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Abstract—Increasing the model capacity is a known approach
to enhance the adversarial robustness of deep learning networks.
On the other hand, various model compression techniques,
including pruning and quantization, can reduce the size of the
network while preserving its accuracy. Several recent studies
have addressed the relationship between model compression and
adversarial robustness, while some experiments have reported
contradictory results. This work summarizes available evidence
and discusses possible explanations for the observed effects.

Index Terms—model compression, adversarial robustness

I. INTRODUCTION AND RELATED WORK

Goodfellow et al. [1] and Szegedy et al. [2] first brought

up the risk of adversarial attacks, small perturbations (often

imperceptible by humans) that are carefully crafted and added

to the input of state-of-the-art (SOTA) deep neural networks

(DNNs). Without specific DNN training or mitigation mea-

sures, these attacks lead to high-confidence wrong outputs of

SOTA DNNs and convolutional neural networks (CNNs). This

inherent vulnerability of DNNs poses an especially high risk

when applying them in autonomous driving, facial recognition,

or medical domains.

Adversarial defenses attempt to robustify neural networks

artificially, but robustly solving a task fundamentally increases

its difficulty. However, simply scaling model sizes is not

always an option and is quickly restricted by technical and

financial factors. Model compression approaches such as quan-

tization and pruning can significantly reduce model size while

preserving comparable performance levels.

The impact of model compression on adversarial robustness

has been a focus of several recent studies. However, to the best

of our knowledge, no analysis of the existing publications

to summarize the state of the art has been performed so

far. Our work aims at closing this research gap. We have

reviewed existing works that either explored the effect of

model compression methods on the adversarial vulnerability

of the networks or tried to combine both goals in a single

training algorithm. We group the existing evidence from the

experiments and make conclusions based on these.

II. RELATED WORK

A. Adversarial Training

Adversarial training (AT) remains among the most success-

ful defenses against adversarial examples [3]–[7]. Salman et

al. showed that adversarially trained ImageNet [8]-classifiers

show better transferability [9], which is consistent with the

hypothesis that adversarially trained robust networks provide

better feature representations. Gong et al. showed that AT can

improve image recognition models by preventing overfitting

[10]. Andriushchenko et al. [11] stated that performing AT

efficiently is important because it is the crucial algorithm

for robust deep learning. The idea is intuitive: DNNs are

trained by handing them data and correct labels to learn their

decision boundaries. In AT, adversarial examples and their

correct labels are precautiously augmented into the training

process to train a more robust model. Madry et al. proposed

the prime baseline for AT with a Projected Gradient Descent

(PGD) attack [12], which was later improved by [13] using

early-stopping.

B. Model Compression

DNN and CNN architectures have become increasingly deep

and complex and can require millions of parameters, which

leads to slow inference. Many techniques have been developed

to speed up inference, including quantization and pruning.

Pruning aims at selecting insignificant parameters that can

be removed to make the model smaller while maintaining

high prediction accuracy. The simplest approach, magnitude-

based pruning, removes weights below a specified threshold

value. Instead of pruning individual weights, it is also possible

to prune at a higher level of granularity by removing entire

feature maps or filters in a CNN. Filters can be removed using

data-independent pruning methods based on properties such

as their L1 norm [14]. Correct pruning can help to speed up

the inference without impacting accuracy [15]. Quantization

is another method that reduces the precision of the model

parameters, e.g., from 32-bit floating point to 8-bit integers.

It can be performed on scalars or vectors as demonstrated in

[16], where the reconstruction error of the activations rather

than the weights is minimized.

http://arxiv.org/abs/2311.15782v1


III. RELATIONSHIP BETWEEN QUANTIZATION AND

ROBUSTNESS

Quantization has so far been a focus of only a few works

exploring adversarial robustness (see Table I). Our search has

revealed a total of four papers [17]–[20], all of which consider

both white-box and black-box attacks, while PGD [12] is a

method used in all works.

One of the first works regarding quantization and adversarial

robustness is from Galloway et al. [17]. The authors focused

on binarized neural networks where both weights and activa-

tions in the hidden layers are quantized to ±1. Randomized

quantization was used. They compared full-precision networks

to their respective binarized network. It was observed that

AT is a balancing act with binary models, whereas scaled

binary models can benefit from AT. Overall, they concluded

that binarized networks can slightly improve the robustness

against certain attacks. In terms of efficiency, they observed an

advantage of the binarized networks over their full-precision

equivalents.

In [18], Rakin et al. proposed a novel approach where

activations are quantized to increase the adversarial robustness

of DNNs. The approach integrates the quantized activation

functions into AT. They proposed a fixed as well as a dynamic

activation quantization method. For experiments, adversari-

ally trained baseline networks were used. Then, the authors

trained LeNet [21] and ResNet-18 [22] with the fixed and

dynamic quantization techniques. The models were quantized

with different quantization levels (1-, 2- and 3-bit activation).

The robustness of the fixed and dynamic quantized networks

against various attacks (PGD [12], FGSM [1], Carlini and

Wagner (C&W) attack [23]) was compared with the robustness

of the baseline networks. The authors concluded that fixed and

dynamic quantization can increase the robustness.

A further work by Wijayanto et al. [19] proposed an

adversarial-aware compression framework for DNNs. This

framework combines pruning, quantization, and encoding. In

their experiments, the approach is compared to pruned and

quantized networks. It was observed that quantization can

improve robustness.

Another novel quantization method is proposed by Lin et

al. [20], where an empirical study regarding quantization and

robustness was conducted. The authors quantized the activa-

tions and compared the naive quantized models to their re-

spective full-precision models. They observed that the conven-

tional quantization method is not robust and that input image

quantization applied to hidden layers worsens the robustness.

The proposed defensive quantization approach achieved higher

robustness than their full-precision counterparts and improved

the accuracy without adversarial attack.

Gorsline et al. investigated the effect of weight quantization

on robustness in [35]. They experimented on MNIST [21] and

a two-spiral classification problem.They concluded with the

observation that quantization does not affect robustness if the

adversarial attack exceeds a critical strength.

Finally, Varghese et al. [36] introduced a novel hybrid

compression approach that combines pruning and quantiza-

tion and studied the relationships between robustness and

compression. They investigated the more complex task of

semantic segmentation for automated driving. In contrast to

the other works, the authors investigated corruption robust-

ness, not adversarial robustness. By corruption, they refer to

augmentations caused by real-world events (e.g., noise, blur,

or weather conditions). They observed improved robustness

of the compressed DeepLabv3+ [37] network compared to the

reference network.

In summary, naive quantization without AT has demon-

strated both negative [20] and positive [19] impact on ad-

versarial robustness. If quantization was combined with AT, a

positive effect was observed in several works [17], [19], [20].

Moreover, AT was shown to improve quantization itself [20].

IV. RELATIONSHIP BETWEEN PRUNING AND ROBUSTNESS

An overview of the works that focus on pruning and

robustness is given in Table II. We divide the considered

approaches into three groups: (1) works that examine the

intrinsic relationships between pruning and robustness, (2)

works proposing novel approaches via a combination of static

pruning with robust training, and (3) the dynamic pruning

approach, incorporating adversarial robustness as a training

objective.

A. Effects of Pruning on Robustness

The first group of works aims at studying the general

effects of pruning on adversarial robustness. In the theoretical

and empirical analyses, particular attention was paid to the

question of whether pruning offers inherent protection against

adversarial attacks.

Wang et al. [40] conducted the first analysis regarding

the adversarial robustness of pruned deep neural networks.

The work was not published because the experimental ev-

idence was not grounded enough. The effects of pruning

on robustness and the impact of AT on pruned networks

were investigated. Naturally trained models were compared

to their original networks. The accuracy of a pruned model

was similar to the accuracy of an original network. The

robustness of a pruned network under FGSM and Papernot’s

attacks was worse than the robustness of an original network.

Neither the pruned nor the original model could withstand the

PGD attack. The authors suspected, that pruning reduces the

network capacity, which in turn reduces its robustness. Then,

the authors performed AT with FGSM and PGD along with

the network pruning procedure and compared these models to

their respective adversarially trained original networks. They

observed that highly pruned networks can become consider-

ably robust, while weight pruning allows more compression

than filter pruning, and PGD leads to more robust models than

FGSM.

In additional experiments with a Wide ResNet [24] on

CIFAR-10 [25], the authors observed an interesting result.

The PGD-trained network that was moderately pruned (less

than 50% of the parameters) was slightly more accurate

and more robust than the respective original network. The



Author Year Ref Architectures Dataset Baseline Quantization Attack Attack Method AT

Galloway et al. 2017 [17]
Small CNN,

Wide ResNet-28-4 [24]
MNIST [21]

CIFAR-10 [25]
Full-precision

networks
Binarization

White-box
Black-Box

FGSM [1], PGD [12], C&W L2 [23],
Papernot’s attack [26]

×

Rakin et al. 2018 [18]
LeNet [21],

ResNet-18 [22]
MNIST [21]

CIFAR-10 [25]

Full-precision
networks with AT

(PGD [12])

Quantization of
activation functions

White-box,
Black-box

FGSM [1], PGD [12], C&W L2 [23]
Zeroth Order Optimization [27],

Substitute model
X

Wijayanto et al. 2019 [19]

Inception-v3
AlexNet

MobileNet-v1 [28]
ImageNet [8]

Models compressed via
Deep compression [15]

and incremental network
quantization (INQ) [29],
compact and int8 models

Dynamic network
surgery [30] with INQ

and DEFLATE
compression during AT

White-box
Gray-Box

FGSM [1], BIM [31],
Transfer attacks

X

Lin et al. 2019 [20]

VGG-16 [32],
ResNet-28-10 [24],

Wide ResNet-16-4 [24]

CIFAR-10 [25]
SVHN [33]

Full-precision models
with AT and feature

squeezing [34]

Defensive quantization
with Lipschitz
regularization

White-box
FGSM, R-FGSM [1]
BIM [31], PGD [12]

X

Gorsline et al. 2019 [35]
MLP with 100
hidden neurons

MNIST [21]
2-spiral problem

Full-precision model Weight quantization White-box FGSM [1] ×

Varghese et al. 2019 [36] DeepLabv3+ [37]
Cityscapes [38] ,

SynPeDS [39]
Non-pruned,

full-precisions models

Magnitude-based pruning,
quantization with
uniform rounding

N/A Image Corruptions ×

TABLE I
OVERVIEW OF THE PUBLICATIONS ANALYZING THE RELATIONSHIP BETWEEN QUANTIZATION AND ADVERSARIAL ROBUSTNESS

Author Year Ref Architectures Dataset Baseline Pruning Strategy Attack Attack Method AT

Wang et al. 2018 [40]
CNN,

Wide Resnet-28-4 [24]
MNIST [21]

CIFAR-10 [25]
Non-pruned model

Magnitude-based
weight and filter pruning

White-box
Black-box

FGSM [1], PGD [12],
Papernot’s attack [26]

X ×

Guo et al. 2018 [41]

LeNet-300-100 [21],
LeNet-5 [21]

ResNet-32 [22]
VGG-like ResNet [42]

MNIST [21]
CIFAR-10 [25]

Dense models Progressive pruning White-box
FGSM, rFGSM [1]

DeepFool [43]
C&W L2 [23]

×

Jordao et al. 2021 [44]

ResNet56 [22]
MobileNetV2 [45],

VGG16 [32]

ImageNet-C [8]
CIFAR10 [25]

Other defense mechanisms
(style transfer, MixUp [46]
Cutout [47], CutMix [48]

Shape-Texture)

Pruning with different
criteria (ℓ1-norm,

expectedABS [49], HRank [50],
KL-divergence [51],

partial least squares [52] )

White-box

FGSM [1]
semantic-preserving
transformations [53],

simple occlusions,
transfer attacks

×

Liao et al. 2022 [54]

VGG16 [32],
ResNet18 [22],

DenseNet-BC [55]
DenseNet121 [55]

CIFAR-10 [25]
CIFAR-100 [25]

Tiny-ImageNet [8]

Non-pruned models with AT
with SOTA clean and
adversarial accuracy

Global unstructured pruning,
local unstructured pruning,

filter pruning,
network slimming

White-box L∞-PGD [12] X

Gui et al. 2019 [56]

LeNet [21],
ResNet34 [22],

Wide ResNet [24]

MNIST [21]
CIFAR-10 [25]
CIFAR-100 [25]

SVHN [33]

Compressed models,
with and without AT,

models with AT
Magnitude-based White-box

FGSM [1], PGD [12],
WRM [57]

X ×

Ye et al. 2019 [58]

LeNet [21],
VGG-16 [32],

ResNet-18 [22]

MNIST [21]
CIFAR-10 [25]

Non-pruned models
with and without AT

ADMM [59] with filter,
column, irregular P

White-box
PGD [12]

C&W L∞ [23]
Transfer attacks

X ×

Sehwag et al. 2020 [60]

VGG-16 [32],
Wide-ResNet-28-4 [24],
CNN-small, CNN-large

CIFAR-10 [25]
SVHN [33]

ImageNet [8]

Models with AT,
ADMM [59]-pruned models

HYDRA White-box PGD [12] X

Hu et al. 2020 [61]

SmallCNN
ResNet-38 [22]

MobileNet-V2 [45]

MNIST [21]
CIFAR-10 [25]

Non-pruned models with AT,
SSS-pruned [62] models

with AT, ATMC [56]

Dynamic pruning
with RDI-Nets, SSS [62]

White-box
PGD [12]
FGSM [1]
WRM [57]

X

TABLE II
OVERVIEW OF THE PUBLICATIONS ANALYZING THE RELATIONSHIP BETWEEN PRUNING AND ADVERSARIAL ROBUSTNESS

robustness of the highly pruned network (80% to 94% of

the weights) was higher than the original, but the accuracy

on natural images dropped simultaneously. With an increasing

compression rate, the robustness of the model drops earlier

than the classification accuracy. The authors observed that with

the training procedures applied, a model cannot be both highly

robust and pruned simultaneously.

Another early work that studied the intrinsic relationships

between the sparsity achieved through weight and activation

pruning and the adversarial robustness of DNNs is by Guo

et al. [41]. Their analysis is one of the few works that

examine the effects of pure pruning without AT on adversarial

robustness. The authors trained different architectures and

evaluated their robustness under various l2 and l∞ white-box

attacks. For the evaluation of the robustness of the models, the

authors suggested two metrics that describe the ability to resist

l2 and l∞ attacks, respectively. First, they pruned the weights

of the dense reference networks and compared the robustness

of the pruned networks to the original ones. Sparse DNNs are

prone to be more robust against l∞ (FGSM and rFGSM [1])

and l2 (DeepFool [43], C&W L2 [23]) attacks until the

sparsity reaches some thresholds, above which the capacity

of the pruned models degrades. This observation is consistent

with the observations from [40] described above. The authors

verified their results additionally with the attack-agnostic

CLEVER [63] scores. They observed positive correlations

between activation sparsity in a certain range and robustness.

The authors suggested taking care and avoiding sparsity rates

that are too high and concluded that sparse nonlinear DNNs

can be more robust than their dense counterparts if the sparsity

is within a certain range.

Similar to the work by Guo et al. [41], Jordao and

Pedrini [44] studied the intrinsic effect of pruning on the

adversarial robustness of deep convolutional networks without

AT. However, unlike [40], [41], the authors did not examine the

trade-off between robustness, accuracy, and compression but

the relationship between generalization and robustness. They

observed that pruning preserves generalization. The authors

pruned filters and layers from several reference architectures

based on different pruning criteria. After pruning, they fine-



tuned the compressed networks with augmented data. First,

they compared the accuracy and robustness of the dense

reference networks to their pruned counterparts (filters, layers,

and both) under different attacks. Overall, they observed that

pruning improves robustness without sacrificing generaliza-

tion. Similar to [41], the authors did not use the PGD attack

in their experiments.

Furthermore, they could not observe a superior pruning

strategy with respect to all attacks. Then, they demonstrated

that removing single filters can improve the robustness without

adjusting the network parameters. They also observed that

fine-tuning leads to increased adversarial robustness than train-

ing from scratch. When comparing the pruned network to other

defense mechanisms, they observed that pruning obtained one

of the best average improvements. They suggested combining

pruning with other defense mechanisms to achieve more robust

and efficient networks. The authors concluded that pruning

filters or layers (or both) increase the adversarial robustness

of convolutional networks.

In summary, both negative [40], [56] and positive [41], [44]

effect of pruning on robustness were seen in the experiments,

although studies leading to the latter provided significantly

more empirical evidence. Both papers observing positive ef-

fects [41], [44] have used retraining – this confirms again that

omitted retraining strongly weakens robustness. On the other

hand, these works did not provide results for the PGD, making

comparing the pieces of evidence difficult.

B. Combined Compression-Robustness Methods

Various combined compression-robustness approaches were

proposed, with network pruning performed before, after, or

alternately with AT. Liao et al. [54] theoretically proved the

correlation between weight sparsity and adversarial robustness

and showed in experiments that weight sparsity improves

robustness with AT. They showed that pruning does not

affect the model robustness negatively in some adversarial

settings. Furthermore, they demonstrated, that the robustness

can be improved with AT after pruning. Overall, the proposed

novel AT method that includes pruning was shown to lead

to sparse networks with better performance than their dense

counterparts.

In [56] the authors stated, that they describe the first

framework that connects model compression with adversarial

robustness. They proposed their Adversarially Trained Model

Compression (ATMC) framework, which includes pruning,

quantization, and AT. ATMC was compared to adversarially

trained, pruned, adversarially trained, and pruned, as well as

adversarially trained, pruned, and adversarially retrained mod-

els. Their results support the existence of a trilateral trade-off

between robustness, accuracy, and compression. Analogously

to [40], [41], the authors concluded, that if robustness is taken

into account, model compression can maintain accuracy and

robustness, whereas naive model compression may decrease

adversarial robustness.

A similar approach is proposed by Ye et al [58]. The

authors proposed a framework of concurrent AT and weight

pruning. To compare weight pruning and training from scratch,

they adversarially trained models of different architectures

with various scaling factors. Then, the authors pruned the

filters of each network with the proposed framework. Each

reference network was pruned to the respective smaller scaling

factors. The authors summarized that pruned networks can

have high accuracy and robustness, which can be lost if

a network with a comparable size is adversarially trained

from scratch. Framework evaluation under different pruning

schemes and transfer attacks has demonstrated, that irregular

pruning performs the best and filter pruning performs the

worst. Interestingly, the pruned model turned out to be more

robust to transfer attacks than the respective dense network.

In [60], pruning is formulated as an empirical risk min-

imization problem, while the minimization problem can be

integrated with various robust training objectives like AT.

The authors demonstrated that pruning after training helps to

achieve state-of-the-art accuracy and robustness. The proposed

method (HYDRA) incorporates the AT approach by Carmon et

al. [64], although other robust training objectives are possible.

The authors observed improved compression, accuracy, and

robustness compared to the baseline networks and previous

work like the ADMM [59]-based approach by Ye et al. [58].

The authors advocated for formulating pruning as an opti-

mization problem that integrates the robust training objective.

They identified the performance gap between non-pruned and

pruned networks as an open challenge.

In summary, two works [58], [60] observed a significantly

higher robustness of pruned networks compared to compact

networks of comparable size. Furthermore, the authors con-

cluded that pruned networks can, after all, exhibit similar

robustness to their dense reference networks.

Furthermore, the results overall indicate that the effect

of pruning on robustness varies in magnitude depending on

whether we are comparing networks of the same capacity or

networks of different capacities. Retraining the pruned models

seems to be a crucial factor in that view. It was observed that

most networks show a higher robustness when retrained after

pruning, compared to the networks for which no retraining

was performed.

C. Dynamic Pruning and Robustness

Hu et al. [61] proposed the first dynamic approach to

improve network efficiency, accuracy, and robustness and

called it Robust Dynamic Inference Networks (RDI Nets).

These networks are based on the work of Kaya et al. [65].

RDI-nets stop inference in early layers. In their experiments,

the authors evaluated three adversarially (PGD) trained models

against their respective RDI nets using three white-box attack

algorithms, which were executed in three proposed attack

forms. Then the authors compared the RDI-nets to defended

sparse networks, i.e., networks that were compressed with

a state-of-the-art network pruning method Sparse Structure

Selection (SSS) [62] and then adversarially retrained (PGD).

Furthermore, they compared their RDI nets to the latest ATMC

algorithm [56]. The pruning + defense baseline has demon-



strated superior robustness compared to the respective dense

reference network. The authors concluded with the statement

that they achieved better accuracy, stronger robustness, and

computational savings of up to 30%. It should be noted,

however, that dynamic pruning does not reduce the model size,

but can only achieve efficiency gains in terms of the required

computing resources.

D. Connection to the Lottery Ticket Hypothesis

The lottery ticket hypothesis by Frankle et al. [66] states that

randomly initialized networks contain subnetworks (”the win-

ning tickets”). When trained in isolation, these subnetworks

can reach test accuracies comparable to the reference network

in a less or equal number of iterations. The initial weights

of these winning tickets make training particularly effective.

The only meaning of weight pruning is thus the effective

initialization of the final pruned model.

In contrast, Liu et al. [67] observed that the winning

ticket initialization does not bring improvement over random

initialization. They showed that training from scratch gave

comparable or better performance than SOTA pruning algo-

rithms, thus making the original network’s inherited weights

useless. The meaning of weight pruning is thus the pruned

architecture itself. They suggested that pruning can be a useful

architecture search paradigm, but the pruned network should

be trained with random initialized values.

A few works examined these hypotheses with respect to

adversarial robustness. In particular, Ye et al. [58] observed

that training from scratch cannot achieve robustness and accu-

racy simultaneously, even with inherited initialization, which

contradicts the lottery ticket hypothesis. In contrast, Liao et

al. [54] concluded that preferable adversarial robustness can

be achieved through the lottery ticket settings. They argue

that they search for the winning ticket by iterative global

unstructured pruning, while Ye et al. [58] used filter pruning.

Jordao et al. [44] showed that fine-tuning leads to better

robustness than the winning ticket.

Finally, Sehwag et al. [60] demonstrated the existence of

hidden sub-networks that are more robust than the original

network. They showed that highly robust sub-networks exist

even within non-robust networks.

V. CONCLUSION

In this work, we reviewed and compared the existing works

exploring the relationship between model compression meth-

ods (quantization and pruning) and adversarial robustness.

Throughout all experiments, it was shown that naive pruning

and quantization can reduce robustness. Furthermore, as long

as networks are compressed within certain limits, pruning

may preserve or even improve robustness, especially when

comparing compressed and compact models of the same size.

Moreover, the reviewed works showed that combining

model compression and robustness in AT is possible. However,

a trade-off exists between compression ratio, accuracy, and

robustness. It was observed relatively consistently that once

a critical compression ratio is exceeded, first the robustness

and then the accuracy decrease. Some authors explain that

robustness thus requires a greater capacity than accuracy.

Overall, many reviewed works agree that compression must

be performed carefully. Simple, straightforward compression

can also have negative effects on robustness; some authors,

therefore, also suggest that robustness should be taken into

account in the evaluation of new compression methods.
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