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Abstract—In order to improve the task execution capability
of home service robot, and to cope with the problem that
purely physical robot platforms cannot sense the environment
and make decisions online, a method for building digital twin
system for home service robot based on motion simulation is
proposed. A reliable mapping of the home service robot and
its working environment from physical space to digital space
is achieved in three dimensions: geometric, physical and func-
tional. In this system, a digital space-oriented URDF file parser
is designed and implemented for the automatic construction
of the robot geometric model. Next, the physical model is
constructed from the kinematic equations of the robot and an
improved particle swarm optimization algorithm is proposed
for the inverse kinematic solution. In addition, to adapt to the
home environment, functional attributes are used to describe
household objects, thus improving the semantic description of
the digital space for the real home environment. Finally, through
geometric model consistency verification, physical model validity
verification and virtual-reality consistency verification, it shows
that the digital twin system designed in this paper can construct
the robot geometric model accurately and completely, complete
the operation of household objects successfully, and the digital
twin system is effective and practical.

Index Terms—Service Robot, Digital Twin, Motion Simula-
tion, Particle Swarm Optimization Algorithm

I. INTRODUCTION

Home service robots, as an important medium to improve
the quality of human life, are able to replace humans to
complete domestic work. People not only demand that they
can perform simple tasks such as sweeping floors or escort-
ing, but also expect them to perform complex tasks such as
delivering objects or preparing meals. However, in the face of
increasingly complex domestic service tasks, relying solely
on physical robotic platforms, the execution of tasks is highly
unstable, and often unpredictable problems occur, which are
likely to cause irreversible damage to expensive physical
robots or the home environment, with a high degree of risk
and uncertainty. Therefore, it is very necessary to design
a digital twin system for home service robots to simulate
various situations that may occur in real environments, to
try to discover and solve problems that may occur when the
physical robot platform actually operates, and to guide the
physical robot to perform home service tasks reliably and
efficiently.
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dation of China under Grant 62273203, Grant U1813215, and in part by
the Special Fund for the Taishan Scholars Program of Shandong Province
(ts2015110005).

‡Guohui Tian is corresponding author.
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In this paper, we argue that the main things that a robot can
rely on to complete domestic service tasks are the movement
of its robotic arm and the movement of its chassis. Most
simulation platforms or physical engines already integrate
path planning internally to enable chassis movement, so this
paper focuses on how to simulate the real motion of the
robotic arm in a virtual environment and build the digital
twin system based on it.

Digital twin refers to the construction of a virtual mapping
of the physical entity in the whole life cycle of a product
or system, through data fusion, information interaction, and
virtual simulation. The two are synchronized and related to
achieve the integration of models, data and technology [1].
The digital twin was originally known as the digital mirror
space, which creates an accurately mapped digital space for
the physical space, to describe the operational state of the
physical space throughout its full life cycle [2], and was later
refined by NASA in 2012 [3].

In the following years, a part of the research focused
on the underlying theory and integrated modeling of the
digital twin [4]. The first generic framework for the digital
twin was modeled in terms of physical entities, virtual
models and connections [5]. For full life cycle monitoring
of complex objects, the five-dimensional model that adds
services and digital twin data to the three-dimensional model
was proposed [6]. Among the five-dimensional models, the
digital twin model is the prerequisite for realizing the digital
twin on the ground, so the construction principles of the
model and the construction theory are proposed [8]. For the
complex digital twin system, [7] proposed to model it by
decomposing it into several simple models and then fusion
them. In addition, targeted modeling methods are proposed
for different models in different fields [9] [10].

Driven by the development strategies of various countries
[11] [12], the ground application of digital twin technology
has become a hot spot for research. For example, digital twin
technology is applied in the fields of work shop manage-
ment [1] [13], power system [14], advanced nuclear energy
[15], and aerospace [16], to promote the improvement of
intelligence in various industries. In the field of robotics,
digital twin technology plays an equally large role [17]. To
improve the efficiency of design, construction and control of
human-robot collaboration, digital twin system for human-
robot collaboration and assembly work are constructed that
can be kept up to date by continuously mapping the physical
system throughout its full life cycle for rapid and continuous
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improvement [18]. Through virtual reality technology, [19]
proposes a digital twin-based programming method for indus-
trial robot demonstrations, which improves the human-robot
interaction of robot demonstrations. Reference [20] proposes
a digital twin-based approach for flexible robot work cell
development, which speeds up the overall commissioning or
reconfiguration process by improving the work cell in digital
space.

Digital twin is rapidly developing in the field of industrial
robots, but it is still not targeted for home service robots.
The home environment, unlike the industrial environment,
is unstructured, dynamic, and has an uncertain and large
number of manipulable objects, so the digital twin system
construction method for industrial robots cannot be trans-
ferred to home service robots directly. In order to cope with
the many characteristics of the home environment, this paper
proposes the digital twin system for home service robot
based on motion simulation. The system integrates multiple
dimensions of information, including geometric, physical and
functional. For the geometric model of the robot, a parser
for URDF [21] (Unified Robot Description Format) files is
designed in this paper to build the geometric model of the
robot in digital space automatically and quickly. For realizing
the rational motion of the robot arm in digital space, this
paper models the kinematics of the 7 Dof robot arm and
proposes an improved particle swarm optimization algorithm
to solve the inverse kinematics problem. In addition, to
meet the characteristics of the home environment, this paper
proposes to use functional attributes as the information source
to describe the semantic information of household objects.
Finally, the home environment is simulated in the laboratory
to build the digital twin system. The validity and practicality
of the system proposed in this paper are demonstrated by geo-
metric model consistency verification, physical model validity
verification and virtual-reality consistency verification.

The rest of the paper is organized as follows. The over-
all description of the digital system is shown in Section
2. Section 3 describe the methods for constructing home
service robot digital twin system. Section 4 describes the
experimental results and analysis. Finally, Section 5 describes
the conclusion.

II. OVERALL DESCRIPTION OF THE SYSTEM

A. System Framework and Workflow
The framework of the proposed system is shown in Fig. 1,

which mainly includes physical space, digital space and con-
nections. The physical space is a dynamic system, consisting
of service robots and home environment. The digital space is
composed of the digital robot platform, multi-source models
of household objects and the virtual home environment,
which is required to map the physical space realistically in
real time. The connection of this digital twin system is based
on ROS#, which reliably exchanges twin data of the two
spaces.

In the construction phase of the digital twin system of
the home service robot, first, geometric and physical data of
the home environment and the robot platform are collected
manually. Secondly, the corresponding graphical models are
created by 3D modeling tools and deployed into the Unity3D-
based digital space. Finally, the motion of the robotic arm is

implemented in the digital space. During the operation phase
of the system, the physical robotics platform monitors various
operational data in the physical space in real time, including
odometer information, robot arm status, and RGB-D images
of the robot’s viewpoint. This data is connected to the digital
space via ROS#, which helps map the physical space to the
digital space with high fidelity. In the digital space, the robot
simulates the operation of the real environment in the digital
space to guide the physical robot platform.

B. Model Composition and Correlation Analysis

The digital twin model M consists of the geometric model
Gv , the physical model Pv and the functional model Fv ,
which is an integration of the structure, properties and func-
tions of household objects and robotic platform in physical
space:

M = Gv ∪ Pv ∪ Fv, (1)

where, Gv is the construction of 3D models, including the
shape, size, location and material properties of all objects
in the physical twin space, which has the most intuitive
impact on the visual effect of the digital space; Pv describes
the physical properties and states of the robot platform and
household objects, such as gravity and collision relationships,
which determine the similarity between physical and digital
spaces; Fv is used to describe the functional properties of
household objects, such as moveable, heatable, openable, etc.,
which determine the behavior of the robot in digital space that
is consistent with real-world common sense.

III. CONSTRUCTION METHOD OF DIGITAL TWIN SYSTEM

This section introduces the construction method of the
digital twin system for home service robot, described in terms
of the robot and the home environment, respectively. Among
them, robot modeling contains geometry modeling and kine-
matic modeling. And the home environment modeling mainly
contains geometric, physical and functional modeling.

A. Geometric Modeling of Robot

The robot model contains complex joint information and
kinematic parameters that can be constructed with the help of
URDF files. The URDF file uses XML language to define the
information of Joint and Link. URDF files can be obtained
from the ROS platform and can be parsed directly by the
Gazebo software in the ROS system, but cannot be used
directly in Unity3D. A corresponding URDF file parser,
therefore, needs to be designed for the Unity3D platform.

The URDF parser uses the System.xml namespace of
C# to parse the URDF file, and gets the robot’s Joint and
Link information, as well as the robot’s description file and
material file. The above information can form the basic
framework of the model, so that the robot’s URDF model
can be imported into Unity3D as a GameObject.

In this paper, we use the TIAGo robot as a physical
robot platform that has a robotic arm with seven degrees
of freedom, which excels in dynamic performance, motion
planning, etc. It can grasp larger and heavier objects, and with
the Hey5-type five-finger manipulator, it can also operate on
tiny objects [22]. In addition, the TIAGo robot has a PMB-2
type mobile chassis, which enables it to move flexibly in



Fig. 1. Framework for the digital twin system for home service robot based on motion simulation.

indoor environments and thus perform a variety of home
service tasks. The geometric model of the TIAGo robot
obtained by 3D stereoscopic display is shown in Fig. 2.

Fig. 2. Geometric model of the TIAGo robot.

B. Forward Kinematic Modeling of Robot Arm

The robot arm of the TIAGo robot is shown in Fig. 3
and has 7 degrees of freedom. The detailed structure can be
obtained from the URDF file of the TIAGo robot.

As shown in Fig. 4, the coordinate system at each joint
of the TIAGo robot arm can be established. Among them,
X1 ∼ X7, Z1 ∼ Z7 is the coordinate axes at the 1st to
7th joints, respectively. By denoting the 7 joint variables of
the TIAGo robot arm as θ1, θ2, ..., θ7, the forward kinematic

Fig. 3. TIAGo’s robot arm with 7 degrees of freedom.

equations of this robot arm can be established using the D-H
parameter method.

Fig. 4. Coordinate system of each joint of TIAGo robot arm.

By reviewing the relevant information, the D-H parameter
of the TIAGo robot arm are shown in Tab. I, where αk and
ak are the angle and length of rotation from the Zk−1 axis
to the Zk axis along the Xk−1 axis, respectively. θk and dk
are the angle and length of rotation from the Xk−1 axis to
the Xk axis along the Zk axis, respectively.

The transformation matrix between the (k−1)th joint and
the kth joint of the TIAGo robot arm is shown in (2), where
Cθ and Sθ donate cos θ and sin θ, respectively:

T (θk)
k−1
k =


Cθk −SθkCαk

SθkSαk
akCθk

Sθk CθkCαk
−CθkSαk

akSθk

0 Sαk
Cαk

dk
0 0 0 1

 (2)

Substituting the parameter in Tab. I, T (θ1)01, T (θ2)12, ...,
T (θ7)

6
7 can be found sequentially, and multiplying them



TABLE I
D-H PARAMETER OF TIAGO ROBOT ARM.

Joint Index k αk/rad ak/mm dk/mm θlk/rad θuk/rad

1 0 0.15505 -0.151 0 2.75

2 π
2

0.125 -0.0165 -1.57 1.09

3 −π
2

0 -0.0895 -3.53 1.57

4 π
2

0.02 -0.027 -0.39 2.36

5 −π
2

0.02 0.162 -2.09 2.09

6 π
2

0 0 -1.41 1.41

7 −π
2

0 0 -2.09 2.09

together gives:

7∏
k=1

T (θk)
k−1
k =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 =

[
R P
0 1

]

= M(θ1, θ2, ..., θ7),

(3)

where R and P are the pose matrix and position matrix of
the end-effector, respectively. M(θ1, θ2, ..., θ7) is the posi-
tion&pose matrix of the end-effector, which is the forward
kinematic model of the robot.

C. Inverse Kinematic Modeling of Robot Arm

The robot drives each joint to rotate in order to complete
the body motion, so if the end-effector is required to exhibit
the desired poses the corresponding angular information of
each joint must be obtained by inverse kinematics solution.
Since the motion of the robot arm joints is physically
constrained, and the degrees of freedom are redundant, this
paper uses a particle swarm algorithm to solve the inverse
kinematics of the robot arm. First, the seven joint variables θ1,
θ2, ..., θ7 of TIAGo robot are transformed into 7-dim position
coordinates Pi(Pi1, Pi2, ..., Pi7) of the particles. Then the
fitness function guides the search direction of the algorithm.
Finally the optimal solution of the inverse kinematics problem
is found in the solution space under the constraints.

The particle swarm algorithm generates a number of feasi-
ble solutions (called particles) randomly in the solution space,
uses the fitness function to judge the particles, and lets the
particles follow the optimal ones to carry out the motion
to find the optimal solution. The optimal particles include
the historical optimal particle pBest and the global optimal
particle gBest. Each particle iteratively updates its velocity
v and position x with pBest and gBest as references to
explore the solution space:

v(t+ 1) = W · v(t) + C1 · rand() · [pBest(t)− x(t)]

+ C2 · rand() · [gBest(t)− x(t)],
(4)

x(t+ 1) = x(t) + v(t+ 1), (5)

where W ∈ [0, 1] is the inertia weight, reflecting the effect
of the original velocity on the subsequent motion; C1 and C2

are the learning factors, indicating the ability of the particle

to utilize its own experience and the ability to absorb the
experience of other particles, respectively.

From the current seven joint variables θ1, θ2, ..., θ7,
the current position&pose matrix MC , pose matrix RC and
position matrix PC of the robot arm end-effector can be
calculated by (3). In addition, the desired position&pose
matrix MO, pose matrix RO and position matrix PO are
given.

Define the position error EP as the 2-norm of the differ-
ence of the position matrix, i.e.

EP = ∥PC − PO∥2 (6)

The current pose matrix RC and the desired pose matrix
RO are transformed into quaternions (xc, yc, zc, wc) and
(xo, yo, zo, wo). Define the pose error ER as

ER = 2arccos (xo · xc + yo · yc + zo · zc + wo · wc) (7)

Since the Dof of the TIAGo arm are redundant, there exists
an infinite set of inverse kinematic solutions for a particular
position&pose in its action space. In order to obtain a unique
solution that conforms to the constraint, this paper adds
additional conditions with the help of the optimal flexibility
rule. For the 7 degrees of freedom TIAGo robot arm, the
optimal flexibility is defined as

min {
7∑

k=1

[ωk(θk(j)− θk(j − 1))]2}, (8)

where θk(j)−θk(j−1) is the difference between the current
angle and the previous angle of the joint θk. ωk is the
weighting factor, following the principle of ”more movement
of the lower arm and less movement of the upper arm” to
achieve more stable movement. In this paper, we take ω1 = 1,
ω2 = ω3 = 0.5, ω4 = ω5 = ω6 = ω7 = 0.1.

According to the position error EP , pose error ER and the
optimal flexibility rule (8), the fitness function is constructed
as

f = ωPEP + ωOEO +

7∑
k=1

[ωk(θk(j)− θk(j − 1))]2, (9)

where ωP and ωO, respectively, are the weighting coefficients
of EP and EO, and can be taken as ωP = rand(0, 1) and
ωO = 1 − ωP . The smaller the f of the particle, then the



better its quality, i.e., the smaller the difference between the
current position&pose matrix MC and desired position&pose
matrix MO.

To improve the global convergence performance of the
algorithm, this paper lets the inertia weights W and the
learning factor C1 and C2 make adaptive adjustments with
the number of iterations:

W (t) = (Ws −We)(
t

T
)2 + (We −Ws)(

2t

T
) +Ws

C1(t) = (C1s − C1e)(
t

T
)2 + (C1e − C1s)(

2t

T
) + C1s

C2(t) = (C2s − C2e)(
t

T
)2 + (C2e − C2s)(

2t

T
) + C2s

(10)

where T is the final number of iterations, t is the current
number of iterations. Take Ws = 0.9 and We = 0.4 to
denote the initial and final values of W (t), respectively. As
the number of iterations t increases, W (t) will gradually
become smaller, then the particle swarm can explore the
whole solution space at the beginning of the iteration and
quickly locate the local area where the optimal solution is
located. At the later stage of exploration, the particle swarm
can launch a detailed search for the optimal solution locally.
Taking C1s = 1.5 and C1e = 2.5 to denote the initial and
final values of C1(t), and taking C2s = 2.5 and C2e = 1.5
to denote the initial and final values of C2(t), respectively,
which can prevent the algorithm from falling into local
optimum at the beginning and enhance the search accuracy
at the end.

In this paper, the improved particle swarm optimization
algorithm is used to solve the inverse kinematic problem of
the TIAGo robot arm, which is described as shown in the
Alg. 1.

Algorithm 1 Solution of the inverse kinematic problem.
Input: Desired position&pose matrix MO;
Output: Joint variables (θ1, θ2, ..., θ7) of the robot arm;

1: Randomly initialization of 50 7-dim particles;
2: while The current iteration number t is smaller than the

final iteration number T do
3: Calculate the fitness of each particle according to (9);

4: Compare the fitness of each particle with the pBest,
and take the smaller one as the new pBest;

5: Take the smallest of the pBest of all particles as
gBest;

6: Update the weights and learning factors by (10);
7: Update the particles by (4) and (5);
8: end while
9: Select the global optimal solution gBest;

10: return The 7 joint variables corresponding to gBest.

D. Geometric and Physical Modeling of Home Environment

The home environment, as a place where humans live,
contains a diverse range of objects. To build the digital twin
system here, it is necessary to model the household objects in
it. Household objects, compared with robots, do not contain
complex joint structures and can be modeled directly using
Blender software. The basic shape is constructed first, and

then given the corresponding materials to obtain a realistic
model display effect.

After obtaining the geometric model of each household
object, it is also necessary to place them in the correct
position. The open source SLAM (Simultaneous Localization
and Mapping) technology allows the robot to explore the
environment and obtain a environment map. The geomet-
ric model of the home environment can be completed by
manually placing the household object models and the room
structure model in the digital space according to the map.

In order to simulate the manipulation of household items
by robots, physical modeling of them is also indispensable.
In the Unity simulation engine, physical properties such as
gravity and collision can be easily added to various items
through various components.

E. Functional Modeling of Household Objects

When interacting with household objects, robots cannot
only consider physical properties. For example, from the
perspective of a physical, both cups and trash cans can hold
liquids, but humans will only consider cups rather than trash
cans for drinking water. In order to bring robot behavior
closer to that of humans, it is also necessary to describe the
functional properties of each household item. The functional
properties describe the actions that the robot can apply to the
object or the functions that the object itself has.

In [23], 22 attributes are proposed to describe the function-
ality of objects in home environment. In this paper, however,
we argue that some of these attributes are only relevant
to humans and not to robots to accomplish tasks, such as
Sittable and Lying. There are also some attributes that can be
combined into one attribute. For example, Puttable, Rotatable
and Moveable can be unified and described by Moveable.
In this paper, we use a total of nine functional attributes
as shown in Tab. II to describe the functional semantic
information of household objects.

F. Connection of Home Service Robot Digital Twin System

Regarding the data interaction in the digital twin system,
this paper focuses on the acquisition and transmission of
the real-time status of the physical robot platform during
its operation, and the control commands from the digital
space to the physical robot. With this bi-directional real-time
data interaction, on the one hand, the operational data of the
physical robot platform will be displayed in real time through
the digital space; on the other hand, the digital space can issue
control commands to the physical robot to accomplish home
service tasks. Specifically, this paper uses ROS to acquire and
manage the various data of the physical robotics platform, and
then uses ROS# to achieve two-way communication between
the data in ROS and Unity3D.

IV. EXPERIMENTAL VERIFICATION AND ANALYSIS

To validate the proposed approach in this paper, a digital
twin system for home service robot is built in laboratory
environment as shown in Fig. 5. The physical space con-
sists of a physical robot platform (TIAGo) and a simu-
lated home environment. The simulated home environment
includes household objects such as refrigerator, microwave
and dining table which are commonly found in real home



TABLE II
THE DESCRIPTION OF FUNCTIONAL ATTRIBUTES

Functional Attribute Describe

Pickable These objects can be picked up or put down into receptacles.

Moveable These are non-static objects that can be moved around the scene.

Heatable These objects can increase the temperature of other objects.

Coolable These objects can decrease the temperature of other objects.

Receptacle Receptacle objects allow other objects to be placed on or in them.

Toggleable These objects can be toggle on or toggle off.

Openable These objects can be opened or closed.

Sliceable These objects can be sliced into smaller pieces.

Fillable These objects can be filled with liquid.

environments. In the digital space, the virtual environment
uses Unity3D 2021.3.11f1c1 as the development engine. The
computer is equipped with a GTX1080 graphics card with
8GB memory, an i7-8700 CPU, and 16GB of RAM.

Fig. 5. Simulated home environment built in the laboratory.

A. Geometric Model Consistency Verification

For the geometric model implementation method proposed
in this paper, the consistency of the geometric models of
the robot platform and the home environment are verified
separately.

By measuring the real TIAGo robot, its geometric param-
eters can be obtained, which allows the calculation of the
accuracy of the geometric modeling of the robot platform. In
addition, the number of components of the TIAGo robot is
known by consulting relevant information, and by comparing
the real number with the modeled number, it is possible to
indicate whether the robot geometric model has complete-
ness.

Tab. III shows the measured data of the physical TIAGo,
the modeling data of the digital TIAGo, and the error between
the two. All data are in centimeters, except for the number
of components. ”Height” refers to the overall height of the
robot, ”Chassis” is the robot’s movable chassis, and ”Laptop
Tray” is the platform behind the head of TIAGo. From the
data in Tab. III, it can be seen that the modeling error
of the geometric model of TIAGo is not large and all the
components of TIAGo are modeled, so the geometric model
has high accuracy and completeness.

The geometric model of the home environment is built
based on the map acquired by the physical robot performing
open source SLAM algorithm. The geometric model of

the home environment is subject to errors with the real
environment because the map construction generates errors.
The coordinates of a vertex of some household objects in
the physical space and digital space are measured separately
(with the upper left corner of the map as the coordinate origin
in centimeters).Since the height coordinates of the object are
affected by gravity, only the two-dimensional coordinates of
object on the map plane are of interest. The consistency of
the geometric model of the home environment is verified by
calculating the difference between the coordinates of the two.

The coordinates of some objects in physical and digital
space obtained from the measurements are shown in Tab. IV,
and all data are in centimeters.The error is the Euclidean
distance between two coordinates. The data in Tab. IV shows
that the modeling error of the geometric model of the home
environment is small, and therefore the geometric model of
the home environment is geometrically consistent.

B. Physical Model Validity Verification

Before connecting the digital space to the physical space,
the validity of the physical model designed in this paper is
verified by simulating the robot’s inverse kinematics in the
digital space. This experiment realizes the trajectory planning
of the robot arm in the joint space according to the in-
verse kinematics model by the fifth polynomial interpolation
method.

Tasks performed by robots in the home environment, such
as delivering objects, require robots with basic grasping
capabilities. Therefore, the validity of the physical model is
verified by using the example of a robot grasping a water
cup.

To ensure the stability of grasping, the action of TIAGo
robot is divided into two stages, approaching and grasping.
Fig. 6 shows the process of robot approaching the water cup.
The robot drives the robot hand to gradually approach the
water cup through the position&pose adjustment of the robot
arm until it is close to the water cup.

After approaching the water cup, the robot hand needs to
perform a grasp action, as shown in Fig. 7.

From the experimental results, it can be seen that the
physical model designed in this paper enables the TIAGo
robot to complete the water cup grasping task smoothly, and
the whole grasping process does not have any accidental



TABLE III
GEOMETRIC PARAMETERS AND ERRORS OF ROBOT

Space
Components

Number
Height(cm)

chassis Laptop Tray

Height(cm) diameter(cm) Height(cm) Width(cm) Length(cm)

Physical 89 110 30 54 60 28 33

Digital 89 110.0998 30.0384 53.172 60.4548 28.476 33.264

Error 0 0.998 0.384 0.828 0.4548 0.476 0.264

TABLE IV
GEOMETRIC PARAMETERS AND ERRORS OF HOME ENVIRONMENT

Space Fridge Table1 Table2 Desk Microwave Television

Physical (107 ,348) (412, 157) (334, 347) (493, 213) (405, 163) (427, 152)

Digital (105.423, 348.525) (414.205, 156.423) (333.012, 345.423) (491.432, 212.433) (406.429, 162.956) (425.912, 153.422)

Error 1.662 0.612 1.861 1.667 1.430 1.790

Fig. 6. The process of TIAGo robot hand approaching the water cup.

Fig. 7. The process of TIAGo robot hand grasping the water cup.

collision with obstacles and other situations, which meets the
expected requirements.

C. Virtual Reality Consistency Verification

To further validate the method proposed in this paper, the
digital twin system is formed by connecting the physical
space with the digital space. Since the effective execution of
all home service tasks requires robot movement, the virtual-
real consistency is verified from the operation of movement
command in the digital twin system.

Firstly, the AMCL (Adaptive Monte Carlo Localization)
module that comes with the physical TIAGo robot is used to
obtain its initial position&pose in the physical space, and this
position&pose in used to initialize the position&pose of the
digital robot. Secondly, a movement command is sent to the
robot in digital space, which will move and display the real-
time status of the robot and the home environment in real

time. The movements of the physical robot are synchronized
in the digital space, and the effect is shown in Fig. 8.

Fig. 8. Operational effect of the digital twin system.

As can be seen from Fig. 8, the digital space and the
physical space can achieve the same execution effect when
performing the same task, and the digital space can be
synchronized with the physical space in real time. This proves
that the digital twin system established in this paper has
virtual-reality consistency.

V. CONCLUSION

In order to meet the practical needs of home service
robots for complex homework, this paper proposes the motion
simulation-based digital twin system for home service robots
and its implementation method. This system integrates geo-
metric, physical and functional models for achieving accurate
mapping of the home service robot and its working envi-
ronment. For the geometric model construction of the robot
platform, a Unity3D-oriented URDF file parser is designed
to automatically construct the 3D model of the robot. For



the physical model, the 7 Dof robot arm of the TIAGo is
used as an example to model its kinematics, and the particle
swarm optimization algorithm is improved for solving the
inverse kinematics problem. In addition, to enhance the
realism of home environment simulation, a functional model
of household objects is proposed, and functional semantic
information of household items is described using functional
attributes. Finally, the accuracy and practicality of the method
and system proposed in this paper are demonstrated through
geometric model consistency verification, physical model va-
lidity verification and virtual-reality consistency verification,
which provide a feasible new approach to the problem of
completing complex tasks and other aspects of home service
robots.

This study provides a concrete implementation of a digital
twin system for home service robot, but there are still missing
areas that need a lot of research, such as automatic addition
and location update of household items, implementation of
more atomic actions, aand the service task planning per-
formed in the digital space. Therefore, subsequent work
will further refine the system, such as employing ontology
knowledge base to manage functional models and combining
intelligent algorithms to implement service task planning for
specific research.
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