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Abstract—Robust perception in autonomous vehicles
is a huge challenge that is the main tool for detecting
and tracking the different kinds of objects around the
vehicle. The aim is to reach the capability of the human
level, which is frequently realized by taking utility of
several sensing modalities. This lead to make the sensor
combination a main part of the recognition system. In
this paper, we present methods that have been proposed
in the literature for the different deep multi-modal
perception techniques. We focus on works dealing with
the combination of radar information with other sensors.
The radar data are in fact very important mainly when
weather conditions and precipitation affect the quality of
the data. In this case, it is crucial to have at least some
sensors that are immunized against different weather
conditions and radar is one of them.

Keywords — multi-modality, object detection, deep
learning, autonomous driving, simulators, datasets, sen-
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I. INTRODUCTION

Self driving vehicle also known as an autonomous
vehicle that is capable of sensing its environment and
can detect obstacles and stop when necessary with the
help of sophisticated technology. These vehicles are
ordinarily equipped with distinctive sorts of sensors to
require advantage of their complementary character-
istics. Using numerous sensor modalities increments
robustness and precision, The system can perceive,
predict, decide and execute the necessary actions re-
quired for the autonomous vehicle to navigate in the
real world without having any collisions but each of
these sensor-families has its corresponding strengths
and weaknesses, that’s why it requires an intelligent
fusion and combination of their data as shown in Fig.
1.

In this paper, we first provide background infor-
mation on uni-modal recognition sensors and mod-
ern deep learning methods for object detection. In
section III, we summarize the deep fusion methods
for sensors (LIDAR, CAMERA and RADAR) and
we discuss the problem that only few researchers
have focused on combining radar information with
other sensors, although it’s highly important. In section
IV, we represent the main multimodal datasets with
RADAR data, and explain the reason behind using
them. In the conclusion, we summarize and emphasize
the importance of the sensors above, and mention

Fig. 1. Multi-sensor 3D detection to ground truth objects [1].

the importance of focusing more on developing them
through more research.

II. UNI-MODAL RECOGNITION

A. Deep Learning for Images

Camera is the most popular used sensor due to
its simplicity and least expensive cost. It is the most
popular sensor in autonomous driving vehicles that
comes with the highest resolution. Camera gives im-
ages with 2D information that can be used in object
classification, and in some other tasks like road line
tracking.
Traditionally, we are all aware of the importance
of camera data, however, it became better exploited
thanks to deep learning. It was not properly used
mainly for two reasons. The first one is that the
models themselves did not exist. The second one is
that reaching an efficient computation of image data
was not possible. This is no longer true, because now
cameras are considered to be an extremely powerful
sensor that can be used for object detection with the
emergence of the deep Learning algorithms.
In fact, the usage of Convolutional Neural Networks
(CNN) [2] has been highly effective within the field
of object detection. The CNN is a detection algorithm
that aims to require an image and identify accurately
where the most objects are found through a selection
frame. Detection could be a strategy that looks for
classification and finding regions/areas of an image or
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Fig. 2. Architectures of deep learning networks for camera (R-CNN,
YOLO, SSD).

a video stream. The detection strategy can mostly be
separated into two categories.
In the two-step method, Region-CNN (R-CNN) [3]
works in three basic steps. In a first step, it analyzes
the input image to extract 2000 Region proposals and,
after that, employs a glutton algorithm to recursively
combine similar regions into bigger regions. The next
step is to run a (CNN) on each of these regions
to extract features. Finally, it uses a Support Vector
Machine (SVM) to classify the region. Fast R-CNN
[4] employs an external proposition generator and
exempts from excess feature extractions by using the
global features extracted from the complete image
to classify each proposition within the second stage.
Faster RCNN [5] unifies the proposition generation
and classification by introducing the RPN (Region
Proposal Network), which employs the global features
extracted from the picture to produce object proposals.
The SSD [6] (Single Shot MultiBox Finder) performs
as one-step method is another object detection algo-
rithm that uses a Region Proposal Network (RPN) and
multi-scale representation strategies which employ a
default set of anchor boxes with diverse perspective
proportions to more precisely locate the object.
Unlike SSD, YOLO (”You Only Look Once”) is a
very different object detection algorithm which sees
the entire image during the training and test stages. In
YOLO [7], a single convolutional network predicts the
bounding boxes and the class probabilities for those
boxes. YOLO trains on all pictures and specifically
optimizes detection performances. Fig.2 presents an
overview of the overall the architecture.

B. Deep Learning for Lidar

Lidar or laser detection and ranging is a re-
mote measurement technique based on the analysis
of the properties of a beam of light sent back to its
transmitter. Over the last ten years this technique has
become the most popular sensor for self-driving. It is
an unparalleled sensor, in the sense that it combines
really accurate, dense depth, and it is an active sensor
that has additional benefits for safety and accuracy
that can be obtained in object modeling (at least at a
geometric level). For better understanding, we see the
need to list Many algorithms for Vehicle 3D Detection
using Lidar in the next levels.
VoxelNet [8] is a generic 3D detection network that
unifies feature extraction and bounding box prediction

Fig. 3. VoxelNet architecture to generates the 3D detection [8].

Fig. 4. RT3D architecture is a method using 3D point clouds from
a LiDAR to detect vehicles with their oriented 3D bounding boxes.
[9].

into a single stage, end-to-end trainable deep network.
Specifically, VoxelNet separates a point cloud into
similarly dispersed 3D voxels and changes a gathering
of points inside each voxel into a unified feature rep-
resentation through the voxel feature encoding (VFE)
layer, as shown in Fig.3. In this way, the point cloud is
encoded as a graphic volumetric representation, which
is at that point associated to a RPN to produce de-
tections. The Real-time-3-dimensional (RT3D) vehicle
detection method extracts features from only a Bird’s
Eye View (BEV) representation of the LiDAR data
[9]. It then utilizes a CNN-based two-stage detector to
generate region proposals with a Region Proposal Net-
work (RPN), and uses pre-RoI-pooling convolutions
on pose-sensitive feature maps to classify the region
as shown in Fig.4.

PointNet [10] is a deep network architecture that
directly operates on the raw point clouds obtained from
a LiDAR providing a simple, competent and effective
approach for a number of 3D recognition tasks like
object classification, part segmentation and semantic
segmentation (see Fig. 5). It takes n points as input
and applies input and feature transformations. The
next step is to aggregates point features using max
pooling and finally it provides classification scores for
k classes.
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Fig. 5. The PointNet classification network [10].

Fig. 6. An Example of bird’s eye view detection on radar data [11].

C. Deep Learning for RADAR

Radar or Radio Detection and Ranging, which
suggests identifying objects using radio. This system
uses electromagnetic waves to detect the presence and
determine the position and velocity of objects. For
the most part, the working frequency of the vehicle
radar framework is 24GHz or 77GHz. Compared with
24GHz, 77GHz appears higher exactness in distance
and speed measurements. Moreover, 77GHz features
a smaller antenna, and it has less impedance than
24GHz. For 24GHz radars, the most extreme range is
70 meters, while the range increments to 200 meters
for 77GHz radars. Compared with a camera, radar is
less influenced by the climate and lighting environ-
ment, making it very valuable in many applications.
In addition, the amount of data is humbler than the
camera.

In [11], authors use a deep learning-based method
to generate 3D object detection with radar only. They
use a public radar dataset ”ASTYX HIRES [12]” to
train their model. Due to a shortage of radar labeled
information, they suggest a novel method by taking
advantage of the abundant LiDAR information by
transforming it into radar-like point cloud information
and then use aggressive radar augmentation strategies
(rotation, flip, perturbation, global noise, ...). The result
is illustrated in Fig.6.

Fig. 7. PointFusion: Deep Sensor Fusion for 3D Bounding Box
Estimation [13].

III. MULTI-MODAL RECOGNITION

A. Introduction

Even the best perception algorithms are limited by
the quality of their sensor data and to simplify the
task the use of multiple sensor modalities can improve
the autonomous perception and moreover present new
challenges for recognition systems. The fusion of
sensors is one of these challenges, which has motivated
many researches on object detection (3D or 2D) in
recent years. In this section, we summarize deep,
multi-modal perception technologies.

B. Data Fusion for LiDAR and camera sensors

Cameras and LiDARs have complementary charac-
teristics that make camera-LiDAR combination models
more viable and Well-known compared to other sen-
sor combination setups (radar-camera, LiDAR-radar,
etc.,). To be more specific, vision-based recognition
frameworks accomplish palatable performance at low-
cost, regularly beating human experts. Nevertheless,
a mono-camera discernment framework cannot give
a solid 3D geometry, which is required for self-
driving. On the other hand, stereo cameras can give 3D
geometry, but do so at a high computational cost and
fail in high-occlusion and texture-less situations. Most
later sensor combination strategies focus on harnessing
LiDAR and camera for 3D object detection. PointFu-
sion [13] is a generic 3D object detection method that
exploits both image and 3D point cloud information.
It processes the image and LiDAR information using a
CNN and a PointNet architectures and then generates
3D bounding boxes using the extracted features. The
result is illustrated in Fig. 7.

In [14], the authors fuse a Bird’s Eye View LiDAR
point cloud and a front view camera image for ob-
ject detection in deep Convolutional Neural Networks
(CNN). The method creates a layer called sparse non-
homogeneous pooling layer to transform features be-
tween the bird’s eye view and the front view. However,
the sparse point cloud is used to construct the mapping
between the two views and the pooling layer allows
efficient fusion of the multi-view features at any stage
of the network as shown in Fig. 8. This method is
designed and tested on the KITTI bird’s eye view
object detection dataset, which produces 3D bounding
boxes from the bird’s eye view map.
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Fig. 8. The fusion-based one-stage object detection network pro-
posed by [14].

C. Fusion (Radar and camera)-(Radar and LiDAR)

LiDARs give precise 3D estimations at near range,
but the coming about point cloud gets to be scanty
at long extend, decreasing the system capacity to pre-
cisely identify far off objects. Cameras offer wealthy
appearance characteristics, but are not a great source
of data for depth estimation. These extra highlights
have made LiDAR-camera sensor combination a theme
of investigation in recent years. This combination
has been demonstrated to attain high accuracy in
3D object detection for numerous applications, count-
ing autonomous driving, but it has its impediments.
Both cameras and LiDARs are touchy to unfavorable
climate conditions (eg snow, fog, rain), which can
radically decrease their perception range and detection
capabilities. Moreover, LiDARs and cameras are not
able to identify the speed of objects without utilizing
temporal data. Estimating the speed of objects may be
a necessity to maintain a security distance to avoid
collisions in numerous scenarios, and depending on
temporal information may not be a doable arrangement
in time. For a long time, radars have been utilized
in vehicles for ADAS (Advanced Driver Assistance
System) applications to avoid collision and control
velocity. Compared to LiDARs and cameras, radars are
exceptionally strong to unfavorable climate conditions
and are able to distinguish objects at exceptionally long
extend (up to 200 meters for car radars). Radars utilize
the Doppler effect to precisely gauge the speeds of all
identified objects, without requiring any temporal data.
In addition, compared to LiDARs, radar point clouds
require less handling time and recently they can be
utilized as object detection results. These highlights
and their lower cost compared to LiDARs have made
radars a prevalent sensor in autonomous driving appli-
cations. Few research has focused on combining radar
information with other sensors.

Radar is very complementary to cameras in unfa-
vorable climate conditions. The sensor quality of the
camera is constrained in severe weather condition e.g.
if water beads adhere to the camera lens and block
the view, or if expanded sensor noise in meagerly lit
regions and at night. The CRF-Net (Camera Radar Fu-
sion net) [15] is an architecture to fuse radar detection
with images. The image information is increased with

the radar data and utilized in a CNN to extract 2D
object detection.
RadarNet [16] is a method to exploit Radar in combi-
nation with LiDAR for the detection of 3D objects. It
employs an early fusion technique to memorize the
joint representations of the two sensors and a late
fusion to refine object velocities. In [17], a method
is introduced to fuse radar detections with images and
utilize them to boost the object accuracy. The real-
time performances are very important for autonomous
driving vehicles. Thus, in [18], the authors use a
real-time region proposal network (RRPN) for object
detection. First, they use radar detections to propose
ROIs, and then, they project them onto the image plane
to obtain faster and more accurate detections.

IV. DATASETS AND SIMULATORS

A. Introduction

Various algorithms of deep multi-modal object de-
tection are based on supervised learning. For that
reason, multi-modal datasets with labeled ground-truth
are required to train the deep learning neural networks.
Labeling the data is a fastidious process, that is why it
is preferable to use an already existing dataset or sim-
ulator. In the following, we introduce the simulators
and datasets containing RADAR data.

B. Simulators

To generate the data needed for learning, or to test
the algorithms on new scenarios, there are now a few
open-source vehicle simulators available.

CARLA (Intel): an open-source simulator for
autonomous driving research. CARLA is a platform
for the evaluation of autonomous urban driving
systems. In this platform agents are tasked to safety
drive from a set of starting points to target destinations,
following route instructions and respecting traffic
rules. CARLA lets users configure a sensor suite
choosing from a range of sensors and offers the
access to several maps [19].
LGSVL (LG): The LGSVL simulator is a test system
that encourages testing and advancement of self-
driving program frameworks. It empowers designers
to simulate billions of miles and self-assertive edge
case scenarios to speed up algorithm advancement
and framework integration [20].
DeepDrive (Voyage): Voyage Deepdrive is a simulator
that permits anybody with a PC to thrust the state-of-
the-art in self-driving. [21]
AirSim (Microsoft): AirSim is a simulator for drones,
cars and more, built on Unreal Engine. It is open-
source, cross stage, and underpins software-in-the-loop
reenactment with popular flight controllers such as
PX4 ArduPilot and hardware-in-loop with PX4 for
physically and visually reasonable recreations. It is
created as an Unreal plugin that can essentially be
dropped into any Unreal environment. [22]
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C. Datasets

Most multi-modal recognition strategies are based
on supervised learning. Subsequently, multi-modal
datasets with labeled ground-truth are required for
preparing such deep neural networks. While there are
many datasets for autonomous vehicles containing Li-
DAR and camera data, there are relatively few datasets
containing radar data as well.

nuScenes dataset [23]: NuScenes is a large-scale
open dataset for autonomous vehicles. This dataset
empowers researchers to ponder urban driving cir-
cumstances utilizing the complete sensor suite of a
real self-driving car: 6 cameras, 5 radars, 1 lidar, and
an RTK GPS. NuScenes comprises more than 1000
scenes, with annotated 3D bounding boxes. More-
over, this dataset contains annotations for 23 different
classes.

Astyx HiRes2019 [12]: The Astyx Dataset
HiRes2019 is a radar dataset for deep learning-based
3D object detection. The motivation behind this dataset
is to provide high-resolution radar information to the
scientific community, encouraging and stimulating
research on using radar sensor information.

Oxford RobotCar [24]: The Oxford RobotCar
Dataset contains over 100 repetitions of a reliable
course through Oxford, UK, captured over a period
of over a year. The dataset captures numerous diverse
combinations of climate, traffic and pedestrians, to-
gether with longer term changes such as development
and roadworks.

V. CONCLUSION

In this paper, we have presented the different sen-
sors used in autonomous vehicles and their various
algorithms for deep uni-modal object detection. Fur-
thermore, we have shown that these sensors are com-
plementary and that it is necessary to fuse their infor-
mation to obtain more accurate and robust detections.
We have presented the different multi-modal fusion
methods and showed their interest.
We have pointed out the lack of work on multi-
modal fusion involving radar data, even though it is of
great interest since it is less sensitive to environmental
conditions and provides additional information such as
speed. We have presented the simulators and datasets
that would allow work in this direction, i.e. work on
multi-modal fusion with radar data.
We have also shown that many algorithms perform a
fusion on the output of the detections in the different
modalities, but that there is little work on the early-
fusion of these modalities (at the input of the network).
As a future work, we intend to propose a radar-camera-
lidar early-fusion algorithm for 3D object detection to
obtain better results.
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