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Abstract—The main question this paper addresses is: What
combination of a robot controller and a learning method
should be used, if the morphology of the learning robot is not
known in advance? Our interest is rooted in the context of
morphologically evolving modular robots, but the question is
also relevant in general, for system designers interested in widely
applicable solutions. We perform an experimental comparison of
three controller-and-learner combinations: one approach where
controllers are based on modelling animal locomotion (Central
Pattern Generators, CPG) and the learner is an evolutionary
algorithm, a completely different method using Reinforcement
Learning (RL) with a neural network controller architecture,
and a combination ‘in-between’ where controllers are neural
networks and the learner is an evolutionary algorithm. We apply
these three combinations to a test suite of modular robots and
compare their efficacy, efficiency, and robustness. Surprisingly,
the usual CPG-based and RL-based options are outperformed
by the in-between combination that is more robust and efficient
than the other two setups.

Index Terms—evolutionary robotics, Reinforcement learning,
controller, learning algorithm, CPG

I. INTRODUCTION

Enabling robots to learn tasks automatically is an important
feature on its own, and also necessary within an evolutionary
robot system, where both the morphologies (bodies) and the
controllers (brains) are developed by evolution. In such systems,
‘newborn’ robots should undergo a learning phase to fine-tune
the inherited brain to the inherited body quickly after birth
[1], [2]. This raises the question: what combination of a robot
controller and a learning method should be used in the robots’
morphology which is not known in advance? In general, a
robot’s ability to learn a task depends on three major system
components, namely, the body (morphology, hardware), the
brain (controller, software), and the learning algorithm.

In the current literature, the majority of studies investigate
controller optimization using multiple learning algorithms, but
focusing on a specific control architecture [3], [4]; comparisons
of different control architectures and learning methods for
learnable controllers and arbitrary modular robots are rarely
carried out.

This study makes a step towards closing this gap by
comparing three different combinations of a specific control
architecture and a learning algorithm. The possible control
architectures are Central Pattern Generator (CPG), Artificial
Neural Network (ANN) and Deep Reinforcement Learning

(DRL) policy controller. The possible learning algorithms are
Reversible Differential Evolution (RevDE) [5] representing
semi-supervised learning and Proximal Policy Optimization
(PPO) [6] representing reinforcement learning. The com-
binations we compare here are CPG+RevDE, DRL+PPO,
and ANN+RevDE. The motivation behind these choices is
as follows. Using CPGs is a well-established, biologically
plausible option to control modular robots actuated through
joints, where learning can be performed by any heuristic
black-box optimization method. RevDE is one such method
that proved to be successful in the past for this application.
Deep Reinforcement Learning is also a straightforward and
increasingly popular option for robot learning with implications
for the appropriate controller architecture, namely the use of
ANNs. Additionally, we test the ANN+RevDE combination as
an ‘in-between’ option that, to our best knowledge, has not
been investigated previously.

The main contribution of this work is threefold:
1) It demonstrates a test-suite based approach to experimen-

tal research into robot learning, where the robots that
make up the test suite are not only hand-picked, but also
generated algorithmically.

2) Furthermore, the controller-and-learner combinations are
not only compared by the usual performance measures,
efficiency and efficacy, but also by robustness, i.e., stabil-
ity or consistency over the different robot morphologies.

3) It provides an empirical assessment of three options,
including two ‘usual suspects’ that researchers in the field
are likely to consider: CPG-based controllers with a good
weight optimizer and a Deep Reinforcement Learning
method. The results indicate a surprising outcome, both
of these methods are outperformed by the third one,
ANN+RevDE.

II. RELATED WORK

A. Robot Controllers

A popular class of controllers is based on utilizing Artificial
Neural Networks (ANN). The optimization of an ANN is
typically done by approximating gradients for gradient-based
methods or by applying derivative-free methods to alter internal
weights and biases of all neurons within the ANN [7]–[13].
Alternatively, reinforcement learning (RL) could be used to
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update the controller [14]–[16]. Here, we focus on one specific
implementation of RL that utilizes two networks: a controller
network (also called a policy controller), and a surrogate model,
an additional neural network – a critic network – to update
the parameters of the controller.

A popular approach relies on the idea inspired by biology
that aims at creating rhythmic patterns to control the motion
of the robots. These approaches use different controller types
and learning algorithms for creating rhythmic patterns. Early
approaches used Control Tables [17], [18], where each column
of a table contains a set of actions for a module in the
configuration, and Simple Sinusoidal, in which a specific
sinusoidal function is utilized for each motor providing an
easy way to parameterize a control pattern [19]–[21]. These
methods were followed by a controller architecture called
Cyclic Splines [22], [23] in which a spline is fitted through a
set of action points in time to define a periodic control sequence
(i.e. control policy). Another successful (bio-inspired) controller
called Central Pattern Generators (CPGs) [24] was based on
the spinal cord of vertebrates and can produce stable and well-
performing gaits on both non-modular robots [25], [26] and
modular robots [26]–[28]. CPGs are biological neural circuits
that produce rhythmic output in the absence of rhythmic input
[29]. In this work, we use CPGs to parameterize a controller
and create biologically plausible motion patterns.

B. Controller Learning Algorithms

The problem of controller learning in robotics could be
phrased as the black-box optimization problem [30], [31] since
we need to either run a simulation or a physical robot to obtain
a value of the objective function (or the fitness function). There
is a vast amount of literature on learning algorithms on only
one type of controller [4], [32]–[34], naming only a few.

In [33], a comparison of three learning algorithms in mod-
ular robots is performed where NIP-Evolutionary Strategies,
Bayesian Optimization and Reversible Differential Evolution
(RevDE) [35] are tested. The outcome of this study indicates
that the shape of the fitness landscape in evolutionary strategies
hints at a possible bias for morphologies with many joints.
This could be an unwanted property for the implementation of
lifetime learning because an algorithm should work consistently
on different kinds of morphologies. Bayesian Optimization is
good at sample efficiency, however, it requires much more time
compared to the other two methods due to the higher time
complexity (cubic complexity). The best-performing algorithm
in this comparison was RevDE which scales well in terms of
complexity and generalizes well across various morphologies.
Therefore, we use RevDE in this paper. Moreover, we apply
Proximal Policy Optimization (PPO) in the context of RL. PPO
is a family of model-free RL learning algorithms that search
the space of policies rather than assigning values to state-action
pairs [36]. It was used in recent research [37] and performs
well across various morphologies.

III. METHODOLOGY

A. Robot Controllers

In this research, our task is gait learning, therefore the
controllers we use are open-loop controllers without steering.
The choice of a robot controller is a crucial design decision and
determines the resulting search space and, as a consequence,
the behaviour of a robot. Different types of controllers may
require different inputs, e.g. DRL-Policy controller and ANN
controller need observations from the environment as input,
however, CPG does not reply on observation in an open-loop
controller. Moreover, the number of parameters to be optimized
in each type of controller can be different. Last but not least,
the outputs differ too. CPG and ANN controllers output actions
to the hinges directly while the DRL-Policy controller output
the action distribution.

1) CPG controller: Each robot hinge i is associated with
a CPG that is defined by three neurons: a xi-neuron, a yi-
neuron, and an outi-neuron, which are recursively connected
to produce oscillatory behaviour.

The CPG network structure we used has two layers:

1) Internal connection: The change of the xi and yi neurons’
states with respect to time is calculated by multiplying
the activation value of the opposite neuron with a weight.
To reduce the search space, we define wxiyi

to be −wyixi

and call their absolute value wi and set wxioi =1. The
resulting activations of neurons x and y are periodic and
bounded. The initial states of all x and y neurons are set
to

√
2
2 because this leads to a sine wave with amplitude

1, which matches the limited rotating angle of the joints.
2) External connection: CPG connections between neigh-

bouring hinges. Two hinges are said to be neighbours if
their tree-based distance (how many edges between one
node and the other) is less than or equal to two.
x neurons depend on neighbouring x neurons in the
same way as they depend on their y partner. Let i be
the number of the hinge, Ni the set of indices of hinges
neighbouring hinge i, and wij the weight between xi and
xj . Again, wji is set to be −wij . The extended system
of differential equations is then:

ẋi = wiyi +
∑
j∈Ni

wxjxi
xj

ẏi = wixi

(1)

Because of this addition, x neurons are no longer bounded
between [−1, 1]. To achieve this binding, we use a variant
of the sigmoid function, the hyperbolic tangent function
(tanh), as the activation function of outi-neurons.

The total number of the weights parameters per robot we
have to optimise for the CPG network is the sum of weights
of these two connections: CPG_Nparam= Nhinges + Ni Take the
spider for example, it has 8 CPGs (hinges) and 10 pairs of
neighbouring connections between CPGs, therefore the total
number of the weights parameters is 18.



2) ANN controller: In an ANN robot controller, the ANN
internally connects an input layer of neurons to an output
layer that triggers the actuators, possibly via a layer of hidden
neurons. The output of a previous layer is multiplied by
corresponding weights before being summed with a bias term
and thus serves as input for the next layer. Here, the main
components of the ANN (a.k.a. Actor network) are:

1) Single Observation Encoders. A sub-network for en-
coding a single type of observation. In our research,
we use two types of observations: state of each hinge
(activation of the hinge between -1 and 1 which is its
motion range) and the orientation of the robot (based
on the core modular of the robot). The input of the
coordinates observation network is N hinges ·3 dimensions
and the input of the orientation observation network
which is 4 dimensions. The output of both networks is
a 32-dimensional vector through a linear layer followed
by a tanh activation function.

2) Observation Encoder A network that concatenates the
encoded observations. It receives inputs from the two
Single Observation Encoders and passes the encoded
observations which are [32+32=64] dimensional through
a linear layer followed by a tanh activation function to
produce the final output of a 32-dimensional vector.

3) Actor Takes the concatenated encoded observations as
input and outputs the action to be taken by the robot.
The dimension of the action is based on the number of
the robot’s hinges.

The total number of parameters per robot to be optimized is
equal to the sum of the parameters of the Single Observation
Encoder, Observation Encoder, and Actor: ANN_N param =
32 · (N hinges · 3 + 4 + 1) + 32 · (64 + 1) +N hinges · (32 + 1).

3) DRL-Policy controller: The Deep Reinforcement Learn-
ing (DRL) paradigm provides a way to learn efficient representa-
tions of the environment from high-dimensional sensory inputs,
and use these representations to interact with the environment
in a meaningful way. At each time-step, the robot senses the
world by receiving observations ot provided by the simulator,
then it takes an action at, and is given a reward rt. A policy
πθ(at | ot) models the conditional distribution over action at
∈ A given an observation ot ∈ O(st). The goal is to find a
policy which maximizes the expected cumulative reward R
under a discount factor γ ∈ (0, 1).

Policy controller Policy πθ, as the robot’s behaviour
function, tells us which action to take in state s. In our
research, the implementation of the policy controller has an
Actor network, a Critic network, and an ActorCritic network
that merges the two.

1) Actor network: a deep neuron network that outputs a
Gaussian distribution over the possible actions given an
observation. Similar to the ANN controller, observations
are encoded into a 32-dimensional vector, but instead
of producing actions directly, it produces the action
probability using two hidden layers (mean_layer and
std_layer).

2) Critic network: a deep neuron network which outputs a
single scalar value that approximates the expected return
of the current state of the input observation.

3) ActorCritic network: the primary component that com-
bines the Actor and Critic networks and allows for
sampling actions or computing their probabilities and the
value of an observation. It can either output the action
distribution, the state-value function or both, along with
the log-probability of the actions taken and the entropy
of the action distribution.

The robot chooses its action via the policy πθ where θ are
the parameters of these three NNs which will be optimized by
a DRL algorithm called Proximal Policy Optimization (PPO).

The total number of parameters per robot we have to optimize
for ActorCritic Network is equal to the sum of the parameters
of the Actor, Critic, and ObservationEncoder sub-modules:
DRL_N param = (N hinges · (32 + 1) + 2 · N hinges · (N hinges +
1)) + (1 · 32 + 1) + (32 · (N hinges · 3 + 4+ 1) + 32 · (64 + 1)).

B. Learning Methods

The problem of learning a robot controller is stated as a
maximization problem of a function (reward or fitness) that is
non-differentiable and could be given only after running a real-
world experiment or a simulation. Since we cannot calculate
the gradients concerning the controller weights, we must apply
other learning methods that either utilize approximate gradients
(e.g., through surrogate models) or derivative-free methods.
In the following paragraphs, we present details of a specific
derivative method (RevDE) and an instance of RL (PPO).

1) RevDE: In a recent study on modular robots [33], it was
demonstrated that Reversible Differential Evolution (RevDE)
[5], an altered version of Differential Evolution, performs and
generalizes well across various morphologies. This method
works as follows [35]:

1) Initialize a population with µ samples (n-dimensional
vectors), Pµ.

2) Evaluate all µ samples.
3) Apply the reversible differential mutation operator and

the uniform crossover operator.
The reversible differential mutation operator: Three new
candidates are generated by randomly picking a triplet
from the population, (wi,wj ,wk) ∈ Pµ, then all three
individuals are perturbed by adding a scaled difference
in the following manner:

v1 = wi + F · (wj −wk)

v2 = wj + F · (wk − v1)

v3 = wk + F · (v1 − v2)

(2)

where F ∈ R+ is the scaling factor. New candidates y1
and y2 are used to calculate perturbations using points
outside the population. This approach does not follow
the typical construction of an EA where only evaluated
candidates are mutated.
The uniform crossover operator: Following the origi-
nal DE method [38], we first sample a binary mask



m ∈ {0, 1}D according to the Bernoulli distribution
with probability CR shared across D dimensions, and
calculate the final candidate according to the following
formula:

u = m⊙wn + (1−m)⊙wn. (3)

Following general recommendations in literature [39]
to obtain stable exploration behaviour, the crossover
probability CR is fixed to a value of 0.9 and the scaling
factor F is fixed to a value of 0.5.

4) Perform a selection over the population based on the
fitness value and select µ samples.

5) Repeat from step (2) until the maximum number of
iterations is reached.

As explained above, we apply RevDE here as a learning
method for our robot zoo. In particular, it will be used to
optimize the weights of the CPGs and the parameters of ANN
controllers of our modular robots for the task.

2) PPO: We use the Proximal Policy Optimization (PPO)
[6] algorithm to optimize a policy. It improves training stability
by using a clipped surrogate objective enforcing a divergence
constraint on the size of the policy update at each iteration
so that the parameter updates will not change the policy too
much per step. Let us denote the probability ratio between old
and new policies as follows:

r(θ) =
πθ(at|ot)
πθold(at|ot)

(4)

Then, the objective function of PPO (on policy) is the
following:

LCLIP (θ) = Es,a[min{rt(θ)Â(s, a),

clip(rt(θ), 1− ϵ, 1 + ϵ)Â(s, a)}] (5)

where Â is an estimate of the advantage function. PPO
imposes its constraint by enforcing a small interval around 1,
[1 − ϵ, 1 + ϵ] to be exact, where ϵ is a hyperparameter. The
function clip(r(θ), 1− ϵ, 1 + ϵ) clips the ratio to be no more
than 1 + ϵ and no less than 1− ϵ. The objective function of
PPO takes the minimum of the original value and the clipped
version, and thus we lose the motivation for increasing policy
updates to extremes for better rewards. We use Generalized
Advantage Estimation(GAE) [40] to estimate the advantage
function Â. We adopt an open-source implementation of PPO
[41] for our research.

C. Frameworks: control architecture + learning method

We consider three combinations (frameworks) of control
architectures and learning methods. The set-up of these three
frameworks is shown in Figure 1.

First, we use CPG-based controllers trained by a derivative-
free method RevDE (see Figure 1-a). Second, we consider
an MLP-based ANN controller trained by the same learner
RevDE (see Figure 1-b). Lastly, we use a DRL-policy based
controller trained by PPO (see Figure 1-c).

CPGs are not combined with PPO because our CPGs do not
receive inputs (states). ANN and DRL are somewhat equivalent
because they both are ANN-based controllers, however, DRL
has one extra Critic NN therefore more parameters to be
optimized. The outputs of the actor network in these two
controllers are different too.

(a)

(b)

(c)
Fig. 1: Schematic representations of three learning controller
frameworks. The blue boxes show the controllers and the
yellow boxes show the learners. In 1-(a), we show a spider
as an example of robot morphology. The topology of the
morphology determines the topology of the controller. The
learner RevDE optimizes the weights of the CPG controller.
In 1-(b), the learner RevDE optimizes the parameters of the
ANN controller. 1-(c) is a DRL framework using PPO as the
learning algorithm to change the parameters of two deep NNs
to improve the policy controller for the tasks.



D. Test suite of robot morphologies

Given a set of robot modules and ways to attach them to
functional robots, the number of possible configurations (thus,
the number of possible robot morphologies) is, in general,
infinite. For practically feasible empirical research, we need a
limited set of robots to serve as test cases. In this paper, we
use a test suite of twenty robots made of two parts: a set of
viable and diverse robots produced by an evolutionary process,
and a set of hand-picked robots [33]. Regarding the first part,
the key is to apply task-based fitness (viability) together with
novelty search (diversity). The second part of the test suite can
be filled by robots added manually by the experimenter. This
option is entirely optional, it is to accommodate subjective
preferences and interest in particular robot designs. The test
suite we use here was generated by evolving a population of 500
robots for speed and novelty w.r.t. the k-nearest neighbours
in the morphological space [42]. After termination, 15 out
of the 500 robots were selected by maximizing the pairwise
Euclidean distance in the morphology space. The other five
robots (Gecko, Snake, Spider, BabyA, BabyB) were added
manually. The robots are shown as inserts in Figure 5.

IV. EXPERIMENTAL SETUP

1) Simulator: We use a Mujoco simulator-based wrapper
called Revolve2 to run the experiments. To have a fair
comparison, we set the number of evaluations to be the same for
each learner: 1000 learning evaluations. This number is based
on the evaluations from RevDE for running 10 initial samples
with 34 iterations. The first iteration contains 10 samples, and
from the second iteration onwards each iteration creates 30
new candidates, resulting in a total of 10+30 ·(34−1) = 1000
evaluations. Then with the same evaluation number 1000, we
set PPO with 10 agents per iteration and 100 episodes. For
the task of gait learning, we define the robot’s fitness as its
average speed in 30s, i.e. absolute distance in centimetres per
second (cm/s).

2) Setups and Code: The code for carrying out the exper-
iments is available online: https://shorturl.at/gozS3. A video
showing examples of robots from the experiments can be found
in https://shorturl.at/gGHR3. Table I shows the set-up of the
experiments. The specific values of the hyperparameters are
presented in Table II.

TABLE I: Experiments

Experiment Control Architecture Learner

CPG+RevDE CPG RevDE
ANN+RevDE ANN RevDE
DRL+PPO DRL-Policy PPO

V. RESULTS

To compare the different frameworks, we consider three key
performance indicators: efficiency, efficacy, and robustness to
different morphologies.

TABLE II: Main experiment hyper parameters

CPG+RevDE Value Description

µ 10 Population size
N 30 New candidates per iteration
λ 10 Top-sample size
F 0.5 Scaling factor
CR 0.9 Crossover probability
Iterations 34 Number of iterations in RevDE

ANN+RevDE Value Description

µ 30 Population size
N 30 New candidates per iteration
λ 10 Top-samples size
F 0.5 Scaling factor
CR 0.9 Crossover probability
Iterations 34 Number of iterations in RevDE

DRL+PPO Value Description

γ 0.2 Discount gamma
ϵ 0.2 PPO clipping parameter epsilon
Entropy coefficient 0.01 Entropy coefficient
Value loss coefficient 0.5 Value loss coefficient
Episode 100 A sequence of states, actions and

rewards
Agents 10 Number of agents per episode
Steps 150 Number of steps before training

1) Efficacy: The quality of a robot (fitness) is defined by the
speed of the robot from the starting position to the stopping
position within the simulation time. The efficacy of a method
is defined by the mean maximum fitness, averaged over the 20
independent repetitions: First, the maximum fitness achieved at
the end of the learning process (1000 evaluations) is calculated
within each independent repetition. Second, these maximum
values are averaged over the 20 independent repetitions.

In Figure 2, the dots indicate the maximum fitness in each
evaluation (averaged over 20 runs). We can see that with the
same learner (RevDE), the ANN controller outperforms the
CPG controller significantly. ANN+RevDE achieves a two
times higher fitness value compared to CPG+RevDE at the end
of the 1000 evaluations. This could be due to CPGs producing
more connected actions with fewer controller parameters,
while ANNs have much more parameters to optimize and
output the action probability instead of the action itself which
produces actions that are very different even in subsequent time
steps, eventually helping the exploration. The mean maximum
fitnesses of ANN+RevDE and DRL+PPO have no significant
difference initially but after evaluation 200, ANN+RevDE
yields much higher fitness values than DRL+PPO.

Second, another way to measure the quality of the solution
is by giving the same computational budget (number of evalu-
ations) and measuring which method finds the best solution
(highest fitness) faster. In Figure 3, it is more significantly
different among these three frameworks at evaluations 600 and
1000 than 200. Given the evaluations of 200, DRL+PPO has
the highest mean fitness value. While at the evaluations of 600
and 1000, ANN+RevDE surpasses DRL+PPO. With regards
to CPG+PPO, the fitness increasing speed is slower than the

https://shorturl.at/gozS3
https://shorturl.at/gGHR3


Fig. 2: Mean fitness over 1000 evaluations across morphologies
(averaged over 20 runs) for 3 experiments. The dots indicate
the mean maximum fitness in each evaluation (averaged over
20 runs). The shaded areas show the standard deviation.

other two methods.

200 600

Fig. 3: Efficacy boxplot. Validation of three frameworks at
three evaluations. Red dots show mean values.

2) Efficiency: Efficiency indicates how much effort is needed
to reach a given quality threshold (the fitness level): it is
measured as the average number of evaluations to ‘find a
solution’. Figure 2 displays the usual quality-versus-effort plots,
specifically the mean fitness over the number of evaluations.
Looking at the solid curves reveals that ANN+RevDE is more
efficient than the other methods. As marked by the red dotted
lines, it takes only 370 evaluations for ANN+RevDE (purple
curve) to reach the level of fitness that the CPG+RevDE method

(a)

(b)
Fig. 4: (a) Mean maximum fitness per morphology for each
framework. For each robot morphology, there’re columns of
controller parameters numbers, namely Np_ANN in purple,
Np_DRL in blue and Np_CPG in green and the best result
which is indicated with boldface while underline indicates sig-
nificantly better performance compared to the other frameworks.
The last row shows the aggregated result for each framework
over all morphologies. (b) the correlation between the number
of controller parameters and the mean maximum fitness per
framework. The red lines are the linear regression lines.

(green curve) achieves at the end of the learning period, 1000
evaluations. Similarly, the black dotted lines mark the number
of evaluations at 730 when ANN+RevDE achieved the levels
of fitness that DRL+PPO reached after 1000 evaluations.

3) Robustness: The robustness of a framework is defined by
the variance in different robot morphologies. We can measure
this by the variance of a framework’s mean maximum fitness
over the robot zoo and the mean fitness per robot over the
number of evaluations.

Figure 5 shows the mean and maximum fitness of three



frameworks over the number of evaluations per robot from
Robot Zoo. The bands indicate the 95% confidence intervals
(±1.96× SE, Standard Error). CPG+RevDE has a narrower
band than the other two frameworks which indicates lower
uncertainty and is more stable. In Figure 4-a, we present a
numerical summary of the results of the mean maximum fitness
per robot per framework. It shows ANN+RevDE outperform
CPG+RevDE or DRL+PPO on 16 robots significantly: a, b, c,
d, e, f, g, j, k, l, m, n, q, r, s, t. DRL+PPO wins on robot i, o,
p significantly and on robot h non-significantly.

Figure 4-b exhibits the correlation between the number
of controller parameters and mean maximum fitness per
framework. The dots in each plot represent 20 robot zoo. The
results indicate that the deep neural network-based frameworks
(ANN+RevDE and DRL+PPO) show a negative linear rela-
tionship between the number of controller parameters and the
fitness value while the CPG-based framework shows a positive
linear relationship. Among the frameworks, it shows that the
significant difference in the number of controller parameters
between the Deep NN-based and the CPG-based controllers
does reflect on their fitnesses (different y-scales).

VI. CONCLUSIONS AND FUTURE WORK

This work investigated different combinations of control
architectures with learning algorithms applied to a diverse set
of robot morphologies.

Regarding efficacy and efficiency, the ANN+RevDE frame-
work achieved levels of quality that the other two frameworks
managed to achieve only at later stages of the learning period.
As for robustness, all three frameworks successfully optimized
all robots. However, ANN+RevDE outperformed DRL+PPO
or CPG+RevDE significantly on 16 robots, while DRL+PPO
outperformed on only 3 robots. Therefore ANN+RevDE is
the best-performing learning controller framework in all three
measures.

Interestingly, with the same learning algorithm (RevDE), the
CPG controller performs more steadily with a lower standard
deviation while the ANN controller takes longer to explore at
the beginning, then it increases steeply with a much higher
standard deviation (Figure 2 and 3). This can be due to the
significant difference in the number of parameters in different
controllers, but future research is needed to investigate this
phenomenon.
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