
Co-evolving morphology and control of soft robots
using a single genome

Fabio Tanaka
Graduate School of Science and Technology

University of Tsukuba
Tsukuba, Japan

tanaka.fabio.xa@alumni.tsukuba.ac.jp

Claus Aranha
Department of Computer Sciences

University of Tsukuba
Tsukuba, Japan

caranha@cs.tsukuba.ac.jp

Abstract—When simulating soft robots, both their morphology
and their controllers play important roles in task performance.
This paper introduces a new method to co-evolve these two
components in the same process. We do that by using the
hyperNEAT algorithm to generate two separate neural networks
in one pass, one responsible for the design of the robot body
structure and the other for the control of the robot.

The key difference between our method and most existing
approaches is that it does not treat the development of the
morphology and the controller as separate processes. Similar
to nature, our method derives both the “brain” and the “body”
of an agent from a single genome and develops them together.
While our approach is more realistic and doesn’t require an
arbitrary separation of processes during evolution, it also makes
the problem more complex because the search space for this
single genome becomes larger and any mutation to the genome
affects “brain” and the “body” at the same time.

Additionally, we present a new speciation function that takes
into consideration both the genotypic distance, as is the standard
for NEAT, and the similarity between robot bodies. By using this
function, agents with very different bodies are more likely to be
in different species, this allows robots with different morphologies
to have more specialized controllers since they won’t crossover
with other robots that are too different from them.

We evaluate the presented methods on four tasks and observe
that even if the search space was larger, having a single genome
makes the evolution process converge faster when compared to
having separated genomes for body and control. The agents in
our population also show morphologies with a high degree of
regularity and controllers capable of coordinating the voxels to
produce the necessary movements.

Index Terms—Soft Robots, HyperNEAT, Co-evolution, Genetic
Algorithms, Indirect Encoding, Evolving Morphologies

I. Introduction

The evolution of body structures of simulated agents, as
well as the means to control that body to achieve a specific
goal, is a topic of interest in Artificial Life. In nature, creatures
occupying different niches evolved different body types, and
are able to freely control them to guarantee their survival.

However, simulating the evolution of the body and control
simultaneously is a complex problem since distinct bodies may
need different control algorithms to function. For example,
a creature without legs that crawls on the ground moves
differently from a quadruped creature that moves by stepping
on its legs.

One common approach for this challenge is to consider the
evolution of the morphology and control as separate processes.
Some previous works focused on evolving the controller for a
fixed body [6]. Others alternated between the optimization of
robot morphology and robot control. [1].

In this study, we co-evolve morphology and controller in the
same process. While this approach presents some challenges,
namely the increased chance of destructive mutations (because
changes on the body may affect the controller and vice-versa)
and the larger search space (because now we have to derive
two outcomes from a single genome); we believe this leads to
a more realistic simulation because, in nature, the development
of body and brain occurs as a single process and is derived
from the same genome.

We represent the controller and morphology using an Ar-
tificial Neural Networks (ANNs) . To express both ANNs by
a single genome, we utilize the idea behind the hyperNEAT
algorithm, where a Compositional Pattern-Producing Network
(CPPN) generates both ANNs.

To simulate the creatures we use 2D Voxel-based Soft
Robots (VSRs). This allows the agent to build its own body
by combining different types of blocks, also called voxels, and
control them by varying their volume in response to a control
signal.

II. RelatedWork

In this research, we focus on the problem of co-evolving the
body (i.e. structure or morphology) and control (i.e. brain) of
soft robots. Most works in the literature approach this problem
by considering the evolution of the body and the control as
separate processes.

An example of a study that focuses on developing the brain
while having the morphology fixed is the research by Pigozzi,
Tang, Medvet, and Ha [6], where they evolved distributed
controllers for VSRs. Their robots did not have a central
control system but had, in each voxel, an ANN that output
signals to adjacent blocks. The ANN also controls the volume
of its voxel based on these signals and local sensors. They
tested different body structures but fixed them while evolving
the robots.

On the other side of the spectrum, Cheney, MacCurdy,
Clune, and Lipson [2] chose to focus on the development

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ar
X

iv
:2

21
2.

11
51

7v
1

 [
cs

.A
I]

 2
2

D
ec

 2
02

2

of the VSR morphology. They used a Compositional Pattern-
Producing Network (CPPN) to decide the presence and type
of voxels in a 3D VSR environment. There was no central
control system in their study, their voxels would expand or
contract at fixed frequencies that were set at the beginning of
the experiments.

Finally, studies aiming to develop both body and control are
usually formulated as a two-level optimization problem. This
approach involves a design optimization method that evolves
the physical configurations of the robots in the outer loop and
a control optimization algorithm that computes an optimized
controller for a given robot body in the inner loop. Reference
[1] is an example of this type of work; in it, the body structure
is evolved by using the NEAT algorithm, and the controller is
developed by using PPO optimization.

Although these approaches produce agents that can effi-
ciently solve tasks, they consider the body and the controller
of the robots as separate entities that interact with each other in
a limited manner while evolving. The division between body
and control is a useful abstraction to simplify the optimization
process. However, the process of developing the body and the
brain in nature is intertwined, both of them are “translated”
from the same genome and evolve together. Bongard and
Pfeifer [7] have argued that such body-brain co-evolution is
critical toward progress in evolutionary robotics and artificial
intelligence.

Pontes-Filho, Walker, Najarro, Nichele and Risi [13] [14]
explored this challenge of co-evolving morphology and control
as the same entity by using a Neural Cellular Automaton
(NCA). By evolving a neural network that defines the rules
of a Cellular Automata, they would first grow the body of the
robot, and then run the NCA in each cell of the agent, taking
into account only local information from neighboring cells to
determine their next state. What differs our method from theirs
is that we use a different approach to generating the body and
controlling, while they use NCA, we use 2 Neural Networks
generated by the HyperNEAT algorithm.

While our approach of co-evolving body and brain at the
same time may not be suitable for every type of task, as we
show in Section VI, we believe that this is an important step
to simulate systems with more life-like characteristics.

III. Preliminaries

A. Voxel-based Soft Robots

We use Voxel-based Soft Robots (VSRs) to simulate the co-
evolution of morphology and control. As defined by Medvet,
Bartoli, De Lorenzo, and Fidel [9], “A Voxel-based Soft
Robot is an aggregation of soft cubic blocks, voxels, that can
vary their volume in response to a control signal”. By this
definition, the emitter of these control signals is the controller
and the structure made of the blocks is the body.

We chose to use VSRs because of the high degree of
freedom it provides when designing a morphology for the
agent. At the same time, when designing the robot we can limit
its size and place the blocks in discrete positions, making it
easy and more efficient to work with. Finally, one additional

advantage of VSRs is that they are capable of representing
agents with modular design. Although we have not taken
advantage of this feature because of the limited size of our
robots, this could certainly be expanded in the future.

B. Evogym

Evogym [1] is a python library that simulate 2D VSRs
and is able to evaluate them. We chose to use it to do the
simulation because it is 2-dimensional, meaning it consumes
less computational resources, and can simulate different types
of tasks.

Below, we briefly describe how this library approaches the
construction of the robot structure and how we control the
robot in it.

1) Robot Structure: Each robot is represented as a matrix
of voxels. The value of each voxel is a label corresponding
to its type from the set {Empty, Rigid, Soft, Horizontal
Actuator, Vertical Actuator}. The agent determines the robot
body structure only when the environment is initialized. Fig. 1
shows a robot with different voxel types standing in the ground
made of rigid tiles.

2) Action: At each time step, the robot’s controller provides
an action vector to the environment. Each component of the
action vector is associated with an actuator voxel (either
horizontal or vertical) of the robot, and it instructs if, and
by how much, a voxel should expand/contract.

Fig. 1. Example of robot structure created over a (2x3) grid in evogym. Image
from [1]

C. CPPN-NEAT

A compositional pattern-producing network (CPPN) [11]
is a variation of an Artificial Neural Network (ANN) where
its nodes can contain different math functions as activations.
Furthermore, both the inputs and outputs of a CPPN operate
over a cartesian space in order to generate an image. This is,
a coordinate (x, y) in a 2D plane can be used as an input and
the output would be the intensity of color at this spot.

CPPN’s architecture evolves according to the NEAT al-
gorithm [4], meaning that it starts as a minimal ANN with
few nodes and connections, but evolves into more complex
architectures by using a process similar to natural selection.
The CPPN representation is also the same as in NEAT, that is,
the ANN is represented by an array that contains a description
of the nodes and connections.

In a CPPN, the neural network is the genotype and the
produced image is the phenotype. Since the genome does not

describe the phenotype directly, CPPNs are considered a form
of indirect encoding.

D. HyperNEAT

HyperNEAT (Hypercube-based NeuroEvolution of Aug-
menting Topologies) [10] is an extension of NEAT and CPPNs
that instead of producing an image as the output, produces an
ANN.

In hyperNEAT, the genome is a CPPN, but rather than using
the coordinates of a single point as input and the intensity
of a color as output, the inputs are the coordinates of two
points and the output is the weight of the connection between
them. By doing this process, connections in an ANN can be
defined by the locations of the nodes that they connect; this not
only allows the CPPN to build a network whose architecture
can exploit the geometry of the problem, but it also allows a
genome to create more than one ANN

As defined in the orignal paper [10], the CPPN computes a
four-dimensional function (x1, y1, x2, y2) = w, where the first
node is at (x1, y1) and the second node is at (x2, y2). This
formalism can return a weight for every connection between
every pair of nodes.

The grid of nodes that will be connected is called the
substrate. The substrate assigns coordinates for each node in
the ANN, and are not limited to be 2-dimensional.

Fig. 2 illustrates the process of querying the weight of
a connection. In it, the nodes in the substrate are assigned
coordinates with the node in the center being the origin.
Then, a connection between (x1, y1) and (x2, y2) is queried
by inputting these coordinates in the CPPN. The output of
the CPPN is used as the wight of the red connection that
can be seen on the right. In practice, all connections of the
desired ANN are queried and the final network is usually a
fully connected ANN.

Fig. 2. Illustration of the process of querying a connection in hyperNEAT. The
two coordinates, (x1, y1) and (x2, y2), on the left are queried to the CPPN in
the middle. The output of the CPPN is the weight of the connection between
coordinates

IV. Method Description

In this work, we co-evolve body and control of soft robots.
Each of these behaviors is governed by a different ANN,

meaning that there is one Neural Network responsible for gen-
erating the robot body structure and another one responsible
for controlling the robot.

In order to generate two ANNs from a single genome we
use the HyperNEAT algorithm explained in section III. By
dividing the substrate in two sections and not connecting nodes
between these sections, we create two complete separated
ANNs.

Since the ANN for the control outputs a 2-dimensional grid,
we opted to add an additional dimension to the substrate in
order for the CPPN to be able to determine if the nodes it is
operating over are in the control or in the body ANN. This
means that our method uses a 3D substrate where the controller
ANN nodes have negative z coordinates, and the morphology
ANN nodes have positive z coordinates.

Fig. 3, displays this representation of the genome and how
it creates 2 separated ANNs.

Fig. 3. Genome representation. On the left the CPPN is represented by an
array and in our method, this array is the genome. On the right there are the
two 3-dimensional ANNs generated by our genome

One possible implication of our approach of generating
two ANNs from a single genome is that any change to the
CPPN will most likely affect both control and morphology at
once. This could make the coordination between the body and
control of the agents harder because agents would not be able
to improve one without compromising the other. Furthermore,
since the two generated ANNs are responsible for two very
different types of process, mutations on the genome will
impact each aspect differently.

The next subsections will explain in detail how we use the
ANNs to generate and control the robot and how we perform
the evolution and speciation process.

A. Robot body generation

We define the ANN that generates the morphology of as
follows. The body of the robot is a 2D grid, the origin
representing the center of the robot. The ANN has two input
neurons corresponding to the (x, y) coordinates of a voxel. The

ANN has five output neurons corresponding to four types of
voxels and an empty voxel. The voxel at coordinate x, y will
be assigned the type corresponding to the output neuron with
highest value. Fig. 4 exemplifies this processes.

Fig. 4. How a robot is constructed from an ANN. In this process, the
coordinates of a voxel are input into the ANN and the output of it is the
type of voxel the robot will have at this coordinate

This approach to the generation of the morphology is similar
to the one in [1] and [2]. However, the difference is that
they use a CPPN instead of a ANN and, because of that, are
able to use different activation functions. In our method, we
didn’t use CPPNs simply because the default implementation
of hyperNEAT is only capable of generating ANNs.

It is important to note that for a robot to be simulated there
are 2 constraints that must be respected: the body has to be
connected, and actuators must exist. We do not enforce these
constraints when generating the genome. During evaluation,
genomes that produces a body that violates these constraints
are removed from the population. This is the minimum crite-
rion that any genome must have to be evaluated.

B. Controlling the robot

We define the ANN that controls the robot as follows. The
values produced by sensors are the input, and there is one
output neuron for each voxel of the robot. The value of these
neurons describes if that voxel will expand or contract, and
by how much.

The sensors used are dependent on the task. For example,
in the Walker-v0 task the sensors give the speed of the robot
and the position of each voxel. For more information, please
refer to the Evogym documentation [1].

C. Evolution process

In order to evolve the genome population, we use the stan-
dard evolutionary algorithm described in the original NEAT
paper [4]. Algorithm 1 gives a high level overview of the
evolutionary process, including how we evaluate the genomes
in regards to our environment.

D. Speciation

During the process of evolving the genomes, most new
mutations do not increase the fitness, but, after some time,
accumulated mutations may lead to a breakthrough and a new
better agent. In order to preserve novel structures and allow

Procedure 1 Evolutionary Algorithm Overview
Input: environment env, # of generations n, # of simulation

steps s.
Output: final genome population G

G ← GenerateGenomes()
for i← 1 to n do

for g ∈ G do
B← GetBodyFromGenome(g)
C ← GetControllerFromGenome(g)
env, obs← StartEnv(env, B)
for j← 1 to s do

action ← GetActionFromController (obs,C)
env, obs, reward← EnvStep (env, action)
UpdateGenomeFitness(g, reward)

end for
end for
species← SpeciationFunction(G)
G ← SelectionFunction(G, species)
G ← ReproductionFunction(G)

end for

them to optimize before they are eliminated from the pop-
ulation, the NEAT algorithm, and consequently hyperNEAT,
implements a technique called speciation. This is, agents are
divided into species based on a distance derived from the
similarity of their genomes. Based on this division, newer
or smaller species receive incentives to be preserved and
crossover only happens between members of the same species.
By doing this, we can have more variety in the genomes and
more complex structures can arise over time.

However, during our early experiments, this implementation
of speciation would group agents with distinct types of bodies
into the same species, and, over time, the representatives
with the best fitness of each species would rarely change.
We believe this happened because the traditional algorithm
considers only the genotypic similarity between genomes.
In our algorithm, two similar genomes could generate very
different morphologies and controllers since we use an indirect
encoding. As a result, agents with distinct body structures
would end up in the same species, not only discouraging
new morphologies, but also deterring the optimization of a
controller for a specific body type.

To alleviate this problem, when calculating the distance that
separates the robots into species, we take into consideration
both genotypic similarity and a new measure of similarity
between bodies (a type of phenotypic distance). This will not
only incentive newer morphologies, since new body types will
receive an advantage because they will more likely be a new
species, but it will allow the crossover to happen only between
agents with similar morphologies, facilitating the development
of controls for a specific body type.

Equation (1) shows how the distance between two genomes
is calculated: a sum between the genotypic distance (written
as a function called gDist) explained in the NEAT algorithm
[4], and the sum of the difference between every voxel of the

genomes (written as the function b) multiplied by a constant
v.

Equation (2) shows how the distance between two voxels in
position (i, j) of different genomes is calculated: if they are the
same type (this includes being empty voxels), the distance is 0;
if one of them is empty and the other is not, the difference is 1;
and finally, if they are both not empty but are of different types,
the distance if 0.5. The reason we have different values for the
last 2 cases is because the presence of a voxel where there was
none before has more impact on how the robot moves than just
simply changing the voxel type.

d(g1, g2) = gDist(g1, g2) + v ∗
n∑

i=1

n∑
j=1

b(g1
i j, g

2
i j) (1)

b(g1
i j, g

2i j) =


0 g1

i j is the same type of g2
i j

.5 g1
i j and g2

i j have different type
1 one is empty and the other is not

(2)

Fig 5 illustrates how different distance function can impact
the speciation. If the threshold for agents to be in the same
species is a distance of 3.5, by using only genotypic distance
the two agents would end up in the same species even if they
have very different bodies. By taking into consideration phe-
notypic distance too, these agents can be considered different
species.

Fig. 5. Distance between agents using two different measures. The traditional
speciation algorithm considers only the genotypic similarity. Agents that
separated by a distance below a certain threshold are considered the same
species. Our speciation method takes into consideration both genotypic and
phenotypic distances, making it harder for agents with too different body
structures to be considered members of the same species.

V. Experiments

In order to assess our method of co-evolution of morphology
and controller in soft robots, we evaluated it in four different
Evogym [1] tasks. We then compared the results with other
baseline algorithms.

We chose the tasks so that they have have different types of
challenges. Two of them are locomotion tasks where the aim
is to go the farthest to the right possible, with one being easy
because it is in a flat terrain and the other made harder by
the presence of obstacles. The third task is related to vertical
movement and requires a specific type of agent body. The final

task is related to object manipulation and involves handling a
box that obeys a simple simulation physics. Below you can
find the specification of each task.

A. Tasks

1) Walker-v0: In this task, the goal is to move as far as
possible across a flat terrain in a limited time. The agent has
sensors for its speed and position, and its fitness is evaluated
by the distance it traverses. We ran this task for 500 steps.

2) ObstacleTraverser-v1: The goal of this task is similar
to the previous one. However, the terrain is highly uneven.
While the fitness of this task is the same as the first one, the
agent now has additional sensors for its own orientation and
for the shape of the terrain below itself. We ran this task for
600 timesteps.

3) Climber-v2: In this task, the goal is to climb as high as
possible through a narrow stepwise channel. One possible way
to achieve this is for the agent to expand and have points of
contact with both walls at the same time. The agent fitness is
calculated by its final y position and it has sensors for its speed,
position, orientation, and the shape of the walls on either side
of it. We ran this task for 400 timesteps.

4) Thrower-v0: The goal for this task is for the robot to
throw a solid box as far as possible. This box is not directly
operated by the controller and the agent needs to move its
body to interact with it. The sensors for this task capture the
agent’s position and speed in addition to the box speed and
position. The fitness is evaluated by the final position of the
thrown box. We ran this task for 300 timesteps.

B. Baseline Algorithms

1) Nested loop NEAT: This algorithm tackles the problem
like a two-level optimization problem and uses separate pop-
ulations to evolve the morphology and the control of the soft
robots. In the outer loop, we use NEAT to evolve agents that
generates the morphology in the same way as described in
section IV-A. Then, in the inner loop, for each unique soft-
robot body, we create a new NEAT population that evolves
the controller for the robot.

A more complete description of this approach can be found
in the original Evogym paper [1]. The original algorithm
used a policy gradient optimization algorithm called Proximity
Policy Optimization (PPO). However, we could not reproduce
their results with their available code and instead used the
evolutionary algorithm NEAT.

Please note that since this approach uses two nested loops,
the number of evaluations is squared (n morphologies with
n controllers each); for that reason we reduced each NEAT
population of the controller and morphology to only 12 agents
each.

2) Direct encoding NEAT: This algorithm was our first
approach to the problem of co-evolving body and control using
a single genome. In it, we evolve a single ANN using NEAT.
This network is divided in two parts, one for the body and
one for control of the robot, with the possibility of having

connections between these two parts. Fig 6 illustrates this
ANN.

When designing or controlling the robot, we use the same
methodology described in sections IV-A and IV-B. In addition,
since there is only one network, the input nodes that are not
being used at any given time are given 0 as their value.

This approach is similar to ours in the sense that a single
genome contains the description of the body and the brain,
however, our method utilizes hyperNEAT to generate two
separated ANNs and this algorithm uses only a large neural
network where the first half describes the morphology and the
second half the controller.

Fig. 6. Illustration of how the neural network in the Direct Encoding NEAT
algorithm is interpreted. The top part is used when specifying the robot
morphology and the lower part when controlling the robot.

C. Hyperparameters

1) General Parameters: Parameters related to the environ-
ment specifications and for how long we ran the algorithms
can be found on table I. By running our tests in a 12 core
CPU, each generation of our method took around 30 seconds.

TABLE I
General parameters

Parameter name Value

Generations 250
Population size 128

Robot size (5x5)
Repetitions 5

2) HyperNEAT hyperparameters: For our implementation
of hyperNEAT, we used the NEAT-python library [12] to
evolve and keep track of the CPPN population. The most
important hyperparameters used are listed below in table II and
their interpretation can be found in the library documentation1.
Note that the input for this CPPN are two 3D coordinates plus
a bias, and the output is the weight of the connection between

1https://neat-python.readthedocs.io/en/latest/config file.html

these coordinates. The rest of the parameters were chosen by
hand in a way that tries to increase the diversity by having a
high chance of mutation.

TABLE II
cppn-neat parameters

Parameter name Value

activation default tanh
activation mutate rate 0.2

activation options sin tanh gauss
bias mutate power 0.2
bias mutate rate 0.8
bias replace rate 0.2
conn add prob 0.2

conn delete prob 0.2
node add prob 0.2

node delete prob 0.2
weight mutate power 0.2
weight mutate rate 0.8
weight replace rate 0.2

max stagnation 20
species elitism 1

elitism 2
survival threshold 0.25
min species size 4

3) HyperNEAT substrate: As discussed in section IV, we
utilized a 3-dimensional substrate to generate the ANNs, and,
in order for the CPPN to have some information about which
ANN it is constructing, the substrate was divided into 2 parts.
One can think of each layer of the ANN as a 2D grid in z
coordinate, tables III and IV shows how we organized these
layers.

TABLE III
Substrate used to construct the morphology ANN

Substrate name Size layer position

Input layer (1x2) 1
Hidden layer (1x3) 2
Output layer (1x5) 3

TABLE IV
Substrate used to construct the controller ANN

Substrate name Size layer position

Input layer Task dependant -1
Hidden layer (5x5) -2
Output layer (5x5) -3

D. Reproducibility

For reproducibility purposes, all the code and experimental
scripts are available online2.

VI. Results

This section introduces the results of the experiments de-
scribed in Section V.

2https://github.com/fhtanaka/SGR

The graphs in Fig. 7 show how the algorithms performed
in each task in regards to its fitness over the generations. It is
possible to see that, from the three methods, the Nested loop
NEAT performed worst in all tasks. At the same time, our
approach, named HyperNEAT in the image, had very similar
results to Direct encoding NEAT and performed well in all
but the Climber-v2 task.

Fig. 7. Performance comparison among the algorithms. We plot the best
performance of robots that each algorithm has evolved in each generation.
All the curves are averaged over 5 different runs, and the variance is shown
as the shaded region.

Fig. 8. Examples of morphologies created by our method in different tasks.
The colors of the voxels represent their types as follows: black are rigid voxels,
gray are soft, orange are horizontal actuators and blue are vertical actuators

We believe that the main reason for the HyperNEAT and
Direct encoding NEAT better performance is that, by having a
single genome, they had a larger sample of robot bodies at any
time. Since the Nested NEAT method has to divide its agents
between the population that evolves the control and the one
that evolves the morphology, there are fewer body structures
evaluated. This also explains why there is such a large gap
between the starting fitness between the methods.

One of our initial concerns when developing our method
was that every mutation on the genome would affect the
controller and design at the same time and thus would be
destructive by preventing the genome to develop any coor-
dination between the body and brain. However, this was not
the case; the hyperNEAT method performed similarly to the
Direct encoding NEAT algorithm, an algorithm where, most
of the time, a single mutation does not affect control and
design at the same time. This is not to say that there were
no destructive mutations, but if there were, they were elimi-
nated from the population during the evolution process. The
hyperNEAT method was even capable to evolve robots with
complex controls that presented some unexpected movements
as illustrated in Fig. 9, where the robot moved forward at high
speed by doing front-flips.

Fig. 8 displays some examples of morphologies generated
by the hyperNEAT algorithm in different runs. It is possible
to see that, even without multiple activation functions, our
method was capable of producing varied and mostly symmetric
body structures, many times presenting areas with the same
voxel type. The reason for this type of regularity is that,
when designing the body, we use a method similar to a
CPPN; meaning that the input for the ANN that defined the
morphology was the coordinate of the cell in a grid, and cells
on opposites sides give similar values, just changing if they
are positive or negative.

One of the advantages of having these regular body struc-
tures is that the voxels can work in a coordinated manner to do
a specific type of movement. For example, all blue voxels in a
structure can contract and expand at the same time to function
in a way similar to a muscle. This type of coordination is what
allowed many of the agents to move by jumping.

A. Behavior analyze per task

The first task we evaluated, Walker-v0, is a simple task
where the goal is to move on a flat surface. Since our initial
population wasn’t so small, some agents were able to move
and achieve good fitness already from the start. The way most
agents moved was by performing big jumps, by doing this,
they would cover more ground in a shorter time span compared
to walking. Fig. 9 illustrates how one of the best-performing
agents would jump.

The following task, ObstacleTraverser-v1, is a harder ver-
sion of the previous task because the terrain is uneven. This
difficulty was reflected in the fitness of the starting population
that wasn’t able to move very far. However, the agents evolved
fast to have the same behavior as the previous task and
move by jumping. By performing big jumps, many agents

Fig. 9. Illustration of an unconventional way that the controller moves the robot. In this image, the voxel gets darker when contracting and lighter when
expanding. This agent moves by doing front-flips and is able to achieve high speeds.

completely went over most of the uneven ground and when
they landed, they just jumped again. Since the terrain was the
same in all runs and generations, agents were able to exploit
the simulation and perform jumps that would always land in
the same place and then jump again from there.

The task where agents performed the worst was the Climber-
v2, and by looking at the generated morphologies it is possible
to interpret why. All the generated structures are too thin and
were not able to cling to the walls. They achieved their fitness
by simply jumping high but got stuck in this behavior as a
mlocal maximun. This exemplifies one of the drawbacks of
our method, some environments favor irregularities in the body
and our algorithm could not produce that.

The final task, Thrower-v0, is a manipulation task where
the agents would throw a box the farthest distance possible.
Agents for this task evolved at a more linear rate and presented
some very interesting bodies. Some of them were basically
squares that would tilt forward and then expand to shoot the
box. The best-performing agents however, had a ”two towers”
body structure like the one in the bottom right of Fig III; they
would use the right tower to propel the box while the left
tower would be used to aim.

VII. Conclusion

In this study we introduced a method for co-evolving the
morphology and controller of a soft robot in the same process.
The method uses the hyperNEAT algorithm to generate two
ANNs, one that designs the robot body structure and one that
controls the robot in the environment. Our method puts both
the “brain” and the “body” of the agent in a single genome,
similar to what happens in nature.

We evaluated our method by executing it in four different
tasks and observed that the generated agents were able to
adapt well to almost all of them. The body structures generated
presented symmetry and their controllers were able to exploit
regular structures in order to achieve their goals. One of
our concerns, that every mutation would always affect both
controller and morphology and thus not allow coordination
between controller and body, did not seem to affect the agents,
at least not in a way that prevented them from evolving.

Overall, this work showed that it is possible to evolve both
morphology and controller at the same time. This does not
invalidate any other previous method of co-evolution that treats
body structure and control as separate procedures, but can
be useful to reproduce and study natural evolution processes.
Going forward, there are many directions to expand this

research, one particular of particular interest would be studying
new ways to define a robot structure from an ANN, this
could allow the hyperNEAT algorithm to take advantage of
the geometry of the problem and even generate bodies that
are may be less regular and thus solve specific tasks.

Acknowledgements

This work was supported by JSPS grant 22K11918.

References
[1] Jagdeep Bhatia, Holly Jackson, Yunsheng Tian, Jie Xu, Wojciech Ma-

tusik. (2022). Evolution Gym: A Large-Scale Benchmark for Evolving
Soft Robots.

[2] Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Un-
shackling evolution: Evolving soft robots with multiple materials and a
powerful generative encoding. SIGEVOlution, 7(1):11–23, August 2014.

[3] Nicholas Cheney, Jeff Clune, and Hod Lipson. Evolved electrophysio-
logical soft robots. In Artificial Life Conference Proceedings 14, pages
222–229. MIT Press, 2014.

[4] K. O. Stanley and R. Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation, 10(2):99–127, 2002.

[5] Eric Medvet, Alberto Bartoli, Andrea De Lorenzo, and Stefano Seriani.
2d-vsr-sim: A simulation tool for the optimization of 2-d voxel-based
soft robots. SoftwareX, 12:100573, 2020.

[6] Federico Pigozzi, Yujin Tang, Eric Medvet and David Ha. Evolv-
ing Modular Soft Robots without Explicit Inter-Module Communi-
cation using Local Self-Attention, 2022; arXiv:2204.06481. DOI:
10.1145/3512290.3528762.

[7] R. Pfeifer and J. C. Bongard. How the body shapes the way we think:
a new view of intelligence. MIT press, 2006.

[8] Eric Medvet, Alberto Bartoli, Andrea De Lorenzo, and Giulio
Fidel. 2020. Evolution of distributed neural controllers for voxel-
based soft robots. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference (GECCO ’20). Association
for Computing Machinery, New York, NY, USA, 112–120.
https://doi.org/10.1145/3377930.3390173

[9] Talamini Jacopo, Medvet Eric, Nichele Stefano, Criticality-
Driven Evolution of Adaptable Morphologies of Voxel-
Based soft robots, Frontiers in Robotics and AI, 8, 2021,
https://www.frontiersin.org/article/10.3389/frobt.2021.673156,
10.3389/frobt.2021.673156, 2296-9144

[10] Kenneth Stanley, David D’Ambrosio, Jason Gauci. (2009). A
Hypercube-Based Encoding for Evolving Large-Scale Neural Networks.
Artificial life. 15. 185-212. 10.1162/artl.2009.15.2.15202.

[11] Stanley, Kenneth. (2007). Compositional pattern producing networks: A
novel abstraction of development. Genetic Programming and Evolvable
Machines. 8. 131-162. 10.1007/s10710-007-9028-8.

[12] McIntyre, A., Kallada, M., Miguel, C. G., Feher de Silva, C., and Netto,
M. L. NEAT-python

[13] Sidney Pontes-Filho and Kathryn Walker and Elias Najarro and Stefano
Nichele and Sebastian Risi. A Unified Substrate for Body-Brain Co-
evolution (2022). https://doi.org/10.1145/3520304.3529002

[14] Sidney Pontes-Filho, Kathryn Walker, Elias Najarro, Stefano Nichele,
and Sebastian Risi. 2022. A single neural cellular automaton for
body-brain co-evolution. In Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion (GECCO ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, 148–151.
https://doi.org/10.1145/3520304.3529002

http://arxiv.org/abs/2204.06481

	I Introduction
	II Related Work
	III Preliminaries
	III-A Voxel-based Soft Robots
	III-B Evogym
	III-B1 Robot Structure
	III-B2 Action

	III-C CPPN-NEAT
	III-D HyperNEAT

	IV Method Description
	IV-A Robot body generation
	IV-B Controlling the robot
	IV-C Evolution process
	IV-D Speciation

	V Experiments
	V-A Tasks
	V-A1 Walker-v0
	V-A2 ObstacleTraverser-v1
	V-A3 Climber-v2
	V-A4 Thrower-v0

	V-B Baseline Algorithms
	V-B1 Nested loop NEAT
	V-B2 Direct encoding NEAT

	V-C Hyperparameters
	V-C1 General Parameters
	V-C2 HyperNEAT hyperparameters
	V-C3 HyperNEAT substrate

	V-D Reproducibility

	VI Results
	VI-A Behavior analyze per task

	VII Conclusion
	References

