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Abstract— Design of micro systems, MEMS or mechatronic 
systems is dominated by the interaction of effects from different 
physical domains. One important approach to decrease the 
number of design cycles significantly is system level modeling and 
simulation. The main challenges for the efficient use of modeling 
and simulation are a systematic approach for behavioral 
modeling, automated model generation as well as powerful 
simulation frameworks. Especially for the latter flexible handling 
of different models of computation is crucial.  
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I.  INTRODUCTION 

The design of micro systems, MEMS or mechatronic 
systems is characterized by a variety of design approaches for 
subsystems and components. Furthermore, it is dominated by 
coupled effects from different physical domains. System 
integration is often based on experimental setups built up from 
prototypes of the system components (transducer, electronics, 
and software). Design errors, unclear specification and 
incompatibilities between subsystems are therefore often 
identified very late in the design process and cause additional 
cost and design cycles. 

One important approach to decrease the number of such 
cycles significantly is system level modeling and simulation. 
The main goal is to enable the designers to establish a common 
understanding at an early stage, to refine and adjust the 
specification and to provide reference models of subsystems to 
support the design of specific components. This basic approach 
requires a comprehensive view on different sub-domains and 
on the corresponding design flows and their mapping on an 
appropriate mathematical approach, which is suitable for 
system level simulation. Furthermore, aspects like simulation 
performance, model accuracy, modeling effort and model 
verification as well as IP protection are of particular 
importance. Hence the overall efficiency of a system level 
simulation approach is crucial for the practical applicability of 
design techniques like Monte Carlo analysis, parameter 
optimization and design centering. 

Today the main challenges for efficient application of 
modeling and simulation in the design process of complex 
MEMS are systematic model generation and appropriate 
modeling techniques as well as the availability of powerful 
simulation environments.  

In this paper a systematic approach for model generation 
and the combination of modeling methods with parametric 
model order reduction are presented together with a flexible 
simulation framework suitable for system level design of 
MEMS. 

II. MODELING AND SIMULATION IN MICRO SYSTEM 

DESIGN 

The current approach for micro system design is dominated 
by the use of a variety of simulation tools supporting specific 
modeling techniques for different physical domains and 
different levels of abstraction, e.g. PDE solvers for component 
design and mixed signal simulation for electronics. In the past, 
there were several research activities on modeling with a focus 
on bridging the gap between different modeling approaches 
and providing specific links between those different physical 
domains [1-6]. 

Today, modeling languages like VHDL-AMS, Verilog-
AMS, Modelica, and Simscape are available for system level 
simulation. These languages are supported by powerful 
simulation tools (SystemVision, AMS-Designer, Dymola, 
SimulationX) and – to a certain degree – are complemented by 
substantial model libraries. Due to the increasing role of 
algorithms in complex sensor systems even software 
components have to be considered in the MEMS design 
process. This aspect is currently not supported sufficiently by 
the above mentioned tools.  

Concerning behavioral models, there is still a lack of 
methodological approaches for systematic model generation. 
Behavior models are a key element for system level simulation. 
They can be defined for sub-domains of a system with an 
appropriate degree of refinement and then be connected 
through interfaces to resemble the whole system. As a 
consequence, techniques for automated generation of 
appropriate behavior models are required and have to be 
developed.  

III. SYSTEMATIC APPROACH FOR MODELLING OF MICRO 

SYSTEMS 

Efficient modeling for system level simulation of micro 
systems requires a unified hierarchical modeling approach 
derived from [7] and [8] which provides: 

 a systematic modeling process, 



 the exchange of models of different accuracy including 
a stepwise model refinement and 

 an interface for different modeling approaches. 

To ensure a certain amount of flexibility, the integration of 
special simulation algorithms is also of great interest. For 
example, selected techniques of co-simulation have to be 
supported. Basically, there are three main elements of such an 
approach, which will be discussed in the following. 

A. System Analysis and Partitioning  

For a systematic partitioning of complex dynamical 
systems the following strategy has been proved to be suitable: 

 Partitioning based on functional aspects with a 
minimal number of lumped points or areas of 
interaction, e.g. at electrical connections, shafts in 
mechanics (functional partitioning), 

 Further partitioning into physical domains, like 
electrical, mechanical, magnetic (physical 
partitioning),  

 Partitioning within the physical domains according to 
different modeling approaches (network, block 
diagram, State chart) (mathematical partitioning) and  

 Further refinement into geometrical sub components, 
e.g. channels in a fluid system, magnetic cores in a 
magnetic network model (geometrical partitioning). 

This partitioning can usually be made coarse in a first step 
and will be refined during modeling and development, 
respectively.  

B. Definition of Model Interfaces 

The information exchange between models is enabled by 
connectors often called model interfaces. In reality, interactions 
between subsystems result from energetic coupling. For the 
modeling process these coupling effects between subsystems 
have to be represented adequately. In case of significant 
interactions energy flows must usually be considered. Very 
weak interactions can be ideally represented as directed signal 
flow, e.g. in block-oriented simulation of control systems. 
Depending on the kind of interaction conservative quantities, 
i.e. flow quantities i and across quantities u for each 
conservative connector, and non-conservative quantities, i.e. 
signals a for non-conservative connectors, are used. 
Furthermore, for discrete event simulation connectors might 
also carry discrete quantities d.    

Models should only exchange information concerning 
physical quantities, which in reality are present at the 
subsystem boundaries. During an iterative refinement further 
connectors might therefore be introduced to represent 
additional quantities. Physical quantities, which are time-
invariant and apply globally, are specified as parameters. 

C. Behavioral Modeling  

Behavioral modeling of MEMS is usually based on a 
mathematical description which consists of linear or nonlinear 

ordinary differential equations and algebraic equations in 
implicit form. This set of generally underdetermined 
differential-algebraic equations is an implicit description of the 
component behavior. It is represented by the solution set for the 
given equations in a physically motivated area of validity. For 
the determination of single solutions, the model has to be 
connected with other models or with external elements in order 
to set appropriate boundary conditions. In general, such a 
connected or “wired” behavioral model can be represented by 

 

 (1) 

with:  

           

 

 
x is a vector containing all variables of the “wired” 

behavioral model. t is the time and p is the vector of parameters 
which are considered to be time-invariant. 

The behavioral description of a component is a set of 
equations which contains the dependencies between the above-
mentioned interface quantities u, i and a, which are combined 
in the vector of terminal variables xk. Besides those connectors, 
a system usually depends on a set of inner variables, which are 
not visible from outside. Thus, the equations of a behavioral 
model also contain a vector s of internal state variables, which 
are needed to completely describe the behavior. This 
description is called the “terminal behavior description” of the 
component and their solution set is the terminal behavior. 

Often, the objective of simulation is to calculate the 
transient behavior. This might be expressed by the implicit 
form: 

(2) 
 

with terminal variables , 
and inner state variables , 

time , 

and parameter values . 

kx  and s  are the derivatives of kx  and s , respectively.  

Equation (2) is an under-determined set of equations as long as 
boundary conditions are not given. Every conservative terminal 
has two variables referred to as across and flow quantity. Their 
dependency is normally described by one equation per 
terminal. There are exceptions if there are constraints on 
variables, e.g. for Norator or Nullator from network theory [9]. 

For the calculation of solutions, the boundary conditions 
are provided either by the connection to other components with 
their respective equations or by assigning values to the terminal 



variables. For that purpose basic elements from simulator 
model libraries are often used. The overall model is in most 
cases is therefore a mixture of structural and behavioral 
models. Hence, modeling conventions, e.g. interface quantities, 
counting directions etc. between behavioral models and library 
elements must be consistent. 

For behavioral modeling of a component in general, it is 
not possible to state the needed number or structure of 
differential equations. The choice of internal variables or 
needed auxiliary quantities is also undetermined. These aspects 
strongly depend on the methods used for formulation of 
equations. In multi-body mechanics, formalisms from 
Lagrange or Hamilton are used, in electrical engineering e.g. 
modified nodal analysis is very common. For multi-physics 
modeling a mixture of methods is also possible.  

One important requirement for (2) is that the description of 
a component has to be complete and consistent, i.e. the 
integration into equation (1) describing the complete system 
has to result in a set of equations, which can be solved. 

In particular for multi-physical models, where equations are 
gathered from different sources, an exact analysis of the chains 
of acting elements and connections is necessary. For system 
level simulation with automatic partial model generation it is 
very useful and necessary to establish a common mathematical 
expression for the equations. A suitable mathematical structure 
arises from the modified nodal analysis of linear networks in 
electronics and will be used for that purpose: 
 

        
(3) 

   

Considering physical properties of the system, the 
equations are formulated so that they fit into the mathematical 
structure of (3). An appropriate approach, which worked 
satisfactorily within numerous modeling tasks, is described in 
[10]. 

IV. MODELING METHODS 

 For complex micro systems especially, modeling based on 
the described unified mathematical approach must be 
supported by appropriate modeling methods. Figure 1 gives a 
very rough overview of possible ways resulting in different 
kinds of models. 

 
  

Figure 1: Modeling methods for MEMS [11] 

Physical modeling based on equations from text books 
usually leads to so-called white box models, which have 
parameters with a clear correspondence to the behavior of the 
system. For complex sets of such equations, e.g. for a huge 
number of combined basic models, symbolic methods can be 
applied for simplification. On the other side multivariate 
approximation leads to models, which represent a rather fixed 
mapping of input and output variables. Approximation is either 
based on measurements or on detailed simulation, e.g. with 
FEM.  

Model order reduction (MOR) is a method in between. The 
most important application for model order reduction is the 
integration of detailed models from component design into 
system level modeling. In MEMS design, this is of particular 
importance as finite element models for micro-mechanical 
structures usually reach state space dimensions N of 105 to 107. 
MOR is a mathematical method to reduce the number of 
internal states according to equation (2). Terminal variables are 
preserved and remain as an interface to other models. As a 
result, simulation times reduce dramatically, while the 
introduced approximation error is negligible.  

Our MOR method of choice is multi-point moment 
matching based on ration Krylov subspace methods. During the 
last decades, this approach proved as an efficient way to reduce 
the state space dimension of large scale dynamical systems [1-
6]. Exploiting the sparsity structure of the system matrices, 
Krylov methods have a numerical cost of only . The 
lack of a global error bound does not carry weight in our 
applications where the signals have a limited bandwidth and 
local convergence is sufficient. 

For the application of rational Krylov methods, expansion 
points and the number of moments per expansion point had to 
be selected manually by experienced users. Having a push 
button solution in mind, we developed an adaptive rational 
Krylov subspace based model order reduction algorithm 
AMPXT that automatically selects expansion points and 
moments to be matched based on an error indicator. 

Recently, AMPXT has been extended for rapid parameter 
sensitivity computations [1]. This development was motivated 
by a growing demand for tools incorporating manufacturing 
tolerances during simulation and design for process variation, 
yield analysis, reliability studies and design optimization. 

A. Basic Methodology 

Our starting point is a description of the model as a linear 
time-invariant descriptor system. Spatial discretization of 
partial differential equations like the heat equation, Maxwell’s 
equations or mass-damper-spring systems as well as RCL 
circuit equations fit into this framework.  

The biggest challenge for the integration of Krylov-
subspace based moment matching methods into Electronic 
Design Automation (EDA) software is the difficulty to choose 
parameters that determine the approximation error of the 
reduced order model (ROM): the set of expansion points and 
the number of moments to be matched per expansion point. 
Increasing the number of expansion points or the number of 
moments may or may not reduce this error, but in any case it 



will increase the state space dimension of the ROM. 
Furthermore, unless iterative methods are used, each expansion 
point involves a computationally expensive matrix 
factorization so that the number of expansion points has a 
dominating influence to the computation time needed for 
generating the ROM. The optimal choice of these parameters 
requires a priori knowledge of system characteristics that will 
only be made available with high computational effort, 
comparable to that spent on simulating the full system.  

 
Figure 2: SEM picture of acceleration sensor (courtesy of R. Bosch GmbH) 

Using this method for the acceleration sensor in Figure 2, a 
behavioral model was generated to enable an entire system 
simulation together with driving and signal processing 
algorithms in VHDL-AMS system simulators as well as 
MATLAB/Simulink. The behavioral model should have a 
minimal state space dimension that allows fast transient 
simulations, but it has to reproduce the transfer behavior of the 
original structure as well as possible. The descriptor system for 
AMPXT has been exported from an ANSYS® finite element 
model. 

Figure 3 compares the parameter dependent frequency 
response of an accelerometer model with 27,225 degrees of 
freedom with a parameter dependent reduced order model 
having only 24 internal states. The considered parameter is the 
thickness of the spring element of the sensor, which varies 
between 2.7…3.3µm. 

 

Figure 3: Transfer function of acceleration sensor as function of spring 
element thickness 

AMPXT can be considered as an efficient push button 
solution for reducing the simulation time for MEMS based 
systems, as the algorithm manages to automatically generate 
very accurate ROMs while the user has to provide only the 
frequency range of interest. Expansion points and model 
dimension are selected automatically based on an error 

indicator that measures the degree of convergence of the 
Krylov iterations. Finally, ROMs can be exported to behavioral 
modeling languages like VHDL-AMS, Verilog-AMS,  
SystemC AMS etc. in order to make automated MOR based 
behavior modeling becomes available for system simulation of 
entire MEMS devices.  

Furthermore, AMPXT can be used for rapid computation of 
transfer function sensitivities with respect to design parameters. 
This results in a great reduction of computation time especially 
in the design optimization process because MOR-based 
computation of sensitivities only requires a very small 
additional effort compared to exclusively calculating the 
transmission behavior. 

V. SIMULATION ENVIRONMENT 

Nowadays there is an ongoing trend to “digital assisted 
analog". In several applications more and more mechanics and 
analog electronics will be complemented by digital controllers 
and software algorithms. An example is the use of low cost 
transducers in combination with appropriate signal processing 
to compensate non-ideal behavior of the sensor element.  

The consequence of those trends for the design process is 
that it will be ever more difficult or even impossible to consider 
the analog components independent of the digital parts and to 
design the integrated circuits without detailed knowledge of the 
systems' environment. This is why executable overall system 
level models become essential for the design of an increasing 
amount of system solutions.  

Basically there are different possibilities to handle different 
models of computation in system level simulation. For the 
comprehensive consideration of non-electrical components, 
analog and digital electronics as well as software, we decided 
to extend SystemC. Therefore, we contributed the essential 
technology to the OSCI (now Accellera Systems Initiative) 
SystemC-AMS 1.0 standard [14].   

SystemC is a C++ based hardware description language 
with the focus on system architectural level design of large 
digital hard- and software systems. It is hosted and 
standardized (IEEE-1666) by the Open SystemC Initiative 
(OSCI), a non-profit organization embracing numerous 
semiconductor companies and EDA vendors. OSCI provides 
also a so called proof-of-concept implementation on an open 
source basis. Numerous EDA vendors support SystemC 
modelling and simulation - mostly based on or derived from 
the OSCI implementation. 

Due to the C++ nature, SystemC is very flexible and 
powerful. SystemC in particular supports methodologies that 
enable the interaction of hard- and software as well as 
modeling at high levels of abstraction to facilitate real system 
level simulations while achieving the required simulation 
performance.  

Following the SystemC philosophy the SystemC AMS 
extensions focus on abstract modeling to permit overall system 
level simulations of “real-time" application scenarios. This 
requires a simulation performance which is orders of 
magnitude higher than achieved by models described with 
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“classical” hardware description languages like VHDL-AMS 
and Verrilog-AMS. SystemC AMS introduces several abstract 
models of computation which promise a very fast simulation 
[13]. For system level modeling the restrictions usually implied 
by the abstract models of computation (MoC) are not a limit. 
Moreover, the modeling of system level behavior becomes 
much easier in many cases. Thus the first version of the 
SystemC AMS standard includes means for timed dataflow, 
linear signal flow and linear network modeling. These MoCs 
provide enough facilities for abstract descriptions of a wide 
range of applications, especially for communication systems.  

A. Brief SystemC AMS 1.0 Language Overview 

The SystemC AMS extensions are fully compatible with 
the SystemC language standard as shown in Figure 4. Thus, it 
does not change the basic SystemC and introduces no 
restrictions in the usage of the available SystemC language. 
The introduced new models of computation cannot directly be 
mapped to the generic MoC of SystemC as they are not based 
on communication of processes. They represent an equation 
system instead. Thus, each AMS primitive represents a 
contribution to an overall equation system e.g. in the form of 
equation (3), which has to be set up during elaboration and 
solved while simulating. The infrastructure for the SystemC 
AMS extension must thus support these mechanisms. 

The AMS language standard defines the execution 
semantics of the timed dataflow (TDF), linear signal flow 
(LSF), and electrical linear network (ELN) models of 
computation and gives an insight on the underlying enabling 
technology such as the linear solver, scheduler, and 
synchronization layer. The language has been designed to be 
extensible. However in the current 1.0 standard, the interfaces 
to and class definitions of this enabling technology is 
implementation-defined. The AMS designer (end-user) can 
take advantage of dedicated classes and interfaces to create 
TDF, LSF or ELN models by using the predefined modules, 
ports, terminals, signals, and nodes. 

 

Figure 4: SystemC AMS Language architecture 

Besides the time domain simulation, the SystemC AMS 
standard defines means of small signal modeling for frequency 
domain and frequency noise domain analysis. 

B. Linear signal flow (LSF) and electrical linear networks 
(ELN) 

Both models of computation consist of pre-defined 
elements. The LSF MoC thus defines non-conservative 

(connected by directed signals) modules like adder, gain, 
derivation and integration. The ELN MoC consists of 
conservative electrical elements like resistors, capacitors and 
inductors. 

Besides these elements belonging to one model of 
computation several elements are available, which can be 
connected to other domains. E.g. for LSF, these are mux, 
demux or sources and for ELN these are switches, voltage and 
current sources. ELN and LSF models are composed in 
hierarchical modules in the standard SystemC way.  

C. Extension of SystemC AMS to MEMS Simulation 

As mentioned before, the SystemC AMS language 
architecture has to be designed in a way to be extensible. The 
current SystemC AMS standard was heavily driven by 
communication applications. However, in the meantime 
especially automotive applications have a strongly increasing 
demand on system level investigations and in particular to 
understand the interaction of the heterogeneous analog parts 
and the software algorithm. 

 
Figure 5: Fiber Optical Gyrosensor system 
 (Source: Northrup Grumman Litef GmbH) 

Compared to communication applications, they have 
strongly non-linear behavior at the front- and backend – e.g. 
pwm (pulse width modulation) driver stages or non-linear 
sensor characteristics. One example may be an airbag system 
where the squib driver is part of a non-linear control loop with 
a squib equivalent circuit.  

 

Figure 6: Principle of a fiber optical gyro sensor system [15] 



Another example, where SystemC AMS was successfully 
applied for modeling, is the optical gyro sensor system shown 
in Figure 5. As shown in the block diagram in Figure 6 to 
electronics also important components of the optical subsystem 
have to be modeled to represent the specific behavior of the 
sensor system (see Figure 7). 

Different imperfections like non-linearities in the detector 
and amplifier can create a bias. Due to the complex interaction 
with the optical part, it may result in effects like the so called 
“Bunny Ears” [16] – an important hindrance to increase the 
yield. A system level simulation will permit to understand 
those effects due to 100% reproducibility of simulation runs 
and not limited introspection and debug possibilities. Thus, 
they will enable the development of compensation algorithms. 

 

 

Figure 7: Simulation of the Mixed-Signal control loops  

 Anyway, those parts of the systems in the example that 
need highly detailed model descriptions are often rather small. 
There is usually just a small number of  devices at the front- or 
back-end of the circuit. With languages like VHDL-AMS or 
Verilog-AMS, those parts can be easily modeled. However, 
those languages do not support modeling facilities at higher 
level of abstraction like dataflow or transaction level modeling 
(TLM). As discussed before, these facilities are required to 
achieve the necessary simulation performance. First 
investigations have thus been started to introduce modeling 
capabilities similar to those of languages like Verilog-AMS 
and VHDL-AMS. In a system level context, the non-linear 
parts are usually very small and independent from each other. 
They will not dominate the simulation performance. 

Especially in the automotive context the world becomes 
heterogeneous. We have not only to deal with electrical signals 
– furthermore we have to deal with other physical domains like 
mechanics, magnetic and fluidic. Hence, concepts have to be 
developed to deal with different physical domains and 
dimensions.  

VI. CONCLUSIONS 

In the paper a systematic approach for system level 
simulation of heterogeneous systems was discussed. The 
essential elements of this procedure are partitioning, the 
definition of appropriate interfaces and the derivation of 
behavioral models. These models consist of a set of 
differential-algebraic equations, which have a common 
mathematical structure. Hence, a combination of models within 
one simulation environment becomes feasible. On the other 

hand, models can be very large or complex according to the 
simulation method of the sub-system. We therefore use model 
order reduction methods and moreover enhanced their 
performance. This is crucial as the simulation time for the 
whole system decreases significantly. For the demonstration of 
system level simulation we used the SystemC platform. 
Originally it was extended to SystemC AMS to incorporate 
analog devices. But the language was designed to be extensible 
and we finally used it as simulation environment for an optical 
gyro sensor. This proofs the ability of the described method to 
combine models of different physical domains into one model 
at system level. Especially in the MEMS application area this 
hierarchical modeling approach becomes increasingly 
important as electronic and mechanical behavior in many cases 
cannot be treated separately anymore in the design process.  
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