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Abstract

Materialized views are a well-known optimization strat-
egy with the potential for massive improvements in query
processing time, especially for aggregation queries over
large tables. To realize this potential, the query optimizer
has to know how and when to exploit materialized views.
Reporting functions represent a novel technique to for-
mulate sequence-oriented queries in SQL. They provide a
column-wise ordering, partitioning, and windowing mech-
anism for aggregation functions and therefore extend the
well-known way of grouping and applying simple aggrega-
tion functions. Up to now, current work has not considered
the frequently used reporting functions in data warehouse
environments. In this paper, we introduce materialized re-
porting function views and show how to rewrite queries with
reporting functions as well as aggregation queries to this
new kind of materialized views. We demonstrate the effi-
ciency of our approach with a large number of experiments.

1 Introduction

Due to the tremendous increase in the amount of data

efficiently managed by current database systems, optimiza-

tion is still one of the most challenging issues in database

research. From a structural perspective, database optimiza-

tion can be done on two different levels. On the physical

level, highly specialized index structures and other methods

like partitioning support the access to individual records or

restrict the search space (e.g. partition pruning). On the

logical level, [10] already introduced the notion of ’logical

access paths,’ nowadays well-known under the concept of

materialized views [11]. The general idea of materialized

views (MVs) is as simple as it is beneficial for query op-

timization: pre-compute certain query fragments once and

then re-use them during query runtime; this process is of

special interest for aggregation queries.

In addition to regular aggregation queries, queries with

reporting functions are becoming more and more impor-

tant, especially in the context of decision support on top of

data warehouse systems. Reporting functions basically op-

erate on a single column expression and perform a column-

wise sorting (usually according to a time line), a locally de-

fined partitioning of rows, and the execution of regular ag-

gregation functions defined over an either implicitly or ex-

plicitly specified window. Listing 1 illustrates an example

where the query partitions the LINEITEM table of a TPCD

database according to l shipmode (AIR, SHIP, etc.) and

computes the cumulative sum of l quantity with respect to

l shipdate (order criterion) in each partition. Such a query

is used to capture the trend of l quantity over time for each

single l shipmode instance.

SELECT l shipmode , l shipdate ,

SUM( l quantity ) OVER(

PARTITION BY l shipmode ORDER BY l shipdate )

FROM TPCD . LINEITEM

Listing 1. Example Query with Reporting
Function

Although this type of query is being used more and more

often—especially by SQL generators of commercial OLAP

tools—there is no known support for queries with reporting

functions exploiting MVs.

Contribution of This Paper:

In this paper, we extend the way of dealing with MVs to a

completely new class of queries in a seamless way so that

regular aggregation queries as well as queries with reporting

functions are able to exploit this new class of materialized

views and benefit from a performance speedup. The main

target of our optimization strategy proposed in this paper

is to eleminate or to reduce sort operations. Therefore, we

discuss whether there is a possibility and a benefit of using
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MVs in the context of reporting functions. In detail, we

discuss the following issues:

• Does it make sense to define materialized views with

reporting functions? This question is particularly inter-

esting because—in comparison to simple aggregation

queries—reporting function queries enable a column-

wise ordering, partitioning and window-mechanism

for aggregation functions.

• How can we describe the existence of reporting func-

tions in relational operator trees? This perspective is a

necessary prerequisite for query rewrite patterns.

• How can we exploit materialized views with report-

ing functions? We will discuss this issue in very detail

from multiple perspectives starting with simple query

patterns and then develop more sophisticated deriva-

tion strategies.

• What are further research issues? We will present

some ideas of our ongoing work.

Organization of This Paper:

The paper starts with a discussion of related work in the

context of MV support to clarify the need for supporting

reporting function views. Thereafter, we outline the neces-

sary formal prerequisite for the subsequent derivation rules

described in Section 4. In Section 5, we present a large

number experiments demonstrating the performance benefit

when using MVs with reporting functions. The paper closes

with a discussion of our ongoing work and a conclusion.

2 Related Work

Using materialized views to speed up query processing

in data warehouse environments is a well-known optimiza-

tion strategy. To realize the potential of materialized views,

efficient solutions to the following issues are required and

have been studied intensively within the research commu-

nity over the last years:

View design: This issue deals with the selection process

of views that are subject to materialization, including the

question of how to store and index them [1,5]. In particular,

the distinction between SPJ views (select-project-join) and

SPJG views (SPJ with a final group-by) is usually consid-

ered because of space constraints. Within the scope of this

paper, we will leave this issue aside—an adaptation of ex-

isting workload-based selection criteria can be achieved in

a straight-forward manner.

View maintenance: Research work in this area pro-

vides algorithms to update materialized views when base

tables are subject to Update, Insert, and Delete (UDI) op-

erations [6]. Above all, incremental maintenance strategies

have been studied intensively. Obviously, the overhead of

maintenance has an impact on the selection process. Again,

we do not focus on the maintenance problem of MVs with

reporting functions because they are either a trivial exten-

sion of existing work, described in [7], or far beyond the

scope of this paper.

View exploitation: The view exploitation issue deals

with the transparent use of materialized views to speed up

query processing. Query rewriting techniques for simple

aggregation queries were proposed by [2–5, 9, 14]. Simple

extensions for sequence-based views are described in [7].

However, we put our focus on this issue and do not propose

only an extension of existing work but open the possibility

of exploiting the benefit of MVs for a completely different

class of queries and type of MVs.

Related work for this paper has to be considered not

only with regard to MVs but also from the perspective of

sequence processing, which is also an intensively studied

problem within the database research community. Differ-

ent proposals range from special data models like SEQ [12]

to the introduction of special sequence operators [13] to

complex algorithms like similarity search or pattern recog-

nition that operate in a special sequence-oriented environ-

ment. However, we focus strictly on database system tech-

nology and propose extensions which might be used within

these more application-oriented scenarios.

3 Reporting Functions: SQL and Internal
Representation

Before we are able to discuss the benefit of MVs with

reporting functions in detail, we outline the SQL semantics

and the internal representation which is used throughout the

paper and provides a semi-formal way to describe reporting

function queries in the context of a relational query graph.

3.1 SQL Representation

Queries with reporting functions are generally executed

in three steps. In a first step, all joins, WHERE, GROUP BY
and HAVING clauses are performed and the resulting tuple

stream is made available for the sequential computation of

reporting functions with locally defined ordering and parti-

tioning conditions in the second step. Within a third step,

finally, the optional global ORDER BY clause is applied to

the set of resulting rows. From an optimization point of

view, we have to note that ordering is (a) heavily required

when executing reporting functions (e.g. sort-merge join,

local sorts for reporting functions, global sort) and (b) one

of the most expensive operations other than joins and there-

fore an interesting candidate for query optimization.

From an SQL perspective, reporting functions are de-

fined with the OVER() clause (see Figure 1) following a reg-
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Figure 1. Syntax Diagram for OLAP Functions

ular aggregation function, thus algorithmically declaring the

scope of the aggregation function for each single incoming

tuple. The query can optionally partition the result set into

groups of rows with the PARTITION BY clause acting as

a reset command for window definitions. These partitions

are created on top of the groups defined within the GROUP
BY clause, so that they are available to any aggregate result

from a potential global GROUP BY. Moreover, partitions

may be based upon any desired columns or expressions.

The ORDER BY clause within the OVER construct deter-

mines the local sort order of the rows within the partitions

independent of any global ORDER BY clause. Local order-

ing may be based upon any desired columns or expressions.

Finally, the scope of the aggregation function is deter-

mined by a window specification defined either implic-

itly (cumulative semantics) or explicitly within the OVER

clause. The window definition determines the range of rows

used to perform the calculations for the currently processed

row. Window definitions can be based either on physical

number of rows (ROWS) or on logical value-based inter-

vals (RANGE). The window has a starting row ωs(k) and

an ending row ωe(k) relative to the current row k. In gen-

eral, we can distinguish two different types of window def-

initions:

1. Cumulative Windows: A cumulative window defini-

tion has its starting row fixed at the first row of the

current partition. The ending row slides from the start-

ing point all the way to the last row of the partition.

The range of cumulative windows can be algorithmi-

cally defined with k as the position of the current row

by ωs(k) = 1 and ωe(k) = k.

2. Sliding Windows: A sliding window definition has

both its starting and end points slide relatively to the

current row and therefore maintain a constant phys-

ical or logical range. In the former case, the range

of sliding windows can be algorithmically defined by

ωs(k) = k − j and ωe(k) = k + i, where i and j are

numerical values determining the range.

More formally, we are able to define a reporting function

as follows:

Definition 1 (Reporting Function): A reporting function

RF is defined by a quadruple (PBColSet, OBColList,
WSpec, AFunc(AColExpr)), where PBColSet is a

set of partitioning attributes, OBColList is a list of or-

dering attributes, WSpec is a window definition consist-

ing of a definition of the starting and ending point, and

AFunc(AColExpr) is a regular aggregation function like

SUM , COUNT , AV G applied to a column expression.

Furthermore, the intersection between the set of partition-

ing attributes PBColSet and the list of ordering attributes

OBColList is empty, i.e. PBColSet∩OBColList = �.

The notion of reporting functions, as it is defined within

the SQL standard, does not consider two properties which

are crucial for the context of materialized views. First of all,

the standard does not enforce the empty intersection prop-

erty of partitioning and ordering attributes; our restriction

is of pure syntactical nature and does not restrict the func-

tionality. The second property addresses the handling of

duplicates within the input stream. For example, the query

of Listing 1 refers to the LINEITEM table with many du-

plicates according to l shipmode and l shipdate. Within

the SQL standard, duplicates are considered members of

the current value-based window definition. The aggrega-

tion function is applied to all members of each window and

the resulting value is assigned to each input tuple, i.e. every

duplicate holds the same value. Therefore, a semantically

equivalent expression can be given by explicitly stating the

number of original duplicates by additionally requiring the

unique property of all partitioning and ordering attributes.

Within our approach, we expect exactly this syntactical con-

straint:

Definition 2 (Reporting Function for MVs): A reporting

function within a query defining a materialized view is a

reporting function according to Definition 1 with the ad-

ditional uniqueness property according to PBColSet ∪
OBColSet.

The query in Listing 2 illustrates this transformation by

applying a nested aggregation with regard to the original

query given in Listing 1.

SELECT l shipmode , l shipdate ,

SUM(SUM( l quantity ) ) OVER (

PARTITION BY l shipmode ORDER BY l shipdate ) ,

COUNT(∗ ) as n u m b e r o f d u p l i c a t e s

FROM TPCD . LINEITEM

GROUP BY l shipmode , l shipdate

Listing 2. Example Query with Uniqueness
Property

3.2 Internal Representation

Although almost every commercial database system pro-

vides (some) support for reporting functions, there is no
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published extension of a relational query graph model to

capture the required functionality. For the sake of a better

illustration of our derivation patterns presented in the fol-

lowing sections, we use the following operators:

• ACCESS(Pred [ColSet:Cond], RelExpr): The AC-

CESS operator reflects the base operator to read tu-

ples from an underlying tuple producer, i.e. either

from a base table or from other relational operators

satisfying the given global predicate Pred. As a log-

ical extension of the classical database scan operator,

our ACCESS-operator checks an additional condition

which must be met for each group defined by ColSet.
For example, the expression ACCESS([A,B : k =
last(C,D)], R) returns only the single tuples holding

the last position according to the scheme of (C,D) for

each valid (A,B)-combination. This can be efficiently

achieved by defining a primary/secondary B-tree index

structure over the composite index attribute (A,B,C,D).

Based on this index structure, a modified search algo-

rithm has to take care of the condition according to

the position requirements within each different (A,B)-

combination. An index lookup would then return only

the RowIDs of the required tuples.

• PROJ(ColSet:AFunc(AColExpr)): The PROJ operator

eliminates duplicates and optionally computes the ag-

gregation function AFunc() and therefore implements

the group-by operator. The PROJ operator requires

a preceding SORT operator over the set of grouping

columns (GBColSet).

• SORT(ColSet) or SORT(ColList): The SORT operator

sorts the incoming tuples according to the sorting cri-

terion. In the first case (ColSet), the sort order can

be determined freely by the optimizer. In the second

case, the sort order is fixed and has to be applied to the

incoming tuple stream.

• WINDOW(ColSet:AFunc(AColExpr)[ωs,ωe]): The

WINDOW operator, finally, is similar to the PROJ

operator with ColSet denoting the partitioning

attributes, AFunc(AColExpr) referring to a ag-

gregation function, and [ωs,ωe] being the window

specification within each partition.

• JOIN: Regular logical join operators; the type of join

implementation depends on the physical plan.

• UNPACK(Col): The additional UNPACK-operator

(similar to [8]) generates duplicates of each incoming

tuple. The number of duplicates is retrieved from the

values of column Col, which is pruned for the final

output.

Figure 2 illustrates the use of the proposed operators.

The combination of SORT and PROJ implements the log-

ical group-by operator in GBColSet; the combination of

SORT and WINDOW represents a reporting function if the

partitioning columns (PBColSet) build the prefix of the

SORT operator followed by the list of explicitly given or-

dering attributes OBColList. Additionally, we are able to

model nested aggregations (motivated as described above to

eliminate duplicates) by inserting a PROJ operator between

the SORT and the WINDOW operator (see Figure 2c).

Figure 2. Examples of Internal Representa-
tions

4 Derivability in the Presence of Reporting
Functions

Previous work on materialized views has shown that

a significant performance gain in query execution can be

achieved by utilizing pre-computed data. This section con-

sists of two main components: the first is a brief outline of

several well-studied aspects we rely on (Section 4.1) and

the second component is a presentation of those aspects we

have to extend in order to support reporting function MVs

and queries (Sections 4.2 and 4.3).

4.1 Derivability of Aggregation Queries
and MVs

The largest benefit of using aggregation-based MVs, i.e.

SPJG-MVs, is that only the reduced set of rows, one of each

group, has to be stored. In general, the following additional

constraints have to be considered.

• group-by compatibility: The set of group-by columns

of the query Q, GBColSetQ is equal or a subset

of group-by columns GBColSetMV of the MV. The

condition also holds for complex grouping expressions

like grouping sets, cube, or rollup.

• join compatibility: In general, the query and the MV

are supposed to have the same set of base tables with

the same join predicates. The MV may have additional
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tables added via lossless joins (N:1 joins); the query

may require a back-join to additional tables not being

referenced in the MV.

• selection compatibility: The selection criterion of the

query must be equal or more restrictive with respect to

MVs.

• compatibility of the aggregate function and column ex-
pression: The aggregate function of the query must be

compatible (or algebraically computable) with the MV

aggregation result.

This list of derivability conditions is included here be-

cause all conditions also apply to MVs and queries with re-

porting functions. We therefore do not explicitly consider

these constraints but focus on the additional requirements

for this new class of queries and MVs with reporting func-

tions.

4.2 Derivation Patterns for Reporting
Function Views Without Partitioning
Attributes

The first patterns target MVs with reporting functions de-

fined without any partitioning attributes (PBColSetMV =
�) and with no explicit window specification, yielding

global cumulative aggregate values (usually sum values) ac-

cording to the given order criterion OBColListMV .

Derivation Pattern 1 - Ordering Reduction:

A reporting function query with a reduced order criterion

regarding the MV can be answered within this pattern by

picking the largest value of the cumulative sum per required

sort criterion without considering the omitted ordering at-

tributes. Figure 3 illustrates this pattern: the query only has

to take advantage of the conditional ACCESS operator to

retrieve the values with the highest index according to the

ordering attributes available in the MV but not specified in

the query. For brevity, this set of columns OBColListMV

− OBColListQ is denoted as OBColListQ.

For example (see Figure 4), with the query and the MV

referring to the same set of base tables and sharing a com-

patible selection criterion, the query expression

... SUM(SUM(x)) OVER (ORDER BY A) AS sum_x_a

... GROUP BY A

can be derived from an MV expression

... SUM(SUM(X)) OVER (ORDER BY A,B) AS sum_x_ab

... GROUP BY A,B

by logically rewriting the query to an aggregation query

over the materialized reporting function view:

Figure 3. Derivability Conditions for Ordering
Reduction

Figure 4. Example for Patterns 1 and 2

... MAX(sum_x_ab)

... GROUP BY A

More generally, we are able to state the following rule:

Derivability by Ordering Reduction: A report-

ing function RFQ = (�, OBColListQ, WSpec,

AFunc(AColsExpr)) is derivable from a report-

ing function RFMV =(�,OBColListMV ,WSpec,

AFunc(AColsExpr)) if OBColListQ is a prefix of the

ordering scheme of OBColListMV . Additionally, WSpec
is required to represent a cumulative window ([ωs = 0,

ωe = k]), and the aggregation expressions are compatible

according to the derivability and compensation rules.

In the above description, we assumed that the reporting

function queries avoid duplicates in the results. If a query

does not satisfy the uniqueness property, the same deriva-

tion pattern can be applied. However, the resulting data

stream has to be extended with the right number of dupli-
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Figure 5. Derivability Conditions for Aggrega-
tion Queries

cates by applying the UNPACK operator as the last operator

in the query execution graph.

Derivation Pattern 2 - Aggregation Query:

In contrast to the previous pattern, we want to answer a reg-

ular aggregation query Q from a reporting function view,

where the set of group-by attributes GBColSetQ is a pre-

fix of OBColListMV . Figure 5 illustrates this pattern: the

aggregation query can be rewritten to the materialized re-

porting function view with the help of reporting functions.

Again, the set of columns OBColListMV − GBColSetQ
is denoted as OBColListQ. Also, the rewritten query takes

advantage of the conditional ACCESS operator in order

to retrieve the values with the highest index according to

OBColListQ.

For example (see Figure 4(b)), the query expression

... SUM(x) AS sum_x_a

... GROUP BY A

can be derived from an MV expression

... SUM(SUM(X)) OVER (ORDER BY A,B) AS sum_x_ab

... GROUP BY A,B

by logically rewriting the query to a reporting function

query over the materialized reporting function view:

... MAX(sum_x_ab) OVER (ORDER BY A
ROWS BETWEEN CURRENT ROW AND CURRENT ROW)

- --- minus scalar operation
MAX(sum_x_ab) OVER (ORDER BY A

ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING)
... GROUP BY A

In other words, to answer an aggregation query Q from a

materialized reporting function view, the first thing we have

to do is to select the values with the highest index according

to OBColListQ in groups defined by GBColSetQ. Subse-

quently we have to subtract the value of the preceding tuple

from the value of the currently considered tuple by applying

the regular scalar minus operator. To avoid a null value for

the first tuple, we obviously have to extend the derivation

pattern with a COALESCE statement. More formally, we

are able to state the following rule:

Derivability of Aggregation Queries: An ag-

gregation query Q with a set of group-by at-

tributes GBColSetQ is derivable from a report-

ing function RFMV =(�,OBColListMV ,WSpec,

AFunc(AColsExpr)) if GBColSetQ is a prefix of the

ordering scheme of OBColListMV .

4.3 Derivation Patterns for Reporting
Function Views With Partitioning At-
tributes

The next step to more complex derivation patterns is to

consider partitioning attributes within the reporting func-

tion. In this case, we can specify derivation patterns for

(i) queries with reduced partitioning attributes and (ii) ag-

gregation queries referring to partitioning attributes. Again

we consider cumulative windows, compatible selection and

aggregation expressions.

Derivation Pattern 3 - Partitioning Reduction:

For simplicity only, we assume for now that the query and

the MV exhibit the same list of ordering columns. The re-

sulting scenario is different from Pattern 1 because we have

to combine values from different partitions to retrieve re-

porting function values of coarser partitioning granularity

in this case.

Figure 6 illustrates the problem of partitioning reduc-

tion. The partitioning attributes of the MV are A,B with

values A1, A2, B1, and B2; attribute C is the ordering at-

tribute and consists of four values. Additionally, suppose

that all 16 combinations exist for the corresponding report-

ing function values. Since the partitioning scheme of the

MV is finer (A,B) than the query Q (A), we have to com-

bine values according to the more coarse-grained partition-

ing scheme of the query. A typical situation is the reduction

of (year, quarter) to (year) with daily numeric values.

We can now state the more general derivation pattern il-

lustrated in Figure 7. A query can be answered within this

pattern by generating an aggregation query with the follow-

ing group-by attributes: PBColSetQ, OBColSetMV . For

example, the query expression (following the example in

Figure 6)

... SUM(SUM(X)) OVER (PARTITION BY A
ORDER BY C)

... GROUP BY A,C

can be derived from an MV
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Figure 6. Example for Partitioning Reduction

Figure 7. Derivability Conditions for Partition-
ing Reduction in Case of Ordering Complete-
ness.

... SUM(SUM(X)) OVER (PARTITION BY A,B
ORDER BY C) AS rf_value

... GROUP BY A,B,C

by rewriting the query to an aggregation query over the ma-

terialized reporting function view:

... SUM(rf_value)

... GROUP BY A,C

Unfortunately, this derivation pattern is only valid if the

same set of instances of the ordering attributes occurs in

every partition (as illustrated in Figure 6). We call this re-

quirement the completeness property regarding the ordering

attributes. In following we would like to illustrate a scenario

in which the completeness property is not fulfilled: assume

that the tuple A1, B2, C3 does not exist in the example from

Figure 6. In this case, only the value of the tuple A1, B1, C3

would go into the cumulative sum to compute tuple A1, C3

even though one value of the partition A1, B2 would have to

Figure 8. Example for a Group-By Reduction

be considered within this computation. Due to the fact that

the combination A1, B2, C3 does not exist, the fine-grained

cumulative sum of the tuple A1, B2, C2—the value of the

preceding tuple regarding the ordering attributes—must be

included. The trick to overcome this limitation is to ap-

ply a regular aggregation operation with a group-by con-

dition over the attributes PBColSetQ ∪ OBColListMV

as a preparatory step (see next pattern). Subsequently, the

compensation itself corresponds directly to the original re-

porting function of the incoming query.

Moreover, it is interesting to note that this pattern can be

easily extended to cover reduced ordering schemes accord-

ing to Pattern 1. This observation leads to the following

observation.

Derivability by Partitioning Reduction: A reporting

function RFQ = (PBColSetQ, OBColListQ, WSpec,

AFunc(AColsExpr)) is derivable from a reporting

function RFMV = (PBColSetMV , OBColListMV ,

WSpec, AFunc(AColsExpr)) if PBColSetQ is a

subset of PBColSetMV and OBColListQ is a prefix

of the ordering scheme of OBColListMV . Additionally,

WSpec is required to represent a cumulative window and

the aggregation expressions are compatible according to

the derivability and compensation rules.

Derivation Pattern 4 - Aggregation Queries:

In this part, we investigate the question of how to answer

a regualr aggregation query where the group-by attributes

GBColSetQ are a combination of partitioning and order-

ing attributes. Figure 8 illustrates the required task of a

compensation query on top of an MV. In this example, the

materialized reporting function view is defined with A,B
as partitioning attributes and C as ordering column. The

group-by attribute of the aggregation query Q is A.

In contrast to Pattern 2, we only have to pick the

largest value of each partition if the sets of group-by and

partitioning columns are equivalent, i.e. GBColSetQ =
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Figure 9. Derivability Conditions for Aggrega-
tion Queries

PBColSetMV . Derivability is also possible if the set of

group-by columns is a prefix of PBColSetMV . In this

case, we require the compensation query given in Figure

9(a), where we first pick the largest value of each fine-

grained partition according to PBColSetMV and then ap-

ply the group-by condition of the query Q. In both cases, we

must select the largest value of each fine-grained partition.

We can also answer an aggregation query if the group-by

attributes GBColSetQ are a combination of a prefix of the

partitioning attributes PBColSetMV and the entire order-

ing attributes OBColListMV of the materialized reporting

function view. The necessary compensation query is de-

picted in Figure 9(b); this pattern can be seen as a seamless

extension of Pattern 2. Furthermore, we can also consider

any combination of a prefix of the partitioning attributes and

a prefix of the ordering attributes.

4.4 Summary

To summarize, we are able to give a broad spectrum of

derivation rules for different situations with reporting func-

tions in materialized views, i.e. in the case of ordering or

partition reduction. Moreover, we support queries with re-

porting functions and typical group-by aggregation opera-

tions. All situations are based on cumulative sum as the

underlying materializing strategy and as the windowing se-

mantics for all derived queries. However, deriving report-

ing function views with sliding window semantics can also

be done within the same framework. Due to space restric-

tions, we just point out the basic idea: each sliding window

ws(k)[k− i, k + j] can be reconstructed by referring to two

cumulative windows wc(k)[0, k + j] and wc(k)[0, k − i].
The given patterns have to be adjusted in order to keep track

of two cumulative window values in order to compute the

value for sliding windows.

5 Evaluation

In this section, we explore the performance gain of our

materialized reporting function views and the proposed pat-

terns. All experiments are conducted on a single-disk Pen-

tium 4 PC with 1.5 GB main memory running Linux. All

patterns are evaluated with synthetic data sets and with

TPCD Benchmark data.

Synthetic Data Sets:

The first set of experiments is conducted on a single table

storing randomly generated tuples. For these experiments,

we developed a JAVA-Programm executing the correspond-

ing SQL queries according to the patterns on a commercial

relational database and writing the results to a flat file. Each

query is executed ten times, and the average execution time

is then used as the time measure.

For the first experiments, we defined a materialized view

with a reporting function including five ordering columns,

an empty partitioning scheme and cumulative window defi-

nition. The underlying raw data table consisted of 500, 000
rows, where 10 percent were distinct with regard to the five

ordering columns. Figure 10 shows the evaluation of the ap-

plicable Patterns 1 and 2. Pattern 1 rewrites reporting func-

tion queries with a reduced ordering scheme to the MV. The

runtimes of the original queries and the rewritten queries

with one to five ordering columns (prefixes) are depicted in

Figure 10(a). Pattern 2 is responsible for answering regu-

lar aggregation queries, where the group-by attributes are

a prefix of the ordering attributes of the MV. Figure 10(b)

shows the runtimes of the corresponding queries depending

on the prefix length of the ordering scheme. The resulting

speedups depicted in Figure 10(c) show that our Patterns 1
and 2 achieve a high performance gain. The performance

speedup increases with the decreasing prefix length of the

ordering scheme. We also observe that the speedups of both

patterns are nearly identical.

In the second experiment depicted in Figure 11, we in-

vestigated the influence of the data reduction of the mate-

rialized reporting function view on the raw data table, that

means we do not store duplicates in the materialized views.

In the previous experiment, the MV stored only 10% of the

raw data table and we achieved a high performance gain for

Patterns 1 and 2. Figure 11 shows the resulting speedups

of Pattern 1 and 2 depending on the data reduction. Again,

the raw data table consisted of 500, 000 randomly generated

rows and in the experiment we varied the distinct tuples re-

garding the five ordering columns. In the diagrams, we il-

lustrate only the performance gain for queries with attribute

prefix length 1 and 4. The results show that the larger the

data reduction, the larger the speedup for both patterns.

In the next experiment, we defined a materialized re-
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(a) Pattern 1 (b) Pattern 2 (c) Speedups

Figure 10. Evaluation of Patterns 1 and 2 on Synthetic Data Sets.

(a) Pattern 1 (b) Pattern 2

Figure 11. Influence of the Data Reduction on
the Speedup of Patterns 1 and 2.

porting function view with 4 partitioning and 2 ordering

attributes and cumulative window definition with the same

data parameters as in the first experiment to evaluate Pat-

terns 3 and 4. Figure 12(a) shows the performance gain

of Pattern 3, where we have to consider the completeness

regarding the ordering scheme. We generated a data sets

which satisfies this requirement and evaluated both valid

rewriting techniques. In general, Pattern 3 is responsible

for reporting function queries with a reduced partitioning

scheme. The diagram shows that both techniques are effi-

cient and that the second (incomplete case) is slower than

the first (complete case).

Figure 12(b) shows the speedups for Pattern 4 for two

kinds of regular aggregation queries for this pattern. In

both cases we varied the number of partitioning attributes

as group-by attributes (prefix condition). In one case, we

added the entire ordering attributes of the MV to the group-

by condition, while in the other case we used only the parti-

tioning attributes. The diagram shows that a higher speedup

can be achieved for queries without the ordering attributes.

The performance gain of both Patterns 3 and 4 cannot be as

high as for Patterns 1 and 2 because they always work on

the largest value of the fine-grained partitions in the MV. To

increase the speedup, we require a more sophisticated index

(a) Pattern 3 (b) Pattern 4

Figure 12. Evaluation of Patterns 3 and 4 on
Synthetic Data Sets.

structure, which allows direct access to the largest value in

the partitions according to PBColSetMV .

TPCD Benchmark Data:

In the second part of the experiment, we used the TPCD

Benchmark with scaling factor 0.3 and skew = 2.0 result-

ing in 1.8 million rows within the lineitem table. In the first

experiment here, we consider a materialized view defined

with a reporting function including 3 ordering columns, an

empty partitioning scheme and no explicit window defini-

tion (e.g. cumulative sum values). The MV query is de-

picted in Listing 3.

Figure 13(a) shows the performance speedup which is

achieved for the corresponding queries according to Pat-

terns 1 and 2. The speedup behavior is comparable to the

experiment with the synthetic data set. For the evaluation of

Patterns 3 and 4, we changed the reporting function of the

previous MV query as follows: c name and l shipmode as

partitioning attributes and year and month of l shipdate
as ordering scheme. The performance speedup of Patterns

3 and 4 are depicted in Figure 13(b). The ordering com-

pleteness for Pattern 3 was not fulfilled. For Pattern 4, we

only consider regular aggregation queries where the group-
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(a) Pattern 1 and 2 (b) Pattern 3 and 4

Figure 13. Evaluation on TPCD Benchmark

by attributes are a prefix of the partitioning attributes. The

experiments on the TPCD Benchmark confirm the results of

the evaluation on the synthetic data sets.

SELECT . . . , SUM(SUM( l.l extendedprice ) ) OVER (

ORDER BY c.c name ,YEAR( l.l shipdate ) ,

MONTH( l.l shipdate ) )

FROM l i n e i t e m l , order o , c u s t o m e r c
WHERE l.l orderkey = o.o orderkey AND

o.o custkey = c.c custkey
GROUP BY c.c name , YEAR( l.l shipdate ) ,

MONTH( l.l shipdate )

Listing 3. MV Query

6 Conclusion

Reporting functions reflect a feature which is quite heav-

ily used in complex decision support queries issued to large

data warehouse databases. Surprisingly, there is no work

considering the possibility and benefit of materialized views

based on reporting functions. We therefore give a semi-

formal extension of relational query graphs to capture the

semantics of reporting functions and discuss a broad vari-

ety of derivation patterns. The conducted experiments con-

firm that the existence of MVs defined over reporting func-

tions are of great benefit and provide great performance im-

provements for regular aggregation queries as well as for

queries with reporting functions under the condition of or-

dering and/or partitioning reduction.

Our next research topics are view design and view main-

tenance in the presence of reporting functions. At the mo-

ment, we are working on an extension of regular B-tree

indexes from a syntactical as well as an implementational

point of view. To increase the performance speedup of our

patterns, we require an efficient method for direct access to

tuples with certain positional conditions. Our core idea is to

use a secondary index structure where the specific key val-

ues are no longer an unordered set, but reflect a list which

is ordered according to a condition. Adding a sort order to

the secondary index structure enables a search algorithm to

consider additional positional constraints more efficiently.

In this way, the search algorithm can evaluate additional

constraints like FIRST() or LAST() or even more complex

positional tests like MOD() et cetera, which are frequently

required in our patterns.
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