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Abstract—Deep learning-based methods have proved useful
for adversarial attack detection. However, conventional detection
algorithms exploit crisp set theory for classification boundary.
Therefore, representing vague concepts is not available. Mo-
tivated by the recent success in fuzzy systems, we propose a
fuzzy rule-based neural network to improve adversarial attack
detection accuracy. The pre-trained ImageNet model is exploited
to extract feature maps from clean and attacked images. Sub-
sequently, the fuzzification network is used to obtain feature
maps to produce fuzzy sets of difference degrees between clean
and attacked images. The fuzzy rules control the intelligence
that determines the detection boundaries. In the defuzzification
layer, the fuzzy prediction from the intelligence is mapped back
into the crisp model predictions for images. The loss between
the prediction and label controls the rules to train the fuzzy
detector. We show that the fuzzy rule-based network learns
rich feature information than binary outputs and offers to
obtain an overall performance gain. Our experiments, conducted
over a wide range of images, show that the proposed method
consistently performs better than conventional crisp set training
in adversarial attack detection with various fuzzy system-based
neural networks. The source code of the proposed method is
available at https://github.com/Yukino-3/Fuzzy.

Index Terms—Deep learning, adversarial attack detection,
classification boundary, fuzzy rule, fuzzy prediction

I. INTRODUCTION

Adpversarial attack detection, aiming to defend applications
by detecting attacks using the difference between adversarial
and clean image samples, is an important security topic useful
in many real-world applications such as autonomous driving
systems, object detection, medical image processing, and
robotics [1]. Recently, a variety of deep learning approaches
have been proposed [2], [3], for adversarial attack detection
mainly divided into empirical statistics-based detection [4],
image pre-processing and reconstruction-based detection [5],
and detection networks [6]. In this paper, we focus on image
pre-processing and reconstruction-based detection by using
deep learning techniques.

A neural network typically predicts a crisp result, namely,
a value 1 when the sample is attacked and O when it is clean.
The loss between the crisp prediction and crisp label is then
exploited to train the model. While some recent studies have
explored the fuzzy classifier in adversarial attack detection [7],
[8], crisp set-based detection methods [5], [9], [10] are the
common choices as the crisp sets can easily be estimated from
the input data. The crisp set-based detection methods directly
determine whether an image is clean or attacked. However,
calculating the loss is non-differentiable and hinders training
through normal back-propagation.

In recent studies, the fuzzy system is shown to offer
several advantages in handling crisp set-based problems. It
allows representation imprecision of objects, relations, and
knowledge, and aims at different levels of latent representation
[11], [12]. It constitutes a unified framework for representing
and processing both numerical and symbolic information, as
well as structural information (constituted mainly by spatial
relations in image processing) [13]. Hence this theory can
potentially handle tasks at several levels, from a low level
(e.g., binary classification) to a high level (e.g., model-based
structural recognition and scene interpretation). It provides a
flexible framework for information fusion as well as powerful
tool support for reasoning and decision-making [14]. In this
paper, we show how the use of fuzzy detectors offers signif-
icant benefits in adversarial attack detection. Specifically, we
propose a fuzzification process with fuzzy rules of difference
degree between clean and attacked images.

The paper is organized as follows. Section II provides a
literature review of adversarial attack detection techniques.
Our proposed approach is introduced in Section III, with
the experimental settings and results described in Section IV.
Section V presents the conclusions and future work.

II. ADVERSARIAL ATTACK DETECTION

Various techniques for adversarial attack detection have
been developed in the deep learning community. Over the past
several years, increasing research efforts have been devoted
to improving the detection efficiency of neural networks. For
example, in [1], a patch segmenter is designed to generate
patch masks that provide pixel-level localization of adversar-
ial patches. Then, these adversarial patches are removed to
guarantee data security. Moreover, Soares et al. propose a
similarity-based deep neural network (sim-DNN) to calculate
the degree of similarity between training samples and their
prototypes adversarial attacks [15]. By minimizing the simi-
larity score, the concept changes are detected from the attacked
data when comparing their similarities against the set of pro-
totypes. In [10], binary classification datasets are constructed
separately to train the binary classifier and then divides by
the binary classification detector. The adversarial samples are
constructed in two parts based on relevance features and
model activation features for attack detection. Different from
these techniques, Qi et al. utilize two deep learning models
in the training stage. Some adversarial attack samples are
generated toward the local DL model [9]. Subsequently, the
target model is attacked to produce perturbed samples. In
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Fig. 1. The architecture of the proposed fuzzy detector.

the adversarial training, the misclassification probability of all
training samples is estimated by the local model to detect and
delete perturbed samples from the dataset.

III. PROPOSED APPROACH FOR FUZZY DETECTORS

Fig. 1 illustrates the architectural approach of our proposed
fuzzy detector. Conceptually, the feature maps from the at-
tacked and clean images F, and JF. constitute the inputs of
the proposed fuzzy detector. The loss between the feature maps
is converted into the fuzzy set for the intelligence (I).

The input of the encoder is either clean or attacked images
with hard labels, i.e., clean or attacked. The attacked images
are constructed with random error rates from 0.01 to 0.04 as in
contemporary works. The ImageNet pre-trained model obtains
these images and extracts their feature maps. The feature maps
of clean and attacked images are presented as JF. and F,,
respectively. The proposed fuzzy system-based detector then
aims to map from the feature space to the label space. To
achieve that, we propose a fuzzy detector with its constituent
blocks progressively detailed in the following sections.

A. Fuzzifier

As aforementioned, the loss between F. and F, is required
to be calculated. Subsequently, the fuzzifier converts the loss
into a fuzzy set to describe the difference degrees between
feature maps at the pixel level. The degree of differences in
the fuzzy set quantifies the difference levels across the feature
maps of clean and attacked images. The membership function
w is illustrated in Fig. 2.
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Fig. 2. The membership function.

B. Fuzzy Rules

Intelligence is controlled by rules that determine the de-
tection boundaries. The rules of the proposed fuzzifier follow
commonly used fuzzy-rule-based classifiers [11], [12] as:

R':1IF (21 is around 2}*) AND  (x is around ")

AND--- AND (z, is around z%Y) THEN (P")
(1)
where @ = [z1,Z2,... ,xn]T is the pixels of feature maps.

In the intelligence layer, (x; is aroupd mj—*) indicates the
jth fuzzy set of the ith fuzzy rule R'. To achieve that, we
consider the Eucledian Distance d between x; and ac;* with a
hyperparameter o;. When the distance d is smaller than o,
the fuzzy prediction with the ith fuzzy rule is P? that predicts
how much the model trusts the image. The hyperparameter
«a; is further updated to improve the boundary accuracy in the
training stage.

C. Defuzzification

A centroid defuzzification method is exploited to convert
the fuzzy prediction set into the model prediction [16]. Par-
ticularly, the center of gravity of the fuzzy set is calculated
along the difference degree as:

P:ZiM(Pi)Pi )

Zi w(F)
where P is the model prediction, i.e., 0 or 1 for clean or
attacked image, respectively.

D. Training

The training loss is calculated as follows. Firstly, we calcu-
late the fuzzy loss £ between the label and fuzzy prediction.
Secondly, the overall loss L is calculated by the loss between
the label and model prediction £ with hyperparameters A;

and A\, as:
Ay -
L= 1 ‘C]:v
Lr/Az,

Both Ay and A, are empirically set between 1 and 10 over
the different experiments. The fuzzy rules are refined by £

if Lpg#0
otherwise

3)



TABLE I
ATTACK DETECTION RATIO ON THE CIFAR-10 AND IMAGENET-R DATASETS. EACH RESULT IS THE AVERAGE OF 10,000 EXPERIMENTS. BOLD
INDICATES THE BEST RESULTS. [falic SHOWS THE PROPOSED METHODS.

Detection Ratio (%)
CIFAR-10 ImageNet-R (%)

Method Clean FGSM PGD SSAH Clean FGSM PGD SSAH
FCB [7] 755 £ 18 498+ 15 471+10 436+£18 | 75219 485+ 18 468+ 19 439+ 14
SAC [1] 78715 60.1 £23 597+22 568+24 | 780+£19 589+20 575+21 529 £ 1.8
sim-DNN [15] | 81.8 £ 1.0 705+ 14 600+16 4944+07 | 809+15 71017 662+13 614+1.1
DTBA [9] 857+ 13 783 +12 756410 71.7+£08 | 82+10 780+1.1 724+11 689 +0.8
ESMAF [10] 874+ 10 805+16 7694+19 754+£07 | 874+12 797+13 756409 718+ 0.6
F-Res 89.1+05 863 +£10 835407 82.1+£09 | 8.04+05 8.0+11 828+12 802=+08
F-PF 899+ 08 8.5+07 823+12 808+08 | 89.9+08 870+13 81.6+1.0 80809
F-YL 90.2 + 04 872+05 848+09 841+04 | 899+07 87.0+12 834+0.7 829405

TABLE II

ATTACK DETECTION RATIO ON THE COCO AND ILSVRC DATASETS. EACH RESULT IS THE AVERAGE OF 10,000 EXPERIMENTS. BOLD INDICATES THE
BEST RESULTS. [talic SHOWS THE PROPOSED METHODS.

Detection Ratio (%)
COCO ILSVRC (%)
Method Clean FGSM PGD SSAH Clean FGSM PGD SSAH
FCB [7] 727 +16 472+16 465+19 4064+20 | 76.8 15 512+£22 504+15 485+25
SAC [1] 780 £ 2.0 49.6 £+ 2.1 484 £20 4594+19 | 802 +22 63.6+1.6 63020 594+£19
sim-DNN [15] | 793 £2.0 668 £2.0 643 +22 60.0+ 1.8 | 825+ 13 752 %21 725 +16 69.6 £ 1.5
DTBA [9] 83.1 09 753+ 1.1 710+ 14 687 +10 | 868 £0.7 81.1 =14 805+08 76.0+ 09
ESMAF [10] 85.0 £ 1.1 765+ 13 742+16 708 1.0 | 879 £ 1.0 826 +20 77.0+£ 2.1 752 £ 0.9
F-Res 884 +06 840+£14 807415 78612 | 89.7+08 89 +12 841+06 828+ 1.1
F-PF 898 +03 858+ 1.2 820£1.0 80.1 &% 1.1 903 04 873 +10 824+ 1.1 81.2 £ 0.6
F-YL 898 +03 868 +09 84.0+11 841 +08 | 91.0+03 879 +0.7 859+09 844 + 0.8
and control the intelligence that makes more accurate fuzzy IV. EXPERIMENTAL RESULTS
predictions. The pseudo-code of the proposed fuzzy rule-based 4 pracets

attack detection method is summarized in Algorithm 1.

Algorithm 1: Fuzzy rule-based detector.

Input: Feature maps F, and F,, Label X, learning
rate 1, epoch Epax,
Output: Model prediction P
Data: Training set D
1 Initialize R?, p;
2 Initialize hyperparameters Aq, A2, a; and 6;
3for £E=1,2,..., By do

4 Ly = H(F.F,) [l Calculate the cross entropy
loss;

5 | if d(zj,2") < a; then

6 ‘ P)z = Q(fa),

7 end

8 P < P;,u // Defuzzification;

9 if X = P then

10 | L=LFr/rs;

1 else

12 | L=M\-LF

13 end

14 O, Lr;

15 A1, A2 < L // Update hyperparameters ;

16 end

We perform experiments on several public datasets, in-
cluding ImageNet-R [17], Canadian Institute For Advanced
Research-10 (CIFAR-10) [18], Common Object and Concept
(COCO) [19], and ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) [20]. We randomly select 50,000,
10,000, and 10,000 images from each dataset for the training,
validation, and test stages.

B. Attacks and Performance Measure

The adversarial samples from these datasets are constructed
using the Fast Gradient Sign Method (FGSM) [21], Projected
Gradient Descent (PGD) [22], and Semantic similarity attack
on high-frequency components (SSAH) [23] attacks. We select
these attacks because they are robust to novel adversarial
attack detection and defense techniques [15], [23]. The error
rate is randomly set from 0.01 to 0.04 for training and test
data similar to as in contemporary works [5], [15].

In the experiment, the detection rate (DR) [15] is used as
the performance measure.

TP+TN
DR =
(%) TP+TN+FP+FN

where TP and TN are true positive and true negative results,
and FP and FN are false positive and false negative results.
Moreover, we evaluate the true positive on clean image sam-
ples as:

x 100 “)

DR(%) = —1

-1 9
7pr1N <100 )



TABLE III
ATTACK DETECTION RATIO ON THE CIFAR-10 AND IMAGENET-R DATASETS WITH UNSEEN ATTACKS. EACH RESULT IS THE AVERAGE OF 10,000
EXPERIMENTS. BOLD INDICATES THE BEST RESULTS. Italic SHOWS THE PROPOSED METHODS.

Detection Ratio (%)
CIFAR-10 ImageNet-R (%)

Method Clean FGSM PGD SSAH Clean FGSM PGD SSAH
FCB [7] 736 £19 463+ 14 452+ 13 40.7+£20 | 72.0 2.1 449+ 19 4454+19 414+1.7
SAC [1] 748 £ 1.6 577 4+£22 56025 535+£26 | 749 +2.1 56.0 23 539+24 502420
sim-DNN [15] | 795+ 12 6794+16 569+18 4754+10 | 776+ 18 688+ 1.6 651+15 60.1£12
DTBA [9] 842+ 16 77014 740+ 1.1 70.2 £ 1.1 839+ 14 764+13 709+12 673+£12
ESMAF [10] 848+ 13 779+15 7434+22 738+09 | 87+15 77116 729+12 700=+1.0
F-Res 888+ 05 859+09 828+09 8l1.6+L1.1 885+ 07 85.7+£15 87+11 794+09
F-PF 898 + 06 863+06 820+12 804+09 | 8.5+09 868 +11 814+ 1.1 80.7 + 1.0
F-YL 894+06 864 +0.7 83.6+10 828+07 | 8.0+04 859+15 82.0+08 826+ 0.5

TABLE IV

ATTACK DETECTION RATIO ON THE COCO AND ILSVRC DATASETS WITH UNSEEN ATTACKS. EACH RESULT IS THE AVERAGE OF 10,000 EXPERIMENTS.
BOLD INDICATES THE BEST RESULTS. [talic SHOWS THE PROPOSED METHODS.

Detection Ratio (%)
COCO ILSVRC (%)

Method Clean FGSM PGD SSAH Clean FGSM PGD SSAH
FCB [7] 699 + 1.7 458+ 1.7 448 +22 389+24 | 740+1.7 484+£20 478+ 1.8 459+28
SAC [1] 72.8 + 2.1 482 + 2.1 459 £22 445 £ 2.1 787 +£23 608 £ 14 61.7+2.1 57.6 £2.2
sim-DNN [15] | 788 £24 63.6 4+ 19 625+20 5784 2.1 820+ 1.6 743 +£24 703+19 668+ 1.8
DTBA [9] 82.4 + 1.1 746 £ 16 70118 676+ 1.5 863+ 05 79718 79.0+12 74715
ESMAF [10] 822+ 11 729+£19 7204+20 67.1+18 | 843 +19 802+22 738+25 729+1.6
F-Res 883 +05 833+£14 80.14+£19 779+14 | 895+1.0 8.0+13 833+08 81715
F-PF 89.7 + 04 852 £ 1.1 816 14 798+ 12 | 89.94+06 870+ 09 82.1+14 808+ 0.8
F-YL 890+ 06 856+12 829+12 88+10 | 90.0+05 8.8+10 850+08 831+ 13

C. Model Configuration

The pre-trained EfficientNetV2-XL [24] on the ILSVRC
dataset is exploited to extract features. We select this model
because it achieves the state-of-the-art benchmark on the
ILSVRC challenge. Moreover, we apply the proposed fuzzy
detector on different backbones, e.g., Res2Net-v1b-101 [25],
YOLOX-L [26], and PRB-FPN6-2PY [27]. Different from the
pre-trained encoder, these models are initialized and re-trained
with fuzzy logic.

At training stage, the proposed model is trained using the M-
SGD optimizer with a learning rate set empirically to 0.0008
according to a grid search. The batch size is set to 32. We train
the networks for 200 epochs. All experiments are run on the
High End Computing (HEC) Cluster with Tesla V100 GPUs.

D. Results

1) Comparison with Same Attacks: In the first experiment,
we compare the proposed method to state-of-the-art adversarial
attack detection methods [1], [7], [9], [10], [15] with the same
attack between the training and test stage. The proposed fuzzy
detector-based Res2Net-v1b-101, YOLOX-L, and PRB-FPN6-
2PY are simplified as F-Res, F-YL, and F-PF, respectively.

From Tables I & II, it can be observed that: (1) In all
the evaluated models, the proposed methods with different
backbones offer the best effectiveness. Different from crisp set-
based decision-making pipelines, the proposed fuzzy detectors
convert the loss between feature maps into fuzzy sets and
provide difference scores ("high’, *ok’, and ’low’). Therefore,
the proposed method exploits more feature information than
binary decisions. The fuzzy rules are trained with difference

scores to help the detector make more accurate decisions. (2)
The proposed F-YL model offers the best attack detection
performance on all datasets. The reason is likely due to the
combined implicit knowledge and explicit knowledge in the
YOLOX decoder [26]. (3) Compared to the improvement in
FGSM, PGD, and SSAH attacks, the improvement of detection
accuracy tends to fall drastically when evaluating the true
positives on clean image samples. For example, compared to
ESMAF model, the proposed F-YL obtain 7.9% improvement
on PGD attacked CIFAR-10 dataset, while it is only 2.8% on
the true positive evaluation.

2) Comparison with Different Attacks: In this experiment,
we compare the proposed method to state-of-the-art adversarial
attack detection methods [1], [7], [9], [10], [15] with different
attacks between the training and test stage. To achieve that,
we randomly select an unseen attack to construct the test data
in Tables III & IV.

From Tables IIT & IV, it can be observed that in all the
evaluated models, the proposed fuzzy rule-based methods with
different backbones offer the best effectiveness. The goal of
the adversarial training provided by the DTBA and DSMAF
is to increase the model’s robustness, however, they lack
generalisation to unseen domains, i.e., datasets and attacks.
The proposed fuzzy detector maintains its performance stable
even when adversarial or clean images from unknown datasets
are presented to the detection model due to its inner fuzzy
rules and detection mechanism that was projected for such
scenarios.

The visualizations are shown in Fig. 3 as related to the
reconstructions after detecting attacks of three randomly se-



lected images from the COCO dataset. After comparing the
reconstructed images with the original and attacked images,
it can be observed that the reconstructions obtained via the
proposed method, i.e., Fig. 3 (d), are closer to original images,
which again confirms the efficacy of the proposed method.

Fig. 3. Attack detection results: (a) original images; (b)&(c) attacked by
random attack types and error rates; (d) reconstruction from attacks.

V. CONCLUSIONS

In this paper, we have proposed a fuzzy detector-based
adversarial attack detection method, a simple yet effective
replacement to the conventional crisp set-based decision-
making pipelines. Differing from these pipelines, the differ-
ence degrees between clean and attacked feature maps provide
rich information to improve the proposed model’s ability
to detect adversarial attacks. Our evaluation with different
datasets and attacks has demonstrated the high effectiveness of
the proposed method. The proposed fuzzy detector represents
a significant step toward the realization of fuzzy rule-based
adversarial attack detection algorithms and opens many future
research directions that would further improve its accuracy
and generalisation, which could eventually make adversarial
attack detection easily designed for real-world applications.
In the future, we will investigate the potential of assessing
fuzzy rules using a new threshold-based fitness function with
redefined support and confidence measures to further improve
the detection accuracy.
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