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Abstract— We discuss a new efficient out-of-core multidimen-  In order to efficiently handle the process, we need an
sional indexing structure, information-aware 2"-tree, forindexing  efficient out-of-core indexing structure because such a dat
very Iargq muIt|Fj|mer)S|one}I volumetric data. BL.uIdlng.a series  gat very often does not fit in main memory. A typical way
of (n-1)-Dimensional indexing structures on n-Dimensional data f buildi indexi truct in th f ti .
causes a scalability problem in the situation of continually of bui |r.lg Indexing structures in e.case 0 'me'vary'ng
growing resolution in every dimension. However, building a single volumetrlc; datq such as the one descrlbed above is to build a
n-Dimensional indexing structure can cause an indexing effec- separate indexing structure on each time step of the data set
tiveness problem compared to the former case. The information- For example, Sutton and Hansen’s temporal branch-on-need
aware 2"-tree is an effort to maximize the indexing structure i\ cture (T-BON) [3] is the most representative. Theiategy

efficiency by ensuring that the subdivision of space have as similar . . .
coherence as possible along each dimension. It is particularly is to build an out-of-core version of Branch-On-Need-Cetre

useful when data distribution along each dimension constantly (BONO) [4], in which each leaf node is of disk page size,
shows a different degree of coherence from each other dimension for each time step and to store general common infrastreictur

Our preliminary results show that our new tree can achieve of the trees in a single file. However, the way of building (n-
higher indexing structure efficiency than previous methods. 1)-dimensional trees along one particular dimension sich a
the way that the T-BON adopts unfortunately results in the
size increase linearly with the resolution size at the paldir

As the speed of processors continues to improve, researchi#imension (the number of time steps in the case of T-BON) be-
are performing large scale scientific simulations to stuelsyv cause it does not exploit any type of possible coherencesacro
complex phenomena at increasingly finer resolution scaléise particular dimension. This lack of scalability becomes
Such studies have resulted in the generation of datasdts thare problematic as we generate higher and higher resolutio
are characterized by their very large sizes ranging frodata in every dimension including the time dimension.
hundreds of gigabytes to tens of terabytes, thereby generin this paper, we present a new efficient out-of-core muiltidi
ating an imperative need for new interactive visualizatiomensional indexing structure, information-aware (2X}tree.
capabilities. Consider for example the fundamental mixinphe strategy is to basically build a n-Dimensional indexing
process of the Richtmyer-Meshkov instability from the ASCétructure on n-Dimensional data because it can exploit the
team at the Lawrence Livermore National Labs [1]. Theoherence across all n dimensions and thus lead to compact
simulation produced about1 terabytes of data, which showssize, addressing the scalability problem. However, we rieed
the characteristic development of bubbles and spikes aid thalso consider indexing effectiveness as well as the sdijabi
subsequent merger and break-up oR&0 time steps. The The effectiveness of out-of-core indexing can be defined by
resolution of each time step 048 x 2,048 x 1,920 (~8 how much data is actually what we needed from the loaded
GB). Such high resolution simulations allow elucidation oflata because the finest indexed object is not an individual
fine scale physics. voxel, but a group of data which is of disk page size. Thus,

A typical way of visualizing such a large multidimensionalising the new structure, we seek to increase the ratio of
volumetric data set is to first reduce the dimension of tha ddhdexing effectiveness to indexing structure size, which w
set using techniques such as slicing and then to render thedefine asndexing structure efficiency
sult using one of the isosurface or volume rendering tealeiq The key feature of the IA2"-tree is to provide higher
[2]. Slicing is a very useful tool because it removes or reducindexing structure efficiency than the previdkistree orn x
occlusion problems in visualizing such a multidimension&@~! trees. While a typica™-tree recursively subdivides the
volumetric data set and it enables fast visual exploratibn n-Dimensional volumetric data in®* subvolumes based only
such a large data set. on the volume extent, ol*-tree determines its dimension ra-

I. INTRODUCTION


Jusub Kim
defined


tios of a subvolume based on the information embedded in tihelecides the extent ratios of a subvolume when multi dimen-
data so that the subvolumes can contain as similar coheresimms are integrated into one hierarchical indexing stmact
as possible along each dimension, resulting in higher index The coherence information along each dimension is extlacte
effectiveness. Our method is particularly useful when datad used for the decision so that each subvolume contains as
distribution along each dimension constantly shows amiffe similar coherence as possible along each dimension.
degree of coherence from each other dimension. , i ,
We used the IA2"-tree in 4-D (time-varying 3-D) data - PIMension Integration
sets to retrieve necessary data, given slicing and isazurfa We present an entropy-based dimension integration tech-
queries. We compared our tree with previous major indeximigue. Entropy [14] is a numerical measure of the uncer-
structures used for the same purpose, and achieved higtaénty of the outcome for an event, given by H(x) =
indexing efficiency. — > pilog, p;, wherez is a random variablep is the
The rest of this paper is organized as follows. We discuggmber of possible states of andp; is the probability ofz
major related out-of-core techniques in Section 2 and dwescrbeing in state. This measure indicates how much information
our new indexing structure in Section 3. A summary of oug contained in observing. The more the variability ofr,
experimental results is given in Section 4 and we concludetiie more unpredictable is, and the higher the entropy. For
Section 5. example, consider a series of scalar field values for a voxel
over the time dimension. The temporal entropyvdhdicates
Il. PREVIOUS OUT-OF-CORE TECHNIQUES the degree of variability in the series. Therefore, highayt
Disks have several orders of magnitude longer access timwlies high information content, and thus more resources a
than random access main memory because of their electromgguired to store the series. Note that the entropy is maxichi
chanical components. A single disk access reads or writegvhen all the probabilitiep; are equal.
block of contiguous data at once. The performance of an out-

of-core algorithm [5] is often dominated by the number of , value

I/O operations, each involving the reading or writing ofldis z f‘

blocks. Hence designing an efficient out-of-core visuéiira 7 - =7

algorithm requires a careful attention to reducing the neimb A YEILE

of I/O operations and organizing disk accesses in such a way > sy >

that active data blocks are moved in large contiguous chunks / / """""""""" = = ¥

to main memory. R vale -
During the past few years, a number of out-of-core tech- A B 3

nigues have appeared in the literature to handle severadlvis - ¢

lzation problem_s. Coxand Ellsworth [6] .ShOW th‘?‘t applicat Fig. 1. Entropy estimation in each dimension. Note that the rgedision
controlled paging and data loading in a unit of subcub@s aimost zero entropy in this example.

with the ability of controlling the page size can lead to
better performance in out-of-core visualization. Outofe
isosurface extraction algorithms for static datasets epented

in [7], [8], [9]. Of more interest to us is the previous work on
out-of-core algorithms dealing with time-varying data.i&ty
[10] proposes an out-of-core isosurface extraction allgori
based on a time hierarchy for irregular grids. This hierarch
uses the Binary-Blocked-I/O interval trees (BBIO) [7] as P
secondary structures to support I/O optimal interval deesc .
However, it can not efficiently support the slicing process ‘ {
since cells are organized by their interval values. Suttuth a N = )
Hansen [3] introduce the Temporal Branch-on-Need-ocffee ( ﬁ/
BON) to extract isosurfaces for each time step separately.
Another related work is the PHOT data structure developed
in [11]. While it achieves asymptotically optimal internal
memory search, its size is substantially large. Silva ef12] (@ (®)
provide a good survey on out-of-core algorithms for scfanti
visualization and computer graphics.

Fig. 2.  Different metacell sizes and corresponding hieiaathindexing
structures for the data of Figure 1: (a) standard metacellinformation-

aware metacell.
IIl. | NFORMATION-AWARE 2"-TREES

Information-Aware2™-trees (IA2"-trees) are basicallg@”- We use the entropy notion to determine the relative sizes of
trees (e.g. quadtrees for 2-D and octrees for 3-D [13]) ftine extents of a metacell, which is a subcube corresponding t
n-dimensional space. However, it is different in terms ofvhoa leaf node in the trees. Higher entropy of a dimension x&ati
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to the other dimensions implies that this dimension needs to IV. EXPERIMENTAL RESULTS
be split at finer scales than the other dimensions. For ex@ampl We compared the indexing structure efficiency of ouIA

if a temporal entropy is twice as much as the spatial entropyae \with a typical2”-tree and also the T-BON scheme [3],

we design the metacell to be of sizex s x s x 3 (x X ¥ \yhich is one of the two most popular schemes for time-varying

x z x t), wheres is the size of the spatial dimension of th§q,qrface rendering and can also handle slicing queries. F
metgcell. ) , _evaluation, we consider two large time-varying volumetiata

_ Figures 1 and 2 show how this entropy-based dimensi@@yg: the Richtmyer-Meshkov data set for time stejis— 139,
|n_tegrat|0n leads to an indexing _struc_ture for the 3-D casg,ch down-sampled by two along each spatial dimension, and
Figure 1 shows an extreme case in which the values along {ig Fiye Jets data set [15] consisting of 2000 time stepsh Eac
y dimension remain almost const.ant over all possm_le X, Ehe step of the Richtmyer-Meshkov data set involves)24
values (that is, the entropy of y is almost zero) while each ;94 '« 960 grid with one-byte scalar values resulting in

of the x and z dimensions has some degree of variabilijgs| 4 GB data set. The Five Jets data set consiste26fx
The metacell size and the corresponding hierarchical index |95 . 198 grid with 4-bytes floating point values resulting in
structure will be designed as shown in Figure 2 (b), thattis, i4| 16 GB.

has a quadtree structure unlike the standard octree ofd-Ryur We ran all the tests on a single Linux machine which has

(a) in which the metacell has the same size in each dimensia[]a| 3.0 GHz Xeon processors with50 MB/s maximum
To estimate the ratios of the entropy values among n dim&fjsy /0 transfer rate. In all our experiments, we made use

sions, we randomly select a set of n-Dimensional subvolumg,somy one of the two processors. Also, we used a simple
and for each subvolume, obtain the ratios by simply compgutify ¢, management system in order to control disk I/O.
each entropy value along each dimension. The ratios are

averaged and globally applied in building indexing struesu o T )
In computing the entropy values, if the number of the possibl Loaded Data Loz
scalar field values is large (as in the case of floating point Effectivenees 007
values), we first quantize the original values intovalues Dok Acoees Tome To1
using a non-uniform quantizer such as the lloyd-max quantiz Tree Traversal 093
Even though it can apply to general cases, we are primarily Total Time 1.00
concerned about establishing the relationship betweetiatpa
and temporal dimensions because there is usually constant TABLE |

difference in the coherence of data values between the twO QuERry PERFORMANCE COMPARISON BETWEENA 27-TREE AND
different types of dimensions. Thus we compute #patio-  27-TReE FOR THERICHTMYER-MESHKOV DATA SET. THE RESULTS ARE
temporal entropy ratiodefined as the ratio of the averagerne avERAGE VALUES OVER VARIOUS TYPES OF SLICING AND DIFFERET
spatial entropy to the temporal entropy. ISOVALUES.

We note that in general a time series will consist of a number
of temporal domains during which the spatio-temporal gntro
ratio can be different. Our general strategy is to decomfiluse We first compare the 1A2"-tree with a2"-tree for the
time series into a set of temporal regions, each of which wRichtmyer-Meshkov data set. Using the entropy measure, we
be characterized by its spatio-temporal entropy ratio.ddenobtained a spatio-temporal entropy ratio equal fover the
we build a separate IA-Octree for each temporal region. time steps100 — 139 for the data set, resulting in 30% less

] indexing structure size than ti#-tree due to coarsar subdi-

B. Indexing Structures vision along the temporal dimension. However, Table | shows

We make use of the entropy ratios for the purpose of guidirtigat it experiences only 3% indexing effectiveness reducti
the branching of the tree and ultimately adjusting the size Note that the tree traversal time decreases because theenumb
metacells by dividing the dimension of high entropy moref nodes that the tree has to visit decreases. Overall, uttses
finely and that of low entropy more coarsely. It is simplyn 1.4 times better indexing structure efficiency.
carried out by multiplying the original size of each dimemsi Now we also compare the IR"-tree with the T-BON
by its entropy value, which becomes the ‘effective’ size afcheme for both the Richtmyer-Meshkov and the Jet data
the dimension, and then using the ‘effective’ size instebd eet to shovs/ how much redundant information is retained in
the original size in branching of the tree. In addition totthaa series of (n-1)-Dimensional indexing structures and how
We adopt the Branch-On-Need strategy [4] by delaying tftkat affects performance. The size of 2&-tree is only about
branching of each dimension until it is absolutely necgssar1/9 of the T-BON structure for the Richtmyer-Meshkov data

For efficient isosurface rendering, each tree node contaset. For the Jet data set, we arbitrarily divided the tenipora
the minimum and maximum values of the scalar fields idomain of the Five Jets data set into four time regions
the region represented by the node. The size of the tree ¢aee Figure 3) having respectively the spatio-temporabempt
be reduced by pruning nodes in which the minimum amatios of 0.5, 1, 3, and 4. We separately built our tree on each
maximum values are the same because they do not contribtiiee region. The total size of the four I&"-trees is only
to isosurface extraction. about 1/8 of the T-BON structure for the Jet data. The space
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Fig. 3. Spatio-temporal entropy ratios computed at uniforneliected 100
reference time steps among the 2000 time steps in the Five Jetskiech
dashed box corresponds to a time region.

Richtmyer-Meshkov Tet

Ratio (IA-2*/ T-BON) | Ratio (IA-2/ T-BON)
Loaded Data 1.10 1.05
Effectiveness 0.91 0.94
Disk Access Time 1.15 1.09
Tree Traversal 0.71 0.70
Total Time 0.98 0.98

TABLE Il

QUERY PERFORMANCE COMPARISON BETWEENA 2™-TREE AND T-BON
FOR THERICHTMYER-MESHKOV AND THE JET DATA SET. THE RESULTS
ARE THE AVERAGE VALUES OVER VARIOUS TYPES OF SLICING AND
DIFFERENT ISOVALUES

(1]
(2]

[3]
reductiornt mainly comes from using temporal coherence in the
indexing structure.. However, Table Il shows that the indgxi [4]
effectiveness reduction is only 9% and 6% respectively for
each of the two data sets. It results in about 8 times bett&¥
indexing structure efficiency. 6]

The experimental results show that we can even obtain
slightly better timing results. It is because the effect loé t 7]
increased data transfer due to the reduced effectivenaedseca
mitigated by memory cache effect, but there is no way that the
longer tree traversal time of the larger T-BON structure an
2"-tree can be mitigated in the course of successive queries.
V. CONCLUSION el

We introduced a new indexing structure called Information-
Aware 2"-trees. Building a series of (n-1)-Dimensional in{10]
dexing structures causes a scalability problem in the ntirre
situation of continually growing resolution in every dinsgon. (1
However, building a single n-Dimensional indexing struetu
can cause an indexing effectiveness problem compared to H}?
former case. The Information-Awarg’-tree is an effort to
maximize the indexing structure efficiency by ensuring that
the subdivision of space have as similar coherence as ﬂmssibg]
along each dimension. [14]

Our future work plan includes evaluating the goodness of

the entropy measure in comparison to other measures v
finding out more adaptive way of applying the coherence

Fig. 4. Sample result images of the slicing + isosurface réengefhe left
shows the Richtmyer-Meshkov data set and the right for theldet set cut
by temporal-, y-, and z-slicing from top to bottom.

difference in the subdivision as well as more reasonable way
of decomposing the time series.
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