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Universitat Politècnica de Catalunya (UPC)

{marcos.orellana, roberto.grino}@upc.edu

Abstract—The controllers of VSI Power Converters connected
to the electrical grid can produce line currents in phase (or not)
with respect to the phase-to-neutral voltages. The amplitude of
the currents and the phase difference are determined by the
control signal, and they are limited by the passive elements of
the LCL input filter, the grid impedance, the dc bus voltage, the
maximum bearable power by the converter and the control signal
itself. In this paper, the role of each element is studied in order
to determine the final operation region of the power converter.
These limitations can be useful to design the LCL filter and the
converter’s operation range.

I. INTRODUCTION

The high frequency switching nature of power converters
provides a lot of flexibility to their controllers. For instance,
the controller of a VSI grid-connected converter can fix the
amplitude and phase of the line currents in many different
ways: forcing the unity-power-factor operation (when line
currents must be in phase with the phase-to-neutral voltages)
or with a different phase. This is useful to contribute to restore
the electrical grid if a fault appears, such as a sag or a
swell. In summary, to carry out different functions vis-à-vis the
electrical grid independently of the operation mode (rectifier
or inverter).

As it will be shown, without taking into account the
maximum power trough the converter, the elements that limit
the quantity of power in any direction are the components of
the LCL input filter1 and the value of the dc bus voltage. On
the other hand, the grid impedance modifies the shape of the
working power region.

It is interesting to remark that there may be some powers
that will not be attainable with any combinations of the control
signal, even if they are in the converter’s working power rank.
Also, even if the grid-connected converter is bidirectional in
power, it will be shown that there is not a symmetry between
the positive/negative active power or the inductive/capacitive
power; in fact, for a power converter with an LCL input filter,
it is usually easier to produce positive and inductive power
than the inverse.

In literature, it can be found some authors who treat this
subject as in [1], but indirectly.

On the other hand, LCL filters present a big resonance peak
[2] at the resonance frequency, so the design must be carried

1LCL filters are useful to reduce the switching effects of the converter (i.e.
the harmonics in the line currents), but they must be carefully designed since
it may introduce resonance problems.

out carefully. In fact, some papers can be found addressing
this problem as in [3], [4]. The working regions found thanks
to this analysis can be one condition more that could be used
for the design of the filter.

The structure of this paper is as follows. In Section II a
linear mathematical model of VSI Power Converters with a
LCL input filter is obtained by using the results of the zero
dynamics of the nonlinear model. Section III is devoted to the
analytical study of the perfect control and the limitations are
established with and without taking into account the effects of
the grid impedance. In Section IV two numerical examples
are presented. And finally, a conclusion sums up all the
contributions.
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Fig. 1. Electrical diagram of a full-bridge single-phase power rectifier with
an LCL input filter.

II. MATHEMATICAL MODEL

In this section, a full-bridge single-phase power converter
will be studied in order to illustrate the analytical analysis
leading to the equations letting compute the limitations. It
will be shown that one arrives to a linear circuit if the dc
voltage bus is supposed constant. Nevertheless, it is important
to remark that this analysis can be analogously used with,
for instance, a three-phase three-wire or a three-phase four-
wire power converter, and one arrives to the same linear
expressions; the only difference are some constants, as, for
example, in three-phase converters, where the dc voltage bus
is divided by 2. The demonstration of this affirmation is out
of the scope of this work.

Therefore, the electrical diagram of a full-bridge single-
phase power converter is shown in Fig. 1, and the differential
equation system describing its dynamics can be written as
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L2
di2(t)

dt
= −vC(t)− r2i2(t) + vg(t)

L1
di1(t)

dt
= vC(t)− r1i1(t)− vC0

(t)u(t)

C
dvC(t)

dt
= i2(t)− i1(t)

C0
dvC0

(t)

dt
= −i0 + i1(t)u(t),

(1)

where i2(t) denotes the grid current (filter input current), vC(t)
is the filter capacitor voltage, i1(t) is the filter right-sided
current, u(t) ∈ [−1, 1] is the control signal2, vC0

(t) is the dc
bus voltage (rectifier output voltage) and i0(t) is the rectifier
output current.

Note that the measured grid voltage vg depends on the grid
impedance Zg (that can be assumed as an inductance Lg in
series with a resistor rg), and the grid current i2(t) according
to the equation

vg(t) = v′g(t)− Zgi2(t) =

v′g(t)− Lg
d

dt
i2(t)− rgi2(t),

(2)

where v′g(t) denotes the generator voltage. That means that the
measured grid voltage vg(t) will vary its phase and amplitude
with respect to v′g(t) depending on the consumed current i2(t).
The generator voltage v′g(t) is known but not accessible, it
is the measured voltage vg(t) the one used to carry out the
control and all the power calculations. Note that the system
is bilinear since the control signal u(t) multiplies the state
variables vC0

(t) and i1(t).
The controller of the converter is intended to produce

sinusoidal line currents of amplitude3 I
√
2 with a phase φ

with respect to the phase-to-neutral voltage’s phase, at the
same frequency ω1, the frequency of the electrical grid. All
these parameters I , φ and ω1 are the references to be tracked
by the controller. In order to obtain the zero dynamics of the
dc voltage bus vC(t), it is necessary to force the model to
follow the control objectives4.

Therefore, analyzing (1), if vg(t) is a sinusoidal signal of
amplitude V

√
2 and frequency5 ω1, V sin (ω1t), and forcing

i2(t) to be also a sinusoidal signal of amplitude I , fre-
quency ω1 and phase φ with respect to the phase of vg(t),
I
√
2 sin (ω1t+ φ), it is possible to compute the zero dynamics

of the dc voltage bus vC(t).
For the three-phase converters and supposing a resistive load

such that i0 =
vC0

(t)
R

, if the phase-to-neutral voltages are
balanced, the dc voltage bus vC(t) is a constant value which
depends on R, I and V , VC0

=
√
3RIV . For the single-

phase converters, the dc voltage bus cannot be constant: it is

2The control signal is discrete, u(t) ∈ {−1, 1}, but, when the system is
averaged at the switching frequency, u(t) ∈ [−1, 1].

3I is the RMS value of a sinusoidal signal of amplitude I
√
2.

4When the control objectives are perfectly tracked by the concerned
variables, the zero dynamics of a system is the dynamics resulting for the
other variables.

5In this analysis, the grid harmonics, the parasitic resistances r1 and r2
and the grid impedance have not been taken into account.

a 2ω1 oscillating signal, but it remains around the mean value
VC0

=
√
RIV . Thus, this justifies the hypothesis that vC0

(t)
can be supposed as a constant value VC0

.
Therefore, the differential equation system in (1) becomes

linear since the last equation disappears and the product
vC0

(t)u(t) becomes VC0
u(t). In fact, the new differential

equation system corresponds to the circuit shown in Fig. 2.
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Fig. 2. General circuit for a LCL filter with resistive elements. v′g is the
grid voltage, VC0

is the bus voltage and u ∈ {1,−1} is the control signal
coming from the VSI converter.

III. PERFECT CONTROL AND LIMITATIONS

The LTI system corresponding to the electrical circuit
(assuming vC0

as a constant VC0
) shown in Fig. 2 can be

written as

⎡

⎢

⎣

di2(t)
dt

di1(t)
dt

dvC(t)
dt

⎤

⎥

⎦

=

⎡

⎣

−r2
L2

0 −1
L2

0 −r1
L1

1
L1

1
C

−1
C 0

⎤

⎦ ·

⎡

⎣

i2(t)
i1(t)
vC(t)

⎤

⎦+

⎡

⎢

⎣

vg(t)
L2

VC0
u(t)

L1

0

⎤

⎥

⎦

, (3)

so it is possible to compute the transfer function of i2(s) with
respect to u(s) and vg(s)

i2(s) = G(s)u(s) + Y (s)vg(s) =
1

CL1L2

1

d(s)
VC0

u(s)+

1

CL1L2

CL1s
2 + Cr1s+ 1

d(s)
vg(s),

(4)

where d(s) = s3 +
(

r1
L1

+ r2
L2

)

s2 +
(

ω2
n + r1r2

L1L2

)

s+ r1+r2
CL1L2

with ωn =
√

L1+L2

CL1L2
. G(s) is the transfer function between

the control signal u(s) and the line current i2(s) and Y (s) is
the transfer function between the grid voltage vg(s) and also
i2(s), which can be seen as the input admittance of the LCL
filter.

A. Perfect Control

Perfect control is the one that allows to follow the control
objectives in a perfect manner. The remaining dynamics of
the system is usually called the zero dynamics or the exact
dynamics, as aforementioned. For the sake of simplicity, the
grid impedance will not be taken into account in this analysis.

Therefore, replacing again vg(s) by L
{

V
√
2 sin (ω1t)

}

(s),
and forcing i2(s) to be L

{

I
√
2 sin (ω1t+ φ)

}

(s), it is pos-
sible to compute the perfect control signal up(s)

2
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up(s) = G−1(s) [i2(s)− Y (s)vg(s)] .

As the system is linear, up(s) is the Laplace Transform of
a sinusoidal signal of the form A sin (ω1t+ θ), where A and
θ depends on the converter’s parameters C, L1, L2, r1, r2,
VC0

, V , I and φ. Therefore, the perfect control signal up(t) is
a sinusoidal signal oscillating at the grid’s voltage frequency,
that is, ω1, and this is logical since the system is linear.

In order to study the system in the frequency domain, it
is possible to perform the Fourier transform to the linear
model. Therefore, from the expression (4), the laplace variable
s can be replaced by jω, such that i2(jω) = G(jω)u(jω) +
Y (jω)vg(jω). Therefore, since the system only works at on
frequency ω can be replaced by ω1, the frequency of the
electrical grid, and one obtains the complex expression

I2 = G′
U+ Y ′

Vg, (5)

where G′ and Y ′ are the transfer functions G(s) and Y (s)
evaluated at jω1: G(jω1) and Y (jω1) respectively. The vari-
ables I2, U and Vg can be seen as phasors, for instance,
U = |U| ej∠U = |U|∠U.

B. Limitations without grid impedance

In this case, the grid impedance is null Zg = 0, so V′
g =

Vg. Therefore, fixing the angle of the grid voltage Vg to 0,
it becomes simply the real value6 V .

In order to establish the limitations in power, the conjugate
of (5) may be multiplied by V , giving the apparent power
S = VgI2

∗ = Pj +Q where P is the active power and Q is
the reactive power. In this case S = V (G′U+ Y ′V )∗, that is

S = VU
∗G′∗ + V 2Y ′∗. (6)

Examining this expression closer, one can conclude that the
power S will be the image of the control signal U scaled by
the constant V G′∗ plus the offset V 2Y ′∗. Since the magnitude
of the control signal U can take any value between6 0 and 1√

2
with any possible angle, the apparent power S is a circle of

radius
|V G′∗|
√
2

centered at V 2Y ′∗ as shown in Fig. 3.

It is important to remark that the center of this circle
depends on the amplitude of the grid voltage V and the
conjugate of the admittance of the input LCL filter Y ′∗.
Observe also that both the radius and the center of this circle
are proportional to V and V 2, respectively, so they will change
if V varies.

On the other hand, fixing a maximum apparent power
acceptable by the power converter |S| = Smax one obtains a
circle centered at the origin of radius Smax. The intersection of
both regions will determine the set of the converter operating
points. Fig. 3 shows also this region.

6Working with RMS values.

P (W)

Q (var)

|V G′∗|
√
2

imag(V 2Y ′∗)

real(V 2Y ′∗)

Smax

Fig. 3. Diagram of the attainable powers in function of the signal control
(the big circle represents |U| = 1√

2
), grid voltage and the passive elements

of the LCL input filter without grid impedance. The small circle represents the
acceptable powers by the converter. The grey region depicts the intersection
between the both regions.

C. Limitations with grid impedance

In this case, the generator voltage v′g(t) does not coincide
anymore with the measured voltage vg(t); they are related by
the equation (2), which, particularized to the case of a only
one working frequency by performing the Fourier Transform,
one obtains

Vg = V
′
g − ZgI2 =

V
′
g − (jω1Lg + rg) I2,

(7)

where Vg and V′
g are the respective phasors of vg(s) and

v′g(s) at the frequency s = jω1. Now, combining this expres-
sion with (5), the new equation for the line current I2 can be
written as

I2 =
G′

1 + Y ′Zg
U+

Y ′

1 + Y ′Zg
V

′
g,

where G′ and Y ′ are the same as in (5) and V′
g is now the real

value V , since it is taken as the phase origin. Observe that this
equation would be also valid in an operational sense (in the
Laplace domain). In this framework, the new transfer functions
include a feedback; in this case, Y ′ is an admittance and Zg is
an impedance, so they are positive-real transfer functions and
there will not be stability problems. Nevertheless, depending
on the internal controllers, Y ′ could not be an admittance
anymore, and then it would not be a positive-real transfer
function, so the stability could not be guaranteed.

In order to compute the apparent power S, the conjugate
of the former expression must be multiplied by the measured
voltage, that is, Vg, which is given in function of V′

g by the
equation (III-C), so, the expression giving the power is

S =
(

V
′
g − ZgI2

)

I2
∗ = V I2

∗ − Zg |I2|2 , (8)

3
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since V′
g = V and I2I2

∗ = |I2|2.

Finally, replacing I2 and Zg, one arrives to the expression

S = VU
∗G′′∗ + V 2Y ′′∗−

(jω1Lg + rg) |G′′
U+ Y ′′V | ,

(9)

where G′′ = G′

1+Y ′Zg
and Y ′′ = Y ′

1+Y ′Zg
. Analyzing this result,

it can be deduced that the new expression is similar to the
one obtained in (6) and they coincide when Zg tends to 0.
The center of this new region corresponds to a control signal
|U| = 0 and it is placed at V 2Y ′′∗ − Zg |Y ′′V |.

On the other hand, the shape of the region when |U| > 0
is not evident to obtain analytically: it becomes a circle if
Zg tends to zero and it seems an ellipse otherwise, but it
is not an ellispse (the general equation of the curve for fixed
|U| > 0 is a four-degree polynomial). In Fig. 4, an example of
the new working region is depicted. The maximum apparent
power bearable by the power converter |S| = Smax is also
depicted. Note that the point corresponding to |U| = 0 is not
placed at the geometrical center of the closed curve.

P (W)

Q (var)

imag
(

V 2Y ′∗

−Zg |Y ′′V |)

real
(

V 2Y ′∗

−Zg |Y ′′V |)

Smax

Fig. 4. Diagram of the attainable powers in function of the signal control (the
big closed curve represents |U| = 1√

2
), grid voltage and the passive elements

of the LCL input filter with grid impedance. The small circle represents the
acceptable powers by the converter. The grey region depicts the intersection
between the both regions.

IV. NUMERICAL EXAMPLES

In this Section, some numerical examples are going to be
considered. Using the component values shown in Table I, it
is possible to compute i2(s) from (4)

i2(s) = G(s)u(s) + Y (s)vg(s) =

−4.026 · 1014

s3 + 879.4s2 + 7.287 · 108s+ 4.482 · 1011
u(s)+

5435s2 + 4.328 · 106s+ 1.006 · 1012

s3 + 879.4s2 + 7.287 · 108s+ 4.482 · 1011
vg(s),

TABLE I
POWER CONVERTER PARAMETER VALUES

L1 540µH r1 0.43Ω

L2 184µH r2 0.15Ω

Lg 100µH rg 0.1Ω

C 10µF ω1 50Hz

V 230V VC0
400V

being G′ and Y ′ the value of G(s) and Y (s) at s = jω1, that
is, −433.207+ 672.661j and −0.552− 1.922j, respectively.

The radius and the center of the circle that limits the

working region are computed from the expressions
|V G′∗|
√
2

and V 2Y ′∗, that is, 130.12 kVA and 942.43 + 479.84j kVA
respectively. Fig. 5 depicts the working power region if the
maximum power tolerated by the power converter is supposed
to be Smax = 20 kVA.
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Fig. 5. Working region when the dc voltage bus VC0
is 400,V without grid

impedance (intersection between the big blue circle and the red circle).

In this case, the magnitude of the control signal |U| does
not limit the power through the converter, it is the maximum
acceptable power Smax.

Fig. 6 shows the new region if the dc voltage bus VC0

value decreases in 50V. Now, the blue circle does not contain
anymore the red one completely. The circle’s center is the
same as before, but the new radius is smaller, = 105.76. The
intersection of both circles forms the set of attainable powers
by the converter. Since the center of the blue circle is placed
in the first quadrant, it is impossible to produce some negative
active and capacitive reactive powers.

The new region produced with a dc voltage bus VC0
=

400V, but if the grid impedance is different from 0, Zg ̸= 0,
is depicted in Fig. 7. The region defined by the blue curve
is smaller than the equivalent produced without taking into

4
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Fig. 6. New working region when the dc voltage bus VC0
= 350,V without

grid impedance (intersection between the big blue circle and the red circle).

account the grid impedance. Observe also that in function of
the control signal magnitude |U|, the produced curves are not
circles anymore and they do not move equally in all directions.
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Fig. 7. Working region when the dc voltage bus VC0
= 400,V with grid

impedance (intersection between the big blue closed curve and the red circle).

Fig. 8 shows the new region if the dc voltage bus VC0
value

decreases in 50V. As before, this affects to the size of the
working region, but the shape is the same. Also, observe that
it is impossible to produce some negative active and capacitive
reactive powers.
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Fig. 8. New working region when the dc voltage bus VC0
= 350,V with

grid impedance (intersection between the big blue closed curve and the red
circle).

V. CONCLUSION

The work presented in this paper is focused on the power
and control limitations of a grid-connected power converter.
First, it has been shown how the power trough the converter
is limited by the control signal and how the admittance of the
LCL input filter plays an important role in limitations. And
second, it has also been shown that maybe not all the power
points delimited by this region are attainable since there exist
another limitation fixed by the maximum power admissible
by the converter. Thus, the working region is defined by the
intersection of both. Also, the information revealed by these
limitations can help the design of the filter by means of its
admittance and to determine the necessary minimum value of
the dc voltage bus VC0

to ensure a proper operation of the
converter.
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