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Abstract—Automated signal processing in analytical instru-
mentation is today required for the analysis of highly complex
biomedical samples. Baseline estimation techniques are often used
to correct long term instrument contamination or degradation.
They are essential for accurate peak area integration. Some
methods approach the baseline estimation iteratively, trying
to ignore peaks which do not belong to the baseline. The
proposed method in this work consists of a modification of the
Asymmetric Least Squares (ALS) baseline removal technique
developed by Eilers and Boelens. The ALS technique suffers from
bias in the presence of intense peaks (in relation to the noise
level). This is typical of diverse instrumental techniques such
as Gas Chromatography–Mass Spectrometry (GC-MS) or Gas
Chromatography–Ion Mobility Spectrometry (GC–IMS). In this
work, we propose a modification (named psalsa) to the asymmetry
weights of the original ALS method in order to better reject
large peaks above the baseline. Our method will be compared to
several versions of the ALS algorithm using synthetic and real
GC signals. Results show that our proposal improves previous
versions being more robust to parameter variations and providing
more accurate peak areas.

I. INTRODUCTION

Several instrumental techniques such as GC–MS or GC–
IMS produce signals consisting of chemical information, base-
line and noise. In order to extract reliable chemical informa-
tion, such as a list of peak positions and peak areas, it is crucial
to denoise the signal and remove its baseline. Analysts usually
manually select the peak boundaries and fit a curve to them to
estimate the baseline of each peak, however manual baseline
estimation is very expensive when the number of peaks in the
signal increases (such as in complex biological samples) or
when there is a large number of signals to analyse. Moreover,
the analyst adds a subjective component to peak identification
that depends on her/his expertise. For this cases, an automatic
baseline estimation method is needed.

There are many automatic baseline estimation methods
published, such as methods based on polynomial fitting [1],
methods based on weighted least squares [2]–[4] or methods
based on wavelets [5].

In this work, a modification to the Asymmetric Least
Squares method is proposed. This modification is presented in
order to improve the performance of the baseline estimation
when large peaks are present in the signal.

This paper is organized as follows: First a description of
the synthetic and real datasets is given on section II. Then, on

section III the three methods under comparison are described:
in section III-A the original ALS method [6] is summarized;
in section III-B the improved method airPLS [3] is described;
and finally our proposed method “Peaked Signal’s Asymmetric
Least Squares Algorithm” (psalsa) is detailed in section III-C.
Results and discussion are shown on sections IV and V
respectively. Finally some conclusions are given.

II. DATA DESCRIPTION

Two Gas Chromatography datasets are used to compare the
different methods: On the one hand, a synthetic dataset offers
the possibility to assess objectively the performance of the
different methods, as we know the real baseline added to the
synthetic signal and therefore we can compute the error of
the different baseline estimations. On the other hand, a real
dataset lets us check how the different methods perform on
real world samples, which inevitably are more complex than
synthetic chromatograms.

A. Synthetic dataset

A dataset with Nsynth = 100 samples was generated.
Each synthetic chromatogram lasted 30 minutes long with a
sampling frequency of 2 Hz. Each sample was the combination
of three components: a baseline, noise and a signal consisting
of the addition of several peaks.

A synthetic chromatogram is shown at figure 1
1) Peak model: In order to generate the signal, sev-

eral peaks are generated and placed randomly on the sig-
nal. As peak density of 0.25 peaks/s is chosen, a total of
450 peaks/sample are generated.

Peaks are modelled following a Generalized Exponential
(GEX) function. The generalized exponential function [7] is
an empirical peak model that has been used successfully [8]
to describe chromatographic peaks, taking into account factors
such as peak shape and peak asymmetry.

The GEX model is given by:
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with a > 0 and b > 1 are constants, h is the peak height,
tm is the location of peak maximum and t0 is the time where
the peak starts emerging from the baseline.



Fig. 1. Synthetic chromatogram

Peak model parameters are sampled from different proba-
bility distributions as follows:
• a: Uniform distribution with min = 0.5 and max = 2.
• b: Uniform distribution with min = 5 and max = 8.
• h: LogNormal distribution with µ = log(400) and σ =

log(200).
• t0: Uniform distribution in the retention time range.
• tm: t0 + 2 + Poisson distribution of λ = 4

By using those values we obtain a set of synthetic peaks
similar to those of the real dataset.

2) Baseline model: In order to generate a realistic baseline,
it is generated as the addition of three contributions:

b(t) = ArcTan(t) + Linear(t) + Sinusoidal(t) (2)

where

ArcTan(t) = Alow +
2(Ahigh −Alow)

π
· arctan

(
π · (t− t0)

tr

)
Linear(t) = mt+ n

Sinusoidal(t) = A sin(2πf · t+ ϕ)

The parameters for each baseline contribution are chosen
from random uniform distributions in the following ranges:
• ArcTan: Alow ∈ [2, 3] · 105, Ahigh ∈ [1, 1.5] · 106, t0 ∈

[1100, 1300], tr ∈ [300, 700]
• Linear: m ∈ [3.5, 6] · 105, n ∈ [4, 7] · 105

• Sinusoidal: A ∈ [5, 30] · 104, f ∈ [0.9, 1.4] · 10−3, ϕ ∈
[−π, π]

3) Noise model: Gaussian noise with A = 100+200t, µ =
0 and σ = 400 has been added to the signal. The amplitude
increases with the retention time to simulate the fact that the
end of the chromatogram is more noisy than the beginning.

B. Real samples

Chromatograms from a GC–MS dataset of human urine
samples were used to test the proposed algorithm. Figure 2
shows samples from this dataset, notice the logarithmic scale

Fig. 2. Real urine samples

on the y axis showing peaks orders of magnitude larger than
the rest of the signal.

Samples were analysed at the PCB (Barcelona Scientific
Park) premises, using a gas chromatograph – mass spectrome-
ter (Focus GC–DSQ II) from Thermo Scientific equipped with
a quadrupole analyser and an electron multiplier detector. The
capillary column used was DB-624 (60 m × 0.32 mm i.d.)
coated with 6 % cyanopropylphenyl 94 % dimethylpolysilox-
ane (film thickness 1.8 µm). The temperature program of the
chromatographic oven began at 60 ◦C (2 min), ramped to
220 ◦C at 8 ◦C min−1 and held for 5 min. The injection port
was maintained at 220 ◦C throughout the experiments.

III. METHOD DESCRIPTION

In 1987, Newey and Powell introduced [9] Asymmetric
Least Squares (ALS) in order to construct statistical tests
for homoskedasticity applying them to Econometrics. More
recently, Eilers et al. applied ALS for baseline estimation in
connection to Parametric Time Warping alignment [10], and
presented it in detail [6]. In 2010, Zhang et al. presented
airPLS [3] which improved the weights of the original ALS
method. Additionally, J Peng et al. [4] presented a different
improvement to the original ALS method focusing on baseline
estimation with multiple samples.

A. Original Asymmetric Least Squares

Given a signal y of length m, ALS aims to estimate a signal
z smoother than y but still similar to it. ALS proposes a model-
free cost function given by:

S =
∑
i

d2i + λ
∑
i

(
∆2zi

)2
(3)

where di = yi − zi are the residuals of the estimation and
∆2zi = zi − 2zi−1 + zi−2.

The first term in S accounts for the fidelity from z to y,
while the second term imposes smoothness to z. Smoothness
is controlled by parameter λ, usually chosen between 102 ≤



λ ≤ 109. The cost function can be generalized by introducing
weights w:

S =
∑
i

wid
2
i + λ

∑
i

(
∆2zi

)2
(4)

These weights w are introduced so as, if properly defined,
will be able to reject penalizations to the cost function pro-
duced by regions where the signal is above the estimated
baseline (i.e. peaked regions).

The proposed definition of w is based on a parameter p
which is usually chosen as 0.001 ≤ p ≤ 0.1:

wi =

{
p if di > 0

1− p otherwise
(5)

As one can see from the definition of wi and the values of
p, regions where the signal is placed above the baseline will
have a much smaller contribution to the penalty.

Minimization of 4 leads to:

(W + λD′D) z = Wy (6)

where W = diag(w) and D being the difference matrix:
Dz = ∆2z. As there is no model imposed on z, there will be
m equations forming a sparse system, where only the diagonal
end two sub-diagonals above and below it are non-zero.

A solution to eq. 4 can be found by iterating. Given an
initial set of weights wi = 1, an initial estimation for zi can
be computed. From zi, weights are computed and used to get
a new estimation for z. Less than 20 iterations are needed for
a proper estimation of z.

According to [6], a proper value for p may be validated
by considering the histogram of the residuals d, so as the
noise components are normally distributed near zero and peaks
are represented in the histogram as a positive asymmetric
component. The right value for p will produce a baseline that
cuts the noise instead of fitting below or above it.

B. airPLS correction

Zhang et al proposed in [3] an improvement to the defi-
nition of w with two objectives: To remove the parameter p,
simplifying the usage of the algorithm; and to improve the
quality of the estimation by adapting the weights depending
on the distance from the signal to the baseline.

The definition of the weight vector w for airPLS is as
follows:

wi =

0 if di > 0

exp

(
−t·|di|∑
di<0

|di|

)
otherwise

(7)

where t is the current iteration. With this definition of weights,
regions of the signal where the signal is above the estimated
baseline are ignored at the next iteration. For the rest of the
weights, the further the signal is from the baseline the least it
contributes to the penalty.

Having the current iteration t in the exponent forces the
weights to be smaller on each iteration, making more signifi-
cant the smoothness term as iterations go on.

The criteria set by airPLS to stop iterating is given by either
a maximum number of 20 iterations or by:∑

di<0

|di| < 0.001
∑
∀i

|yi| (8)

The featured airPLS version 2.0 for MATLAB was used as
the reference implementation. In this version, a p value is used
to set the weights of points found at the beginning and at the
end of the spectra as the adaptation of the weights does not
give good estimates close to the signal limits.

C. Proposed method: psalsa
We propose a different definition for the weights much

more similar to the original ALS algorithm. ALS is not able
to fit very intense peaks because, even though a small p
value is chosen, the peak residual is big enough to contribute
significantly to the baseline fit. If a smaller value of p is
used instead, then the baseline fits completely below the noise
instead of cutting through it. Therefore, an adaptive value for
the weights depending on the residuals is required and the
following definition is proposed:

wi =

{
p · e−

di
k if di > 0

1− p otherwise
(9)

The difference with respect to the original ALS method is
on the positive residuals, where p is pondered by exp(−di

k ).
Peak regions will show large residuals getting smaller weights,
whereas noise regions will present small residuals and weights
close to p. k is an additional parameter that controls the
exponential decay of the weights. An easy way to estimate
k is by setting it to the peak height we want to start rejecting.
Note that by taking the limit k →∞ we recover the traditional
ALS method.

As the original ALS method does, the criteria used by psalsa
to stop iterating is given by either a maximum number of
iterations (usually 20) or when the residuals do not change of
sign with respect to the previous iteration.

IV. RESULTS

A. Synthetic chromatograms

The three described methods were applied to the synthetic
chromatograms. An example of how the different baseline
estimations look like is shown on figure 3.

In order to estimate the best parameters for each method,
the parameter space was swept. For each sweep, the root mean
square error (RMSE) was computed applying equation 10 to
each sample. The RMSE values were averaged obtaining a
global RMSE. The optimal parameter values for the synthetic
database were chosen as the parameters with the smallest
global RMSE.

RMSE =

√∑m
i=1 (zi − bi)2

m
(10)



Fig. 3. Region of a synthetic sample showing different baseline estimations.

Fig. 4. Comparison of the three methods for synthetic chromatograms

In equation 10, zi refers to the estimated baseline and bi to
the simulated baseline. m is the signal length.

In order to compare the three algorithms, figure 4 shows a
boxplot of the RMSE distribution for the different methods in
their optimal settings.

As the psalsa algorithm uses an additional parameter to
control the exponential decay of the weights, we wanted to
check the influence of that parameter on the overall perfor-
mance. Several values of k chosen on a wide range of orders
of magnitude were tested, obtaining figure 5.

B. Real samples

The three methods were applied to real samples. Figure 6
and figure 7 show the estimated baselines on different regions
of a real urine sample.

V. DISCUSSION

The original ALS algorithm was not designed specifically
to fit signals with peaks several orders of magnitude above the

Fig. 5. Performance comparison of different exponents for psalsa. ALS and
airPLS optimal results are shown for comparison

Fig. 6. Comparison of the three methods for real samples

Fig. 7. Comparison of the three methods for real samples



baseline. Considering eq. 4, one may notice that even though
a small value for wi is given for di > 0, given a large enough
di, its contribution to S may still be dominant, producing an
estimation of the baseline which contains part of the peak
area. In order to avoid the over-fitting, the value for p has to be
chosen so as the baseline is not over-fitted to the peaks, instead
of being chosen so as it cuts through the noise as described by
[6]. This means that the value for p will have to be smaller,
leading to baseline estimations below the real baseline. Given
that the estimation is below the baseline, a flexible baseline
will be easier to adapt to the real baseline whenever possible,
that is the reason why λ values are smaller in the ALS method
with respect to the other methods.

Therefore, on the analysed signals, the parameters which
minimize the RMSE on the ALS method are chosen to be
able to properly fit the large peaks, instead of according to
their theoretical purpose.

On the other hand, the airPLS algorithm is able to cope
with large peaks, as it gives wi = 0 for di > 0. Unfortunately,
that approach again leads to baselines fitted below the noise
level instead of cutting through it. The airPLS algorithm was
designed with the aim of removing the p parameter, and indeed
p contribution is less relevant to the final estimation than the
contribution of p at the original ALS algorithm, as it is only
used at the boundaries of the signal.

Finally, psalsa algorithm does not suffer the issues of the
original ALS method, as the exponential modulation reduces
the contribution to S of the large peaks. This makes it possible
to use p to enforce that the baseline crosses the noise level,
instead of fitting below it. p value is not comparable directly
to the ALS method, as its contribution is modulated by the
exponential.

Even though psalsa requires an additional parameter (k) to
control the exponential decay of the weights, figure 5 shows
that the RMSE value is smaller on psalsa on a range of three
orders of magnitude, making it easy to provide a value for k
that improves ALS results.

When applying the three methods on real samples, we can
confirm how psalsa is able to estimate a baseline cutting
through the noise, instead of being under-fitted as happens
with the other two methods.

VI. CONCLUSION

The psalsa algorithm is able to fit baselines of chromato-
graphic signals with large peaks, improving the results of
the original ALS method and the airPLS algorithm without
adding computational complexity. Even though it requires an
additional parameter k, it is easy to provide a reasonable
estimate by relating it to the height of the peaks.

The proposed algorithm has been applied to both synthetic
and real chromatograms obtaining successful estimations in
both cases.

The algorithm is being adapted to work with Ion Mobility
Spectrometry datasets and results will be published in a near
future.
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