm of the x, y, and z compo-
nents) input size = 1 or their combination input size = 4.
Compared to the previous methods, one major advantage of the
proposed method is that it does not require many parameters
that need to be changed depending on the dataset or signal.
However, LSTM-specific parameters may still need to be
set, which are as follows. The LSTM is unidirectional with
num layers = 2 and hidden size = 128. The attention
layer is a linear layer of size hidden size × hidden size.
The final fully-connected layers, after the attention mecha-
nism, contains two linear layers of size (hidden size× 2)×
hidden size and hidden size × 1. For the LSTM with no
attention, the architecture of the LSTM and the final fully-
connected layers is the same as the attention-based network.
Due to not improving the results, no dropout is used in both
the LSTMs with and without attention.

As discussed in Section IV-A, the frequency of WDSC,
Pedometer, and WeAllWalk datasets are 100 Hz, 15 Hz, and 25
Hz. Before inputting the signals into the neural networks, the
samples in the WDSC dataset are down-sampled by a factor of
4 to reduce the number of timestamps, and the samples in the



Pedometer and WeAllWalk datasets remain unchanged. Then,
the signals are normalized as explained in section III.

None of the datasets defined separate train and test sets.
The non-machine-learning methods that used these datasets,
e.g., [20], reported the results of their experiments on all
the samples of the datasets. The machine-learning methods
applied on these datasets, e.g., [12], used cross-validation and
reported the results of their algorithms on all the samples in
the dataset over all the folds. In this paper, cross-validation is
implemented for evaluation, and the results are reported for
all the samples in the datasets. The architecture and hyper-
parameters of the models are the same in all the folds of
cross-validation in all the datasets.

The MAE is the loss function, and Adam is the optimizer.
The batch size and the number of epochs are 16, and 250,
respectively. The learning rate starts from 0.001 and is sched-
uled to be reduced by a factor of 10 in each 75 epochs. The
experiments were implemented in PyTorch [25] and scikit-
learn [26] on a server with 64 GB of RAM and NVIDIA
TeslaP100 PCIe 12 GB GPU. The code of our implementations
is available at https://github.com/abedicodes/stepcounting.

D. Experimental Results

The proposed method is evaluated using various evaluation
metrics described in Section IV-B. On the WDSC dataset [8],
five-fold cross-validation is performed with the same network
architecture across all folds. The average (and standard de-
viation) results of all samples across all folds using different
evaluation metrics are presented in Table II. The results are
shown for the LSTM without attention and the attention-based
LSTM (described in Section IV-C) with different numbers of
neurons in the hidden layers of the LSTM and correspondingly
its following linear layers (including the attention layer), and
different signal dimensionality, the raw x, y, and z compo-
nents of accelerometer signals (3-dimensional), the l2-norm
of the x, y, and z components (1-dimensional), and both (4-
dimensional). According to Table II, in all the configurations
of LSTM and attention-based LSTM, a 2-layer LSTM with
128 neurons in the hidden layer has the best performance.
The l2-norm itself works better than the raw components
and both the l2-norm and raw components. In almost all
the configurations of the vanilla LSTM, and attention-based
LSTM, in the upper, and lower halves of Table II, respectively,
adding attention mechanism to the vanilla LSTM results in
significant improvements in different evaluation metrics. The
best attention-based model achieves (in bold letters) very low
values of MAE, UC and OC (Flores [7]), and ER (Brajdic
[8]), and very close to one values of RCA (Mattfeld [20]) and
very high values of ACC (Luu [12]).

Fig. 2 (a) illustrate the raw x, y, and z components, 2 (b) the
normalized l2-norm of (a), and 2 (c) the energy (corresponding
to the signal in 2 (b)) of the attention mechanism in a trained
attention-based LSTM neural network (the best model in Table
II), for the first half of an exemplary accelerometer signal in
the WDSC dataset [8]. As shown in Fig. 2 (c), the energy,
as the output of the attention layer, has a shape in which the

steps have been emphasized. As described in Section III, the
energy and its corresponding weights will be multiplied by the
output of the LSTM in the network. In this way, the attention
mechanism learns and pays attention to the steps, modifies
the output of the LSTM accordingly, and the neural network
outputs the step count.

Table III presents the results of the proposed SC method
using the LSTM without attention and the attention-based
LSTM with 128 neurons in the two hidden layers of the
LSTM and the l2-norm of the accelerometer signal using
different evaluation metrics for the WeAllWalk dataset [7].
Following the experimental settings in the original work
introduced in the WeAllWalk dataset [7], leave-one-person-
out cross-validation in different populations is implemented.
The results are presented for sighted subjects, blind subjects
with a white cane, and blind subjects with a guide dog to
examine the robustness of the proposed method in different
populations with different levels of walking regularity. As can
be seen in Table III, in almost all the populations, in most of
the evaluation metrics, adding attention significantly improves
the SC performance. The proposed attention-based method is
robust against irregular walking, i.e., in blind subjects with a
white cane and blind subjects with a guide dog.

Table IV presents the results of the proposed SC method
using the LSTM without attention and the attention-based
LSTM with 128 neurons in the two hidden layers of LSTM and
the l2-norm of the accelerometer signal using different eval-
uation metrics (see Section IV-B) for the Pedometer dataset
[19]. Following the experimental settings in the original work
introduced the Pedometer dataset [20], leave-two-person-out
cross-validation in two levels of walking regularity and three
different sensor placements are implemented, and the average
results are reported in six sections of Table IV. As can be
seen in Table IV, in most of the sections using most of the
evaluation metrics, adding attention improves the SC perfor-
mance. However, compared to the LSTM, the performance
deterioration (from regular to semi-regular walking) is more
severe in the attention-based LSTM.

Table V shows the results of the proposed LSTM and
attention-based LSTM SC methods with the hyper-parameters
in the previous experiment on the Pedometer dataset [19],
compared to the previous deep-learning-based methods on
the whole regular walking samples in the Pedometer dataset
[19] using leave-two-person-out cross-validation. Our pro-
posed attention-based LSTM method competes with the CNN
method [12]. As explained in Section II, the CNN method
[12] is based on windowing and requires determining the
window size. In addition, contrary to the proposed method,
which only requires one single annotation data (the number
of steps) for the entire signal, the CNN method [12] requires
step annotation data at each timestep of the signal.

Table VI shows the results of the proposed LSTM and
attention-based LSTM SC methods with the hyper-parameters
in the previous experiment on the Pedometer dataset [19]
compared to the previous time-domain methods [20] on the
whole regular walking samples and semi-regular walking sam-



TABLE II: The results of the proposed SC method on the WDSC dataset [8] using the LSTM with and without attention. In
LSTM−a × b, a, and b mean the number of layers in the LSTM, and the number of neurons in the layers, respectively. xyz
means the raw x, y, and z components of the accelerometer data and l2 means the l2-norm of xyz as the inputs to the neural
networks, using different evaluation metrics (see Section IV-B).

MAE UC, OC ER RCA ACC
LSTM−2× 64− l2 4.08 2.19, 3.03 0.78±6.32 1.00±0.06 0.95±0.04
LSTM−2× 128− l2 2.83 1.56, 2.05 0.50±4.73 1.00±0.05 0.96±0.03
LSTM−2× 256− l2 5.87 2.83, 4.70 2.00±8.97 0.98±0.09 0.93±0.06
LSTM−2× 128−xyz 5.74 3.02, 4.32 1.56±8.69 0.98±0.09 0.93±0.05
LSTM−2× 128− l2 and xyz 4.42 2.15, 3.52 1.45±7.13 0.98±0.07 0.94±0.05
LSTM−2× 64− l2 (attention) 5.43 3.03, 3.94 1.12±8.34 0.99±0.08 0.93±0.05
LSTM−2× 128− l2 (attention) 2.33 1.39, 1.60 0.17±3.92 1.00±0.04 0.97±0.03
LSTM−2× 256− l2 (attention) 5.38 2.89, 4.01 1.29±8.1 0.99±0.08 0.93±0.05
LSTM−2× 128−xyz (attention) 4.03 2.27, 2.90 0.61±6.71 0.99±0.07 0.95±0.04
LSTM−2× 128− l2 and xyz (attention) 2.69 1.95, 1.50 −0.55±4.80 1.00±0.05 0.96±0.03

TABLE III: The results of the proposed SC method on different populations of the WeAllWalk dataset [7] using the LSTM
with and without attention with 2 layers of 128 neurons, and the l2-norm of the accelerometer signal (see Section IV-C) using
different evaluation metrics (see Section IV-B).

MAE UC, OC ER RCA ACC
Sighted Subjects
LSTM−2× 128−l2 2.51 2.80, 4.03 3.67±10.76 0.97±0.1 0.92±0.07
LSTM−2× 128−l2 (attention) 1.25 2.20, 1.46 -5.83±12.88 1.05±0.12 0.93±0.11
Blind Subject with a White Cane
LSTM−2× 128−l2 6.80 4.93, 9.49 7.6±23.32 0.92±0.24 0.83±0.18
LSTM−2× 128−l2 (attention) 4.09 3.50, 5.10 -2.36±13.35 1.02±0.14 0.89±0.09
Blind Subject with a Guide Dog
LSTM−2× 128−l2 4.64 5.53, 5.91 4.16±26.25 0.96±0.27 0.84±0.22
LSTM−2× 128−l2 (attention) 2.51 3.64, 2.56 -8.47±18.68 1.08±0.19 0.88±0.17

ples in the Pedometer dataset [19] using leave-two-person-out
cross validation. Our proposed attention-based LSTM method
outperforms the previous time-domain methods [20] with the
advantage of not requiring many parameters and thresholds as
in the time domain methods.

V. CONCLUSIONS

This paper defined SC as a regression problem and used a
many-to-one attention-based LSTM to solve it. Most of the
previous methods work on windowed accelerometer signals
in which SC results from step detection in individual signal
windows. Our proposed method, working at the signal level,
analyzes the entire accelerometer signal as a whole and outputs
the number of steps. This signal level analysis eliminates the
need for determining the window size and having ground-
truth labels for every individual step. The proposed attention
mechanism for RNNs that is capable of analyzing variable-
length time series (signals) learns to pay attention to the steps
and outputs their summation. The internal step identification
is a consequence of applying the attention mechanism that
is learned through the training of the neural network. The
experimental results on three publicly available SC datasets
demonstrated that the proposed method successfully counts the
number of steps with low values of mean absolute error and
high values of SC accuracy. Temporal Convolution Networks
(TCNs) [27] are powerful neural networks for the analysis
and modeling of sequences with extensive lengths. However,
they are unable to handle variable-length sequences. Our future

work will investigate modifying TCNs [27] and attention-
based TCNs [28] to handle variable-length sequences and
applying them to signal-level SC. In addition, we plan to work
on developing personalized SC models for specific populations
and individuals.
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