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Abstract—The intent prediction of unmanned aerial vehicles
(UAVs) also known as drones is a challenging task due to the
different mission profiles and tasks that the drone can perform.
To alleviate this issue, this paper proposes a deep mixture
of experts network to classify and predict drones trajectories
measured from non-cooperative radars. Telemetry data of open-
access datasets are converted to simulated radar tracks to
generate a pool of heterogeneous trajectories and construct three
independent datasets to train, validate, and test the proposed
architecture. The network is composed of two main components:
i) a deep network that predicts the class associated to the input
trajectories and ii) a set of deep experts models that learns the
extreme bounds of the trajectories in different future time steps.
The proposed approach is tested and compared with different
deep models to verify its effectiveness under different flight
profiles and time-windows.

I. INTRODUCTION

Predicting the intention of drones is becoming a trending

topic due to the potential malicious use of drones that can

disrupt national facilities and cause severe economic damage.

Here, drone trajectory prediction [1]–[3] is one of the most

challenging tasks due to the high diversity of possible in-

tentions that the drone can perform. In addition, the use of

non-cooperative radar poses some difficulties in the tracking

procedure due to their high-level of noise.

Traditional prediction techniques are based on model-based

approaches to estimate the future trajectory [4]–[7]. These

models have the advantage that they do not require training

data since they exploit physical laws and state estimation

algorithms [8], [9] such as Kalman filters and their variants.

These models are effective for short-term predictions but are

usually ineffective for long-term predictions [10]. The hidden

drone objective function [11], [12] specifies the set of actions

that the drone might apply to achieve a desired goal in the

long term. In consequence, short-term predictions of model-

based methods will not be suitable to model these complex

behaviours.

The limitations of model-based approaches can be improved

through the development of intent-driven dynamical models

[4], [6] that predicts both the future kinematics and the in-

tended destination. In these approaches, the intent is modelled
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as a discrete set of destined locations [6] or as a continuous

space over a designated region. Here, the intent is defined

as whether the drone intends to enter to an unauthorized

region during the flight [6]. However, these approaches do

not leverage existing patterns and insights derived from past

data, e.g., nearby routes, manoeuvres or flight profile charac-

teristics. In consequence, many false positives may arise due

to normal behaviours predicted as anomalous ones which can

compromise the smooth operation of national infrastructures.

Another point that needs to take into account is that previous

approaches [4] do not exploit the drone contextual information,

e.g., its size, model characteristics and type of drone [13].

These features could provide useful situation awareness about

the tracked drone and infer its hidden intent. For example,

drones used by expert pilots for surveying may pose less risk

than hobbyist drones that can enter to restricted areas and alert

counter-drone technologies of a potential malicious activity.

Furthermore, previous approaches use Kalman filter for state

estimation which cannot model adequately the high nonlinear

dynamics of the drone coupled with the nonlinear character-

istics of the non-cooperative radar measurements [14].

In [5] it was designed a trajectory model conditioned on

the inferred intent and the aircraft operating mode. This

specific approach relies on complete knowledge of the aircraft

dynamics, well-defined flight manoeuvres, ADS-B messages,

and aircraft regulations. As outcome the model gives a robust

solution for intent prediction and opportune conflict detection.

Here, the intents are modelled as the pilot actions which

consider regulations and specific flight actions associated to

the intended destination. These ideas were adopted in [3]

for drone intent inference in geofenced regions. The intents

are modelled as regulation-based intents (e.g., avoiding other

drones or geofenced areas, or remain within a geofenced area)

and flight-based intents (e.g., forward and backward waypoint

movements). However, the main issue of these approaches

is that they depend on complete knowledge of the flight

plan, along with having cooperative ADS-B transmissions.

Furthermore, complete knowledge of the drone dynamic model

poses a sensitive problem due to the drones’ high nonlinear

dynamics, high manoeuvrability, and different model structure.

Data-driven approaches have been used for inference of

human behaviour [15]–[20]. Here, the approaches are based on

classification tasks using image sequences to predict pedestrian

trajectories. Deep generative models [21], [22] have been

applied to predict the long-term human trajectory conditioned
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on the long-term objective of the task. In terms of drone

intent prediction, genetic algorithms have been adopted to

model dangerous drone intents using a support vector regressor

(SVR) model of the drone kinematics based on ADS-B flight

data [2]. In [23], it has been demonstrated that the drone

trajectories can be modelled using recurrent neural networks

(RNNs) [24] trained on GPS data. This idea is exploited in

the proposed research to capture high-dimensional features and

time-dependencies of the drone trajectories.

The aforementioned data-driven methods are promising but

require a large amount of labelled data which is hindered by

the small amount of open-access datasets of drones trajec-

tories. Moreover, radar measurements are usually not openly

shared with the research community due to commercial or

security constraints. This problem has been alleviated in recent

years with radar datasets provided by the Open Radar Initiative

[25], Science Data Bank measurements [26], and Real Doppler

RAD-DAR [27]. However, these datasets do not contain the

information of the radar track features and target trajectories

which are the main inputs of the proposed approach.

So, drone trajectories pose high heterogeneity due to its

strong nonlinear dynamics dependent of the model structure,

flight type, and intended operation. In consequence, it is hard

or even impossible for any trajectory prediction algorithm to

obtain a model that can generalize to all possible scenarios.

Therefore, trajectory prediction algorithms can be enhanced

by knowing beforehand the high-level intent 1 class associated

to each input trajectory or input sequences. Several research

[28]–[30] have been carried out to classify drones using

trajectory features, including classification of clutter versus

drones and discrimination of fixed-wing versus quadcopter

flights. All of these works use extracted point-features from

time series trajectories, such as feature means and standard

deviations over time. However, to best of our knowledge, there

is currently no work that aims to predict the trajectory intent

by considering the high-level intent class.

In view of the above, this paper proposes a trajectory intent

prediction and classification architecture to: i) classify the

high-level intent class from simulated radar input trajectories,

and ii) predict the future location of the drone by obtaining

the extreme bounds of the possible future trajectory in t

time steps. First, a framework is established to generate

simulated-radar measurements and tracks from open-access

telemetry data to construct three independent datasets. The

proposed architecture is given by a deep mixture of models that

combines the merits of a deep high-level intent classifier with

m deep expert regression models. The final model enhance the

prediction capabilities compared with other deep models of

the state-of-the-art. Different high-level intent trajectories are

tested under the proposed approach with satisfactory results.

II. DATA PREPARATION AND RADAR SIMULATION

In [28] is proposed a radar-track generator using ground-

truth telemetry. This strategy is by incorporating a variety

1High-level intent defines the purpose of use of the drone

of mission profiles to produce different drone radar-based

simulations for different high-level intents.

The data used in this paper is obtained from open-access

telemetry data [31] measured from GPS and inertial navigation

system (INS) which define four high-level intent classes [32]–

[35]. The four classes are: 1) perimeter flight, 2) point-to-point

flights, 3) package delivery and 4) area mapping. These data

are converted into simulated radar data and track estimations

to model raw radar measurements and the inferred trajectory

[36]. This step is helpful to increase the impact of the approach

and future integration in current detection systems based on

non-cooperative radar.

The proposed radar modelling architecture is based on two

main elements: i) the radar location relative to the drone

trajectory and ii) the noise distribution. The combination of

these elements generate different simulated radar trajectories

from one single trajectory. This is helpful to increase the

richness of the dataset to train and test the proposed trajectory

regression modelling algorithm. The telemetry data covers 400

flights with their associated high-level intent class that contains

the longitude, latitude and altitude of the drone trajectory

in the GNSS. These data are transformed into Cartesian

coordinates [36] to ignore the global location of the drone. In

addition, we apply up-sampling and down-sampling methods

to homogenize the sampling time of each trajectory within the

dataset to 1 Hz.

Fig. 1. Simulated radar data and trajectory inference

The noise intensity and location of the radar are iterated

to generate heterogeneous radar trajectories [28]. The noise

values are tested in the interval q ∈ [1, 3] with seven arbitrary

locations that produce different radar simulated data. The

simulated radar data are used to feed an extended Kalman

filter (EKF) algorithm to infer the associated trajectory. Here,

a linear-time variant (LTV) Gaussian model with near constant

velocity [37] is used per dimension to infer the trajectory. For

the x-axis we have the following model

xt = Ftxt−1 +wt, wt ∼ N (0,Qt), (1)

with

x =

[

xpos

xvel

]

, Ft =

[

1 dt
0 1

]

, Qt =

[

dt3

3

dt3

2

dt3

2
dt

]

q, (2)

where xpos and xvel are the Cartesian position and linear

velocity in the x-axis, dt is the sampling time, and q is the

velocity noise diffusion constant. Fig. 1 shows the inferred



trajectory obtained from the simulated radar measurements

under a specific radar location of a random trajectory profile.

Each simulated radar track are divided in different sub-

trajectories Xtrajt to test the prediction capabilities of the

proposed approach under different window length. The pro-

posed window lengths are set to 8, 16, 32, and 64. In addition,

we compute the summary features xsumt
associated to each

trajectory defined by the mean and the standard deviation.

III. PROPOSED METHODOLOGY

Fig. 2 depicts the general block scheme of the proposed

deep mixture of experts (DMoE) network. The network con-

sists in two complementary deep models: 1) a high-level intent

classification network that predicts the class associated to an

input trajectory, and 2) a deep regression model composed

of M expert models that have as input the simulated radar

trajectories and their respective summary features. Both the

classifier and regression models are related by means of

a linear combination of each regression model output yt,i

and the softmax output probabilities zt. The outputs of the

proposed approach are the class argmax(zt) and extreme

bounds yt of the current flight composed of the minimum and

maximum bounds for each coordinate in a three-dimensional

Cartesian space for a proposed number of future time steps t

yt =
[

xmin, xmax, ymin, ymax, zmin, zmax

]⊤
. (3)
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Fig. 2. Deep Mixture of Experts Network for Drone Intent Classification and
Regression Prediction

The objective of the high-level intent classifier of Fig. 2 is

evident: to predict the class of the input trajectories with high

accuracy. However, the output of the regression part is not

completely clear since it is not a common output for regression

models. The extreme bounds are predicted instead of the

future trajectory due to the extremely noisy and short-term

uncertainty of the simulated radar tracks. Here, the extreme

bounds help to estimate the future localization of the drone

and to model potential airspace conflicts and violations.

The bounds are computed by obtaining the associated future

(lookahead) trajectories of length t for each sub-trajectory. For

each future trajectory, the minimum and maximum bounds

across the entire sequence are computed relative to the last

time step in the input sub-trajectory. Rather than predicting

just one set of bounds, the framework is flexible to predict

any number of sets of bounds at different times. In this paper,

two sets of future time steps bounds are used: 15 and 30

seconds. Therefore, the final output bounds yt are represented

by a vector of 12 components that covers the minimum and

maximum bounds of each dimension in 15 and 30 seconds of

future time.

Notice that there exists different high-level intents or flight

types of drones which can vary notably from each other

or behave similarly. The assumption is that the long-term

trajectory of the drone is dependent of the high-level intent

associated to the purpose of use. Then, we hypothesize that the

trajectory prediction algorithm will be enhanced by providing

the information of the flight purpose. Therefore, we propose to

use the predicted probabilities of the high-level intent classifier

to increase the prediction capabilities of the regression model.

A. Model design

In the proposed approach, we use a bidirectional convolu-

tional long-short-term-memory with attention (BCLSTM-A)

network [38] to classify the high-level intent and a Deep

Mixture of Experts (DMoE) as the regression model. The

BCLSTM-A network is chosen due to its high capabilities

to detect spatial patterns and time-dependencies which are

suitable properties when we deal with time-series data. The

DMoE model includes M unique multi-input convolutional

models that are trained specifically on each high-level intent

class. Each expert model serves as a specialist for predicting

the future bounds of a particular high-level intent flight. The M

experts are linearly combined with the outputs of the softmax

probabilities of the high-level intent classifier. This means that

a high probability of a softmax output will weight more a

specific expert model than the others such that the extreme

bounds will depend mainly of this specific expert.

Each simulated radar track Xt is decomposed into sub-

trajectory features Xtrajt and summary features xtrajt that

feed the proposed DMoE. These complementary features

enhance the trajectory prediction in comparison to using only

the sub-trajectory features Xtrajt . Four experts are trained

for each of the high-level intent classes used in this paper.

The outputs of the four experts are the extreme bounds of

each class denoted as yt,1, yt,2, yt,3, and yt,4. Each extreme

bound is weighted by the softmax probabilities of the high-

level classifier zt to determine the expert model with highest

priority in the prediction. The final output is an ensembled

vector yt that is computed as

yt =

m
∑

i=1

zt,i ⊙ yt,i, (4)

where ⊙ represents the Hadamard product.

B. Comparison models and metrics

We compare the proposed DMoE architecture with other

deep neural models to evaluate its performance. First, we de-

sign a multiple-output linear regression model as a baseline to

gauge performance with the neural models. Three deep models

are used to evaluate the proposed model, which include: 1)



multi-input LSTM, 2) multi-input CNN, and 3) multi-input

convolutional LSTM with attention (CLSTM-A). Each model

has the same learning objective of the DMoE.

The proposed performance metrics for the classifier are:

a) accuracy, b) precision, c) recall, and d) F1-score. For the

regression models the metrics are: i) the root mean-squared

error (RMSE), ii) mean absolute error (MAE), and the R2

statistical measure.

IV. MODEL TRAINING AND EVALUATION

We apply dropout and early stopping regularization tech-

niques to avoid overfitting problems in the model training

phase. We monitor carefully the training and validation curves

to obtain the best models that best generalize for both the

classifier and regression tasks. Here, we stop the learning

model if the learning curves do not exhibit improvement

after 20 epochs. The hyperparameters are optimised using a

grid search across a range of settings and maximising the

performance on the validation data.

A. High-level intent classification results

The accuracy curves of the BCLSTM-A model for time-

windows 8 and 32 are given in Fig. 3.

(a) Window length 8s

(b) Window length 32 s

Fig. 3. Accuracy of the BCLSTM-A under the training set

TABLE I
CLASSIFICATION PERFORMANCE AVERAGED ACROSS ALL TIME-WINDOWS

Model
Validation Test

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

BCLSTM-A 0.9467 0.9205 0.9230 0.9213 0.9795 0.9761 0.9844 0.9801

Here, the accuracy results show that after certain number

of epochs the BCLSTM-A tends to the overfitting problem

which is solved by applying the early stopping regularization

technique. Notice that the results are notably good for a

small number of epochs. The final results of the BCLSTM-A

under the validation and test dataset are averaged for all time-

windows and summarized in Table I. The results demonstrate

the high performance of the classifier to predict the class

associated to the input trajectories which is highly beneficial

for the DMoE.

TABLE II
REGRESSION MODELS RESULTS

Model
Input Window

Length (s)

Validation Test

RMSE MAE R
2 RMSE MAE R

2

Multiple Linear Regressor 8 160.1633 78.2503 -0.3420 132.5540 77.3753 -0.5326

Multi-Input LSTM 8 110.1799 41.7504 0.3842 85.4451 40.2597 0.5218

Multi-Input CNN 8 103.5907 39.0094 0.4657 85.3480 39.3726 0.3619

Multi-Input CLSTM-A 8 111.5730 41.5846 0.3653 87.3944 40.8109 0.2604

DMoE 8 101.3812 31.3710 0.4863 68.6532 28.1353 0.7056

Multiple Linear Regressor 16 153.6455 77.1540 -0.3620 132.7385 77.6763 -0.5332

Multi-Input LSTM 16 112.2328 42.1724 0.2797 86.8703 39.9684 0.6193

Multi-Input CNN 16 101.3007 39.2357 0.4251 86.9849 40.5390 0.2960

Multi-Input CLSTM-A 16 106.4226 40.2257 0.3550 91.1821 41.0788 0.0145

DMoE 16 93.7063 29.3688 0.5005 66.3241 27.1486 0.7996

Multiple Linear Regressor 32 141.9160 75.2715 -0.4356 133.8516 78.9101 -0.5807

Multi-Input LSTM 32 99.8031 38.2608 0.2939 96.5178 42.0042 0.4052

Multi-Input CNN 32 83.8012 35.1835 0.5015 82.2166 38.4593 0.3680

Multi-Input CLSTM-A 32 103.1382 40.0585 0.2450 88.9015 41.3739 0.1340

DMoE 32 82.1361 25.7226 0.5235 65.8922 26.4180 0.8286

Multiple Linear Regressor 64 118.1680 70.8340 -0.8352 150.1881 84.2064 -1.3223

Multi-Input LSTM 64 74.7022 37.1499 0.2205 113.5891 50.7256 0.2842

Multi-Input CNN 64 69.8620 35.8270 0.3235 86.8546 43.0635 0.2564

Multi-Input CLSTM-A 64 65.0951 33.9712 0.4254 98.7680 45.2943 0.3227

DMoE 64 59.2363 22.5724 0.5318 80.1402 30.3676 0.6589

B. Trajectory intent regression results

The numerical results of each regression model under the

validation and test datasets are given in Table II and the

averaged results over all time-windows are given in Table III.

TABLE III
REGRESSION MODELS PERFORMANCE AVERAGED ACROSS ALL

TIME-WINDOWS

Model
Validation Test

RMSE MAE R
2 RMSE MAE R

2

Multiple Linear

Regressor
143.4732 75.3775 -0.4937 137.3331 79.542 -0.7422

Multi-Input LSTM 99.2295 39.8334 0.2946 95.6056 43.2395 0.4576

Multi-Input CNN 89.6387 37.3139 0.4290 85.3510 40.3586 0.3206

Multi-Input

CLSTM-A
96.5572 38.9600 0.3477 91.5615 42.1395 0.1829

DMoE 84.1150 27.2587 0.5105 70.2524 28.0174 0.7482

The deep regression models outperform the baseline linear

regressor across all metrics as it was expected. The proposed

DMoE exhibits better results in both the validation and test

datasets in comparison to the other deep models. This fact

is clearly visualized in the R2 results that demonstrates the

DMoE fits better each high-level class across all the time-

windows. The RMSE and MAE scores are useful for relative

comparisons between each model, however they do not pro-

vide an indicator of how good is a model. The R2 measure

gives this indicator and is crucial in the model adjustment.

Here, an R2 score that tends towards to 1.0 represents a

model that predicts exactly the desired outputs. The DMoE

has the best R2 score of 0.7842, whilst the second best model

is the multi-input LSTM with 0.4576. These results show a

large drop in performance compared with the DMoE. One

relative minor disadvantage of the DMoE is the training and

inference times caused by the number of expert models. In

this case, a large number of experts may cause large learning

time which can be mitigated by using different processor units.



Table IV shows the average times overall time-windows of

each regression model.

TABLE IV
AVERAGE TIMES FOR TRAINING AND INFERENCE

Model
Training

Time (s)

Average

Prediction

Time(s)

Multiple Linear

Regressor (Baseline)
0.95 3.57e-7

Multi-Input LSTM 148.31 2.31e-5

Multi-Input CNN 171.37 1.48e-5

Multi-Input

CLSTM-A
1092.22 3.10e-5

Deep MoE 655.25 6.19e-5

We can observe from the results of Table IV that, whilst the

DMoE needs more time to train in comparison to the LSTM

and CNN regression models, it is faster than the CLSTM-A.

In terms of the average prediction time, the proposed DMoE

require more computation time since it has to evaluate 4

experts. In terms of the specific implementation of this paper,

the increased computation time is not a meaningful factor that

influence in the final implementation of the algorithm. How-

ever, in a general case of m expert models the computation

time can be an issue and it will require processing allocation

between different units.

Fig. 4. Predicted extreme bounds examples

The overall results, show that applying the DMoE architec-

ture yields to better predictive performance rather than using

only a single model for all the trajectories associated to specific

high-level classes. This suggests that individual expert models

have more power to learn specific pattern representations

and time-dependencies of the associated class, rather than

obtaining an expert model that generalizes to all classes. This

fact is more evident if we have more classes. In this scenario, a

single expert model would fail to generalize to all the possible

classes and hence the prediction performance will be poor. On

the other hand, the DMoE solves this problem by creating a

set of experts associated to each class. This as outcome will

enhance the prediction performance but it will increase the

computation time and the model complexity.

C. Prediction under unseen test trajectories

The trained DMoE is tested under unseen test trajectories

to evaluate its performance. Fig. 4 shows some examples of

the predicted extreme bounds in a future time of 15 and 30

seconds.

(a) Perimeter flight examples

(b) Package delivery examples

Fig. 5. Predicted extreme bounds in a three-dimensional Cartesian space

Furthermore, the approach can also visualize the extreme

bounds in the three-dimensional Cartesian space. Figure 5

shows some examples of the predicted extreme bounds.

V. CONCLUSIONS

This paper proposes a deep mixture of experts architecture

for both classification and trajectory prediction of simulated

radar tracks of drones. Telemetry data of open access datasets

are transformed into a wide variety of radar measurements

by combining different locations of the radar and assumptions

of the noise distribution. The radar tracks are obtained from

an extended Kalman filter implementation based on a linear-

time-variant Gaussian model. The classifier is designed as a

bidirectional convolutional LSTM with attention that predicts

the high-level class of the associated trajectory. The regression

model is constructed from a set of experts models based on

a multi-input CNN that learns the extreme bounds of specific

tasks in t time steps in the future. These experts models are

linearly combined by the output probabilities of the high-

level intent classifier. The extreme bounds are determined



by the expert model with highest softmax probability. The

final model is tested, compared and verified under two inde-

pendent datasets and different deep models to ensure good

classification accuracy and trajectory prediction results. The

obtained results show that the proposed DMoE achieves good

classification and regression results by combining the merits

of the high-level intent classifier with a set of expert models.

Future work will address the incorporation of additional

features provided by the radar measurements to increase the

capabilities of the proposed approach.
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N. González, and A. Armenta-Molina, “Constant speed control of slider-
crank mechanisms: A joint-task space hybrid control approach,” IEEE

Access, vol. 9, pp. 65 676–65 687, 2021.
[38] B. Fraser, A. Perrusquı́a, D. Panagiotakopoulos, and W. Guo, “Hybrid

deep neural networks for drone high level intent classification using
non-cooperative radar data,” in Proc. of the International Conference on

Electrical, Computer, Communications and Mechatronics Engineering

(ICECCME’23). IEEE, 2023.



Cranfield University

CERES https://dspace.lib.cranfield.ac.uk

School of Aerospace, Transport and Manufacturing (SATM) Staff publications (SATM)

2024-01-01

A deep mixture of experts network for

drone trajectory intent classification and

prediction using non-cooperative radar data

Fraser, Benjamin

IEEE

Fraser B, Perrusquía A, Panagiotakopoulos D, Guo W. (2024) A deep mixture of experts

network for drone trajectory intent classification and prediction using non-cooperative radar

data. In: 2023 IEEE Symposium Series on Computational Intelligence (SSCI), 5-8 December

2023, Mexico City, Mexico

https://doi.org/10.1109/SSCI52147.2023.10371877

Downloaded from Cranfield Library Services E-Repository


