
System level simulation - a core method for efficient
design of MEMS and mechatronic systems

Peter Schneider, Christian Bayer, Karsten Einwich, Andreas Köhler
Fraunhofer IIS, Design Automation Division

 Zeunerstr. 38, 01069 Dresden
e-mail: peter.schneider@eas.iis.fraunhofer.de

Abstract— Design of micro systems, MEMS or mechatronic
systems is dominated by the interaction of effects from different
physical domains. One important approach to decrease the
number of design cycles significantly is system level modeling and
simulation. The main challenges for the efficient use of modeling
and simulation are a systematic approach for behavioral
modeling, automated model generation as well as powerful
simulation frameworks. Especially for the latter flexible handling
of different models of computation is crucial.

Keywords: Modeling methodology; System Level Simulation;
Model Generation; Model Order Reduction

I. INTRODUCTION

The design of micro systems, MEMS or mechatronic
systems is characterized by a variety of design approaches for
subsystems and components. Furthermore, it is dominated by
coupled effects from different physical domains. System
integration is often based on experimental setups built up from
prototypes of the system components (transducer, electronics,
and software). Design errors, unclear specification and
incompatibilities between subsystems are therefore often
identified very late in the design process and cause additional
cost and design cycles.

One important approach to decrease the number of such
cycles significantly is system level modeling and simulation.
The main goal is to enable the designers to establish a common
understanding at an early stage, to refine and adjust the
specification and to provide reference models of subsystems to
support the design of specific components. This basic approach
requires a comprehensive view on different sub-domains and
on the corresponding design flows and their mapping on an
appropriate mathematical approach, which is suitable for
system level simulation. Furthermore, aspects like simulation
performance, model accuracy, modeling effort and model
verification as well as IP protection are of particular
importance. Hence the overall efficiency of a system level
simulation approach is crucial for the practical applicability of
design techniques like Monte Carlo analysis, parameter
optimization and design centering.

Today the main challenges for efficient application of
modeling and simulation in the design process of complex
MEMS are systematic model generation and appropriate
modeling techniques as well as the availability of powerful
simulation environments.

In this paper a systematic approach for model generation
and the combination of modeling methods with parametric
model order reduction are presented together with a flexible
simulation framework suitable for system level design of
MEMS.

II. MODELING AND SIMULATION IN MICRO SYSTEM

DESIGN

The current approach for micro system design is dominated
by the use of a variety of simulation tools supporting specific
modeling techniques for different physical domains and
different levels of abstraction, e.g. PDE solvers for component
design and mixed signal simulation for electronics. In the past,
there were several research activities on modeling with a focus
on bridging the gap between different modeling approaches
and providing specific links between those different physical
domains [1-6].

Today, modeling languages like VHDL-AMS, Verilog-
AMS, Modelica, and Simscape are available for system level
simulation. These languages are supported by powerful
simulation tools (SystemVision, AMS-Designer, Dymola,
SimulationX) and – to a certain degree – are complemented by
substantial model libraries. Due to the increasing role of
algorithms in complex sensor systems even software
components have to be considered in the MEMS design
process. This aspect is currently not supported sufficiently by
the above mentioned tools.

Concerning behavioral models, there is still a lack of
methodological approaches for systematic model generation.
Behavior models are a key element for system level simulation.
They can be defined for sub-domains of a system with an
appropriate degree of refinement and then be connected
through interfaces to resemble the whole system. As a
consequence, techniques for automated generation of
appropriate behavior models are required and have to be
developed.

III. SYSTEMATIC APPROACH FOR MODELLING OF MICRO

SYSTEMS

Efficient modeling for system level simulation of micro
systems requires a unified hierarchical modeling approach
derived from [7] and [8] which provides:

 a systematic modeling process,

 the exchange of models of different accuracy including
a stepwise model refinement and

 an interface for different modeling approaches.

To ensure a certain amount of flexibility, the integration of
special simulation algorithms is also of great interest. For
example, selected techniques of co-simulation have to be
supported. Basically, there are three main elements of such an
approach, which will be discussed in the following.

A. System Analysis and Partitioning

For a systematic partitioning of complex dynamical
systems the following strategy has been proved to be suitable:

 Partitioning based on functional aspects with a
minimal number of lumped points or areas of
interaction, e.g. at electrical connections, shafts in
mechanics (functional partitioning),

 Further partitioning into physical domains, like
electrical, mechanical, magnetic (physical
partitioning),

 Partitioning within the physical domains according to
different modeling approaches (network, block
diagram, State chart) (mathematical partitioning) and

 Further refinement into geometrical sub components,
e.g. channels in a fluid system, magnetic cores in a
magnetic network model (geometrical partitioning).

This partitioning can usually be made coarse in a first step
and will be refined during modeling and development,
respectively.

B. Definition of Model Interfaces

The information exchange between models is enabled by
connectors often called model interfaces. In reality, interactions
between subsystems result from energetic coupling. For the
modeling process these coupling effects between subsystems
have to be represented adequately. In case of significant
interactions energy flows must usually be considered. Very
weak interactions can be ideally represented as directed signal
flow, e.g. in block-oriented simulation of control systems.
Depending on the kind of interaction conservative quantities,
i.e. flow quantities i and across quantities u for each
conservative connector, and non-conservative quantities, i.e.
signals a for non-conservative connectors, are used.
Furthermore, for discrete event simulation connectors might
also carry discrete quantities d.

Models should only exchange information concerning
physical quantities, which in reality are present at the
subsystem boundaries. During an iterative refinement further
connectors might therefore be introduced to represent
additional quantities. Physical quantities, which are time-
invariant and apply globally, are specified as parameters.

C. Behavioral Modeling

Behavioral modeling of MEMS is usually based on a
mathematical description which consists of linear or nonlinear

ordinary differential equations and algebraic equations in
implicit form. This set of generally underdetermined
differential-algebraic equations is an implicit description of the
component behavior. It is represented by the solution set for the
given equations in a physically motivated area of validity. For
the determination of single solutions, the model has to be
connected with other models or with external elements in order
to set appropriate boundary conditions. In general, such a
connected or “wired” behavioral model can be represented by

 (1)

with:

x is a vector containing all variables of the “wired”

behavioral model. t is the time and p is the vector of parameters
which are considered to be time-invariant.

The behavioral description of a component is a set of
equations which contains the dependencies between the above-
mentioned interface quantities u, i and a, which are combined
in the vector of terminal variables xk. Besides those connectors,
a system usually depends on a set of inner variables, which are
not visible from outside. Thus, the equations of a behavioral
model also contain a vector s of internal state variables, which
are needed to completely describe the behavior. This
description is called the “terminal behavior description” of the
component and their solution set is the terminal behavior.

Often, the objective of simulation is to calculate the
transient behavior. This might be expressed by the implicit
form:

(2)

with terminal variables ,
and inner state variables ,

time ,

and parameter values .

kx and s are the derivatives of kx and s , respectively.

Equation (2) is an under-determined set of equations as long as
boundary conditions are not given. Every conservative terminal
has two variables referred to as across and flow quantity. Their
dependency is normally described by one equation per
terminal. There are exceptions if there are constraints on
variables, e.g. for Norator or Nullator from network theory [9].

For the calculation of solutions, the boundary conditions
are provided either by the connection to other components with
their respective equations or by assigning values to the terminal

variables. For that purpose basic elements from simulator
model libraries are often used. The overall model is in most
cases is therefore a mixture of structural and behavioral
models. Hence, modeling conventions, e.g. interface quantities,
counting directions etc. between behavioral models and library
elements must be consistent.

For behavioral modeling of a component in general, it is
not possible to state the needed number or structure of
differential equations. The choice of internal variables or
needed auxiliary quantities is also undetermined. These aspects
strongly depend on the methods used for formulation of
equations. In multi-body mechanics, formalisms from
Lagrange or Hamilton are used, in electrical engineering e.g.
modified nodal analysis is very common. For multi-physics
modeling a mixture of methods is also possible.

One important requirement for (2) is that the description of
a component has to be complete and consistent, i.e. the
integration into equation (1) describing the complete system
has to result in a set of equations, which can be solved.

In particular for multi-physical models, where equations are
gathered from different sources, an exact analysis of the chains
of acting elements and connections is necessary. For system
level simulation with automatic partial model generation it is
very useful and necessary to establish a common mathematical
expression for the equations. A suitable mathematical structure
arises from the modified nodal analysis of linear networks in
electronics and will be used for that purpose:

(3)

Considering physical properties of the system, the
equations are formulated so that they fit into the mathematical
structure of (3). An appropriate approach, which worked
satisfactorily within numerous modeling tasks, is described in
[10].

IV. MODELING METHODS

 For complex micro systems especially, modeling based on
the described unified mathematical approach must be
supported by appropriate modeling methods. Figure 1 gives a
very rough overview of possible ways resulting in different
kinds of models.

Figure 1: Modeling methods for MEMS [11]

Physical modeling based on equations from text books
usually leads to so-called white box models, which have
parameters with a clear correspondence to the behavior of the
system. For complex sets of such equations, e.g. for a huge
number of combined basic models, symbolic methods can be
applied for simplification. On the other side multivariate
approximation leads to models, which represent a rather fixed
mapping of input and output variables. Approximation is either
based on measurements or on detailed simulation, e.g. with
FEM.

Model order reduction (MOR) is a method in between. The
most important application for model order reduction is the
integration of detailed models from component design into
system level modeling. In MEMS design, this is of particular
importance as finite element models for micro-mechanical
structures usually reach state space dimensions N of 105 to 107.
MOR is a mathematical method to reduce the number of
internal states according to equation (2). Terminal variables are
preserved and remain as an interface to other models. As a
result, simulation times reduce dramatically, while the
introduced approximation error is negligible.

Our MOR method of choice is multi-point moment
matching based on ration Krylov subspace methods. During the
last decades, this approach proved as an efficient way to reduce
the state space dimension of large scale dynamical systems [1-
6]. Exploiting the sparsity structure of the system matrices,
Krylov methods have a numerical cost of only . The
lack of a global error bound does not carry weight in our
applications where the signals have a limited bandwidth and
local convergence is sufficient.

For the application of rational Krylov methods, expansion
points and the number of moments per expansion point had to
be selected manually by experienced users. Having a push
button solution in mind, we developed an adaptive rational
Krylov subspace based model order reduction algorithm
AMPXT that automatically selects expansion points and
moments to be matched based on an error indicator.

Recently, AMPXT has been extended for rapid parameter
sensitivity computations [1]. This development was motivated
by a growing demand for tools incorporating manufacturing
tolerances during simulation and design for process variation,
yield analysis, reliability studies and design optimization.

A. Basic Methodology

Our starting point is a description of the model as a linear
time-invariant descriptor system. Spatial discretization of
partial differential equations like the heat equation, Maxwell’s
equations or mass-damper-spring systems as well as RCL
circuit equations fit into this framework.

The biggest challenge for the integration of Krylov-
subspace based moment matching methods into Electronic
Design Automation (EDA) software is the difficulty to choose
parameters that determine the approximation error of the
reduced order model (ROM): the set of expansion points and
the number of moments to be matched per expansion point.
Increasing the number of expansion points or the number of
moments may or may not reduce this error, but in any case it

will increase the state space dimension of the ROM.
Furthermore, unless iterative methods are used, each expansion
point involves a computationally expensive matrix
factorization so that the number of expansion points has a
dominating influence to the computation time needed for
generating the ROM. The optimal choice of these parameters
requires a priori knowledge of system characteristics that will
only be made available with high computational effort,
comparable to that spent on simulating the full system.

Figure 2: SEM picture of acceleration sensor (courtesy of R. Bosch GmbH)

Using this method for the acceleration sensor in Figure 2, a
behavioral model was generated to enable an entire system
simulation together with driving and signal processing
algorithms in VHDL-AMS system simulators as well as
MATLAB/Simulink. The behavioral model should have a
minimal state space dimension that allows fast transient
simulations, but it has to reproduce the transfer behavior of the
original structure as well as possible. The descriptor system for
AMPXT has been exported from an ANSYS® finite element
model.

Figure 3 compares the parameter dependent frequency
response of an accelerometer model with 27,225 degrees of
freedom with a parameter dependent reduced order model
having only 24 internal states. The considered parameter is the
thickness of the spring element of the sensor, which varies
between 2.7…3.3µm.

Figure 3: Transfer function of acceleration sensor as function of spring
element thickness

AMPXT can be considered as an efficient push button
solution for reducing the simulation time for MEMS based
systems, as the algorithm manages to automatically generate
very accurate ROMs while the user has to provide only the
frequency range of interest. Expansion points and model
dimension are selected automatically based on an error

indicator that measures the degree of convergence of the
Krylov iterations. Finally, ROMs can be exported to behavioral
modeling languages like VHDL-AMS, Verilog-AMS,
SystemC AMS etc. in order to make automated MOR based
behavior modeling becomes available for system simulation of
entire MEMS devices.

Furthermore, AMPXT can be used for rapid computation of
transfer function sensitivities with respect to design parameters.
This results in a great reduction of computation time especially
in the design optimization process because MOR-based
computation of sensitivities only requires a very small
additional effort compared to exclusively calculating the
transmission behavior.

V. SIMULATION ENVIRONMENT

Nowadays there is an ongoing trend to “digital assisted
analog". In several applications more and more mechanics and
analog electronics will be complemented by digital controllers
and software algorithms. An example is the use of low cost
transducers in combination with appropriate signal processing
to compensate non-ideal behavior of the sensor element.

The consequence of those trends for the design process is
that it will be ever more difficult or even impossible to consider
the analog components independent of the digital parts and to
design the integrated circuits without detailed knowledge of the
systems' environment. This is why executable overall system
level models become essential for the design of an increasing
amount of system solutions.

Basically there are different possibilities to handle different
models of computation in system level simulation. For the
comprehensive consideration of non-electrical components,
analog and digital electronics as well as software, we decided
to extend SystemC. Therefore, we contributed the essential
technology to the OSCI (now Accellera Systems Initiative)
SystemC-AMS 1.0 standard [14].

SystemC is a C++ based hardware description language
with the focus on system architectural level design of large
digital hard- and software systems. It is hosted and
standardized (IEEE-1666) by the Open SystemC Initiative
(OSCI), a non-profit organization embracing numerous
semiconductor companies and EDA vendors. OSCI provides
also a so called proof-of-concept implementation on an open
source basis. Numerous EDA vendors support SystemC
modelling and simulation - mostly based on or derived from
the OSCI implementation.

Due to the C++ nature, SystemC is very flexible and
powerful. SystemC in particular supports methodologies that
enable the interaction of hard- and software as well as
modeling at high levels of abstraction to facilitate real system
level simulations while achieving the required simulation
performance.

Following the SystemC philosophy the SystemC AMS
extensions focus on abstract modeling to permit overall system
level simulations of “real-time" application scenarios. This
requires a simulation performance which is orders of
magnitude higher than achieved by models described with

Frequency
(Hz)

FOM, dim=27225
ROM, dim=24

“classical” hardware description languages like VHDL-AMS
and Verrilog-AMS. SystemC AMS introduces several abstract
models of computation which promise a very fast simulation
[13]. For system level modeling the restrictions usually implied
by the abstract models of computation (MoC) are not a limit.
Moreover, the modeling of system level behavior becomes
much easier in many cases. Thus the first version of the
SystemC AMS standard includes means for timed dataflow,
linear signal flow and linear network modeling. These MoCs
provide enough facilities for abstract descriptions of a wide
range of applications, especially for communication systems.

A. Brief SystemC AMS 1.0 Language Overview

The SystemC AMS extensions are fully compatible with
the SystemC language standard as shown in Figure 4. Thus, it
does not change the basic SystemC and introduces no
restrictions in the usage of the available SystemC language.
The introduced new models of computation cannot directly be
mapped to the generic MoC of SystemC as they are not based
on communication of processes. They represent an equation
system instead. Thus, each AMS primitive represents a
contribution to an overall equation system e.g. in the form of
equation (3), which has to be set up during elaboration and
solved while simulating. The infrastructure for the SystemC
AMS extension must thus support these mechanisms.

The AMS language standard defines the execution
semantics of the timed dataflow (TDF), linear signal flow
(LSF), and electrical linear network (ELN) models of
computation and gives an insight on the underlying enabling
technology such as the linear solver, scheduler, and
synchronization layer. The language has been designed to be
extensible. However in the current 1.0 standard, the interfaces
to and class definitions of this enabling technology is
implementation-defined. The AMS designer (end-user) can
take advantage of dedicated classes and interfaces to create
TDF, LSF or ELN models by using the predefined modules,
ports, terminals, signals, and nodes.

Figure 4: SystemC AMS Language architecture

Besides the time domain simulation, the SystemC AMS
standard defines means of small signal modeling for frequency
domain and frequency noise domain analysis.

B. Linear signal flow (LSF) and electrical linear networks
(ELN)

Both models of computation consist of pre-defined
elements. The LSF MoC thus defines non-conservative

(connected by directed signals) modules like adder, gain,
derivation and integration. The ELN MoC consists of
conservative electrical elements like resistors, capacitors and
inductors.

Besides these elements belonging to one model of
computation several elements are available, which can be
connected to other domains. E.g. for LSF, these are mux,
demux or sources and for ELN these are switches, voltage and
current sources. ELN and LSF models are composed in
hierarchical modules in the standard SystemC way.

C. Extension of SystemC AMS to MEMS Simulation

As mentioned before, the SystemC AMS language
architecture has to be designed in a way to be extensible. The
current SystemC AMS standard was heavily driven by
communication applications. However, in the meantime
especially automotive applications have a strongly increasing
demand on system level investigations and in particular to
understand the interaction of the heterogeneous analog parts
and the software algorithm.

Figure 5: Fiber Optical Gyrosensor system
 (Source: Northrup Grumman Litef GmbH)

Compared to communication applications, they have
strongly non-linear behavior at the front- and backend – e.g.
pwm (pulse width modulation) driver stages or non-linear
sensor characteristics. One example may be an airbag system
where the squib driver is part of a non-linear control loop with
a squib equivalent circuit.

Figure 6: Principle of a fiber optical gyro sensor system [15]

Another example, where SystemC AMS was successfully
applied for modeling, is the optical gyro sensor system shown
in Figure 5. As shown in the block diagram in Figure 6 to
electronics also important components of the optical subsystem
have to be modeled to represent the specific behavior of the
sensor system (see Figure 7).

Different imperfections like non-linearities in the detector
and amplifier can create a bias. Due to the complex interaction
with the optical part, it may result in effects like the so called
“Bunny Ears” [16] – an important hindrance to increase the
yield. A system level simulation will permit to understand
those effects due to 100% reproducibility of simulation runs
and not limited introspection and debug possibilities. Thus,
they will enable the development of compensation algorithms.

Figure 7: Simulation of the Mixed-Signal control loops

 Anyway, those parts of the systems in the example that
need highly detailed model descriptions are often rather small.
There is usually just a small number of devices at the front- or
back-end of the circuit. With languages like VHDL-AMS or
Verilog-AMS, those parts can be easily modeled. However,
those languages do not support modeling facilities at higher
level of abstraction like dataflow or transaction level modeling
(TLM). As discussed before, these facilities are required to
achieve the necessary simulation performance. First
investigations have thus been started to introduce modeling
capabilities similar to those of languages like Verilog-AMS
and VHDL-AMS. In a system level context, the non-linear
parts are usually very small and independent from each other.
They will not dominate the simulation performance.

Especially in the automotive context the world becomes
heterogeneous. We have not only to deal with electrical signals
– furthermore we have to deal with other physical domains like
mechanics, magnetic and fluidic. Hence, concepts have to be
developed to deal with different physical domains and
dimensions.

VI. CONCLUSIONS

In the paper a systematic approach for system level
simulation of heterogeneous systems was discussed. The
essential elements of this procedure are partitioning, the
definition of appropriate interfaces and the derivation of
behavioral models. These models consist of a set of
differential-algebraic equations, which have a common
mathematical structure. Hence, a combination of models within
one simulation environment becomes feasible. On the other

hand, models can be very large or complex according to the
simulation method of the sub-system. We therefore use model
order reduction methods and moreover enhanced their
performance. This is crucial as the simulation time for the
whole system decreases significantly. For the demonstration of
system level simulation we used the SystemC platform.
Originally it was extended to SystemC AMS to incorporate
analog devices. But the language was designed to be extensible
and we finally used it as simulation environment for an optical
gyro sensor. This proofs the ability of the described method to
combine models of different physical domains into one model
at system level. Especially in the MEMS application area this
hierarchical modeling approach becomes increasingly
important as electronic and mechanical behavior in many cases
cannot be treated separately anymore in the design process.

REFERENCES
[1] Wachutka, G.: Tailored modeling: a way to the 'virtual microtransducer

fab' ? Sensor and Actuators A 46-47 (1995), pp. 603-612.

[2] Senturia, S. D.; Aluru, N.; White, J.: Simulating the behavior of MEMS
devices: computational methods and needs. IEEE Computational
Science & Engineering, January 1997, pp. 30-54.

[3] Neul, R. et al.: A modeling approach to include mechanical microsystem
components into system simulation. Proc. Design, Automation & Test
Conf. (DATE’98), Paris, 1998, pp. 510-517.

[4] Fedder, G. K.; Jing, Q. A.: A hierarchical circuit-level design
methodology for micromechanical systems. IEEE Trans. CAS-II
46(1999)10, 1999, pp. 1309-1315.

[5] Lorenz, G.: Netzwerksimulation mikromechanischer Systeme.
Dissertation Universität Bremen, Shaker Verlag, Aachen, 1999.

[6] Mukherjee, T.: CAD for MEMS design. Proc. DTIP2000 - Symposium
on Design, Test, Integration, and Packaging of MEMS/ MOEMS, Paris,
2000, pp. 3-14.

[7] Clauß, C.; Haase, J.; Kurth, G.; Schwarz, P.: Extended Admittance
Description of Nonli¬near n-Poles. Archiv für Elektronik
u.Übertragungstechnik 49(1995)2, 1995, pp. 91-97.

[8] Schneider, P.; Huck, E.; Schwarz, P.: A Modeling Approach for
Mechatronic Systems - Modeling and Simulation of an Elevator System.
XI. International Symposium in Theoretical Electrical Engineering,
Linz, 19.-22. August 2001.

[9] Reibiger, A.: Über das Klemmenverhalten von Netzwerken,
Wissenschaftliche Zeitung TU Dresden, 35, 1986, pp. 165–173.

[10] Schneider, P.: Modellierungsmethodik für heterogene Systeme der
Mikrosystemtechnik und Mechatronik. Ph.D. (Dr.-Ing.) thesis Dresden
University of Technology, 2010, TUDpress, Dresden.

[11] Schwarz, P.; Schneider, P.: Model Library and Tool Support for MEMS
Simulation. Proc. Int. Symposium on Microelectronic and MEMS
Technology, Edinburgh, Mai 2001, SPIE Proceedings Series Volume
4407, SPIE, 2001.

[12] Köhler, A.; Reitz, S.; Schneider, P.: Sensitivity analysis and adaptive
multi-point multi-moment model order reduction in MEMS design.
Analog Integrated Circuits and Signal Processing, Springer Netherlands,
DOI 10.1007/s10470-011-9825-0 ISSN 0925-1030

[13] Einwich, K.: Virtual prototyping for smart systems for electric, safe and
networked mobility. Proc. 15th International Forum on Advanced
Microsystems for Automotive Applications (AMAA 2011) "Smart
Systems for Electric, Safe and Networked Mobility, 29.-30.06.2011
Berlin, Springer, 2011, pp. 305-314

[14] “Standard SystemC AMS extensions Language Reference Manual”,
Open SystemC Initiative, March 8 2010

[15] Barbour, N.: Gyroscope. AccessScience, ©McGraw-Hill Companies,
2008, http://www.accessscience.com /content/Gyroscope/304100

[16] Handrich, G.: Fiber Optic Gyro Systems and MEMS Accelerometer.
Advances in Navigation Sensors and Integration Technology, NATO
Research and Technology Organisation, February 2004

