
Information-Aware2
n-Tree for Efficient

Out-of-Core Indexing of Very Large
Multidimensional Volumetric Data

Jusub Kim
Institute for Advanced Computer Studies

Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

E-mail: jusub@umd.edu

Joseph JaJa
Institute for Advanced Computer Studies

Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

E-mail: joseph@umiacs.umd.edu

Abstract— We discuss a new efficient out-of-core multidimen-
sional indexing structure, information-aware2

n-tree, for indexing
very large multidimensional volumetric data. Building a series
of (n-1)-Dimensional indexing structures on n-Dimensional data
causes a scalability problem in the situation of continually
growing resolution in every dimension. However, building a single
n-Dimensional indexing structure can cause an indexing effec-
tiveness problem compared to the former case. The information-
aware 2

n-tree is an effort to maximize the indexing structure
efficiency by ensuring that the subdivision of space have as similar
coherence as possible along each dimension. It is particularly
useful when data distribution along each dimension constantly
shows a different degree of coherence from each other dimension.
Our preliminary results show that our new tree can achieve
higher indexing structure efficiency than previous methods.

I. I NTRODUCTION

As the speed of processors continues to improve, researchers
are performing large scale scientific simulations to study very
complex phenomena at increasingly finer resolution scales.
Such studies have resulted in the generation of datasets that
are characterized by their very large sizes ranging from
hundreds of gigabytes to tens of terabytes, thereby gener-
ating an imperative need for new interactive visualization
capabilities. Consider for example the fundamental mixing
process of the Richtmyer-Meshkov instability from the ASCI
team at the Lawrence Livermore National Labs [1]. The
simulation produced about2.1 terabytes of data, which shows
the characteristic development of bubbles and spikes and their
subsequent merger and break-up over270 time steps. The
resolution of each time step is2, 048 × 2, 048 × 1, 920 (∼8
GB). Such high resolution simulations allow elucidation of
fine scale physics.

A typical way of visualizing such a large multidimensional
volumetric data set is to first reduce the dimension of the data
set using techniques such as slicing and then to render the re-
sult using one of the isosurface or volume rendering techniques
[2]. Slicing is a very useful tool because it removes or reduces
occlusion problems in visualizing such a multidimensional
volumetric data set and it enables fast visual exploration of
such a large data set.

In order to efficiently handle the process, we need an
efficient out-of-core indexing structure because such a data
set very often does not fit in main memory. A typical way
of building indexing structures in the case of time-varying
volumetric data such as the one described above is to build a
separate indexing structure on each time step of the data set.
For example, Sutton and Hansen’s temporal branch-on-need
structure (T-BON) [3] is the most representative. Their strategy
is to build an out-of-core version of Branch-On-Need-Octree
(BONO) [4], in which each leaf node is of disk page size,
for each time step and to store general common infrastructure
of the trees in a single file. However, the way of building (n-
1)-dimensional trees along one particular dimension such as
the way that the T-BON adopts unfortunately results in the
size increase linearly with the resolution size at the particular
dimension (the number of time steps in the case of T-BON) be-
cause it does not exploit any type of possible coherence across
the particular dimension. This lack of scalability becomes
more problematic as we generate higher and higher resolution
data in every dimension including the time dimension.

In this paper, we present a new efficient out-of-core multidi-
mensional indexing structure, information-aware (IA)2n-tree.
The strategy is to basically build a n-Dimensional indexing
structure on n-Dimensional data because it can exploit the
coherence across all n dimensions and thus lead to compact
size, addressing the scalability problem. However, we needto
also consider indexing effectiveness as well as the scalability.
The effectiveness of out-of-core indexing can be defined by
how much data is actually what we needed from the loaded
data because the finest indexed object is not an individual
voxel, but a group of data which is of disk page size. Thus,
using the new structure, we seek to increase the ratio of
indexing effectiveness to indexing structure size, which we
define asindexing structure efficiency.

The key feature of the IA2n-tree is to provide higher
indexing structure efficiency than the previous2n tree orn×

2n−1 trees. While a typical2n-tree recursively subdivides the
n-Dimensional volumetric data into2n subvolumes based only
on the volume extent, our2n-tree determines its dimension ra-

Jusub Kim
defined



tios of a subvolume based on the information embedded in the
data so that the subvolumes can contain as similar coherence
as possible along each dimension, resulting in higher indexing
effectiveness. Our method is particularly useful when data
distribution along each dimension constantly shows a different
degree of coherence from each other dimension.

We used the IA2n-tree in 4-D (time-varying 3-D) data
sets to retrieve necessary data, given slicing and isosurface
queries. We compared our tree with previous major indexing
structures used for the same purpose, and achieved higher
indexing efficiency.

The rest of this paper is organized as follows. We discuss
major related out-of-core techniques in Section 2 and describe
our new indexing structure in Section 3. A summary of our
experimental results is given in Section 4 and we conclude in
Section 5.

II. PREVIOUS OUT-OF-CORE TECHNIQUES

Disks have several orders of magnitude longer access time
than random access main memory because of their electrome-
chanical components. A single disk access reads or writes a
block of contiguous data at once. The performance of an out-
of-core algorithm [5] is often dominated by the number of
I/O operations, each involving the reading or writing of disk
blocks. Hence designing an efficient out-of-core visualization
algorithm requires a careful attention to reducing the number
of I/O operations and organizing disk accesses in such a way
that active data blocks are moved in large contiguous chunks
to main memory.

During the past few years, a number of out-of-core tech-
niques have appeared in the literature to handle several visual-
ization problems. Cox and Ellsworth [6] show that application-
controlled paging and data loading in a unit of subcube
with the ability of controlling the page size can lead to
better performance in out-of-core visualization. Out-of-core
isosurface extraction algorithms for static datasets are reported
in [7], [8], [9]. Of more interest to us is the previous work on
out-of-core algorithms dealing with time-varying data. Chiang
[10] proposes an out-of-core isosurface extraction algorithm
based on a time hierarchy for irregular grids. This hierarchy
uses the Binary-Blocked-I/O interval trees (BBIO) [7] as
secondary structures to support I/O optimal interval searches.
However, it can not efficiently support the slicing process
since cells are organized by their interval values. Sutton and
Hansen [3] introduce the Temporal Branch-on-Need-octree (T-
BON) to extract isosurfaces for each time step separately.
Another related work is the PHOT data structure developed
in [11]. While it achieves asymptotically optimal internal
memory search, its size is substantially large. Silva et al.[12]
provide a good survey on out-of-core algorithms for scientific
visualization and computer graphics.

III. I NFORMATION-AWARE 2n-TREES

Information-Aware2n-trees (IA2n-trees) are basically2n-
trees (e.g. quadtrees for 2-D and octrees for 3-D [13]) for
n-dimensional space. However, it is different in terms of how

it decides the extent ratios of a subvolume when multi dimen-
sions are integrated into one hierarchical indexing structure.
The coherence information along each dimension is extracted
and used for the decision so that each subvolume contains as
similar coherence as possible along each dimension.

A. Dimension Integration

We present an entropy-based dimension integration tech-
nique. Entropy [14] is a numerical measure of the uncer-
tainty of the outcome for an eventx, given by H(x) =
−

∑
n

i=1
pi log

2
pi, where x is a random variable,n is the

number of possible states ofx, andpi is the probability ofx
being in statei. This measure indicates how much information
is contained in observingx. The more the variability ofx,
the more unpredictablex is, and the higher the entropy. For
example, consider a series of scalar field values for a voxelv

over the time dimension. The temporal entropy ofv indicates
the degree of variability in the series. Therefore, high entropy
implies high information content, and thus more resources are
required to store the series. Note that the entropy is maximized
when all the probabilitiespi are equal.

Fig. 1. Entropy estimation in each dimension. Note that the y dimension
has almost zero entropy in this example.

Fig. 2. Different metacell sizes and corresponding hierarchical indexing
structures for the data of Figure 1: (a) standard metacell; (b) information-
aware metacell.

We use the entropy notion to determine the relative sizes of
the extents of a metacell, which is a subcube corresponding to
a leaf node in the trees. Higher entropy of a dimension relative

Jusub Kim
several



to the other dimensions implies that this dimension needs to
be split at finer scales than the other dimensions. For example,
if a temporal entropy is twice as much as the spatial entropy,
we design the metacell to be of sizes × s × s ×

s

2
(x × y

× z × t), wheres is the size of the spatial dimension of the
metacell.

Figures 1 and 2 show how this entropy-based dimension
integration leads to an indexing structure for the 3-D case.
Figure 1 shows an extreme case in which the values along the
y dimension remain almost constant over all possible (x, z)
values (that is, the entropy of y is almost zero) while each
of the x and z dimensions has some degree of variability.
The metacell size and the corresponding hierarchical indexing
structure will be designed as shown in Figure 2 (b), that is, it
has a quadtree structure unlike the standard octree of Figure 2
(a) in which the metacell has the same size in each dimension.

To estimate the ratios of the entropy values among n dimen-
sions, we randomly select a set of n-Dimensional subvolumes
and for each subvolume, obtain the ratios by simply computing
each entropy value along each dimension. The ratios are
averaged and globally applied in building indexing structures.
In computing the entropy values, if the number of the possible
scalar field values is large (as in the case of floating point
values), we first quantize the original values inton values
using a non-uniform quantizer such as the lloyd-max quantizer.

Even though it can apply to general cases, we are primarily
concerned about establishing the relationship between spatial
and temporal dimensions because there is usually constant
difference in the coherence of data values between the two
different types of dimensions. Thus we compute thespatio-
temporal entropy ratiodefined as the ratio of the average
spatial entropy to the temporal entropy.

We note that in general a time series will consist of a number
of temporal domains during which the spatio-temporal entropy
ratio can be different. Our general strategy is to decomposethe
time series into a set of temporal regions, each of which will
be characterized by its spatio-temporal entropy ratio. Hence
we build a separate IA-Octree for each temporal region.

B. Indexing Structures

We make use of the entropy ratios for the purpose of guiding
the branching of the tree and ultimately adjusting the size of
metacells by dividing the dimension of high entropy more
finely and that of low entropy more coarsely. It is simply
carried out by multiplying the original size of each dimension
by its entropy value, which becomes the ‘effective’ size of
the dimension, and then using the ‘effective’ size instead of
the original size in branching of the tree. In addition to that,
We adopt the Branch-On-Need strategy [4] by delaying the
branching of each dimension until it is absolutely necessary.

For efficient isosurface rendering, each tree node contains
the minimum and maximum values of the scalar fields in
the region represented by the node. The size of the tree can
be reduced by pruning nodes in which the minimum and
maximum values are the same because they do not contribute
to isosurface extraction.

IV. EXPERIMENTAL RESULTS

We compared the indexing structure efficiency of our IA2n-
tree with a typical2n-tree and also the T-BON scheme [3],
which is one of the two most popular schemes for time-varying
isosurface rendering and can also handle slicing queries. For
evaluation, we consider two large time-varying volumetricdata
sets: the Richtmyer-Meshkov data set for time steps100−139,
each down-sampled by two along each spatial dimension, and
the Five Jets data set [15] consisting of 2000 time steps. Each
time step of the Richtmyer-Meshkov data set involves a1024
× 1024 × 960 grid with one-byte scalar values resulting in
total 40 GB data set. The Five Jets data set consists of128 ×

128 × 128 grid with 4-bytes floating point values resulting in
total 16 GB.

We ran all the tests on a single Linux machine which has
dual 3.0 GHz Xeon processors with∼50 MB/s maximum
disk I/O transfer rate. In all our experiments, we made use
of only one of the two processors. Also, we used a simple
buffer management system in order to control disk I/O.

TABLE I

QUERY PERFORMANCE COMPARISON BETWEENIA 2
n-TREE AND

2
n-TREE FOR THERICHTMYER-MESHKOV DATA SET. THE RESULTS ARE

THE AVERAGE VALUES OVER VARIOUS TYPES OF SLICING AND DIFFERENT

ISOVALUES.

We first compare the IA2n-tree with a 2n-tree for the
Richtmyer-Meshkov data set. Using the entropy measure, we
obtained a spatio-temporal entropy ratio equal to1.5 over the
time steps100 − 139 for the data set, resulting in 30% less
indexing structure size than the2n-tree due to coarser subdi-
vision along the temporal dimension. However, Table I shows
that it experiences only 3% indexing effectiveness reduction.
Note that the tree traversal time decreases because the number
of nodes that the tree has to visit decreases. Overall, it results
in 1.4 times better indexing structure efficiency.

Now we also compare the IA2n-tree with the T-BON
scheme for both the Richtmyer-Meshkov and the Jet data
set to show how much redundant information is retained in
a series of (n-1)-Dimensional indexing structures and how
that affects performance. The size of IA2n-tree is only about
1/9 of the T-BON structure for the Richtmyer-Meshkov data
set. For the Jet data set, we arbitrarily divided the temporal
domain of the Five Jets data set into four time regions
(see Figure 3) having respectively the spatio-temporal entropy
ratios of 0.5, 1, 3, and 4. We separately built our tree on each
time region. The total size of the four IA2n-trees is only
about 1/8 of the T-BON structure for the Jet data. The space

Jusub Kim
due

Jusub Kim
to

Jusub Kim
coarser

Jusub Kim
subdivision

Jusub Kim
along

Jusub Kim
temporal

Jusub Kim
dimension.

Jusub Kim
the

Jusub Kim
to

Jusub Kim
show

Jusub Kim
how

Jusub Kim
much

Jusub Kim
redundant

Jusub Kim
information

Jusub Kim
is

Jusub Kim
retained

Jusub Kim
in

Jusub Kim
series

Jusub Kim
of

Jusub Kim
n-

Jusub Kim
Dimensional

Jusub Kim
indexing

Jusub Kim
structures

Jusub Kim
and

Jusub Kim
how

Jusub Kim
that

Jusub Kim
affects

Jusub Kim
performance.

Jusub Kim
The

Jusub Kim
space



Fig. 3. Spatio-temporal entropy ratios computed at uniformly selected 100
reference time steps among the 2000 time steps in the Five Jets data. Each
dashed box corresponds to a time region.

TABLE II

QUERY PERFORMANCE COMPARISON BETWEENIA 2
n-TREE AND T-BON

FOR THERICHTMYER-MESHKOV AND THE JET DATA SET. THE RESULTS

ARE THE AVERAGE VALUES OVER VARIOUS TYPES OF SLICING AND

DIFFERENT ISOVALUES.

reduction mainly comes from using temporal coherence in the
indexing structure. However, Table II shows that the indexing
effectiveness reduction is only 9% and 6% respectively for
each of the two data sets. It results in about 8 times better
indexing structure efficiency.

The experimental results show that we can even obtain
slightly better timing results. It is because the effect of the
increased data transfer due to the reduced effectiveness can be
mitigated by memory cache effect, but there is no way that the
longer tree traversal time of the larger T-BON structure and
2n-tree can be mitigated in the course of successive queries.

V. CONCLUSION

We introduced a new indexing structure called Information-
Aware 2n-trees. Building a series of (n-1)-Dimensional in-
dexing structures causes a scalability problem in the current
situation of continually growing resolution in every dimension.
However, building a single n-Dimensional indexing structure
can cause an indexing effectiveness problem compared to the
former case. The Information-Aware2n-tree is an effort to
maximize the indexing structure efficiency by ensuring that
the subdivision of space have as similar coherence as possible
along each dimension.

Our future work plan includes evaluating the goodness of
the entropy measure in comparison to other measures and
finding out more adaptive way of applying the coherence

Fig. 4. Sample result images of the slicing + isosurface rendering. The left
shows the Richtmyer-Meshkov data set and the right for the Jetdata set cut
by temporal-, y-, and z-slicing from top to bottom.

difference in the subdivision as well as more reasonable way
of decomposing the time series.

REFERENCES

[1] The ASCI Turbulence project, Lawrence Livermore National Laboratory,
http://www.llnl.gov/CASC/asciturb.

[2] C. Hansen and C. Johnson,The visualization handbook. Elsevier
Butterworth-Heinemann, 2005.

[3] P. M. Sutton and C. D. Hansen, “Accelerated isosurface extraction in
time-varying fields,”IEEE Transactions on Visualization and Computer
Graphics, vol. 6, no. 2, pp. 98–107, Apr 2000.

[4] J. Wilhelms and A. V. Gelder, “Octrees for faster isosurface generation,”
ACM Transactions on Graphics, vol. 11, no. 3, pp. 201–227, Jul 1992.

[5] J. Vitter, “External memory algorithms and data structures: Dealing with
massive data.”ACM Computing Surveys, March 2000.

[6] M. Cox and D. Ellsworth, “Application-Controlled DemandPaging
for Out-of-Core Visualization,”Proceedings of the 8th conference on
Visualization, 1997.

[7] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder, “Interactive out-of-core
isosurface extraction,” inProceedings of IEEE Visualization, 1998, pp.
167–174.

[8] C. L. Bajaj, V. Pascucci, D. Thompson, and X. Y. Zhang, “Parallel
accelerated isocontouring for out-of-core visualization,” in Proceedings
of the IEEE symposium on Parallel visualization and graphics, 1999,
pp. 97–104.

[9] X. Zhang, C. Bajaj, and V. Ramachandran, “Parallel and out-of-core
view-dependent isocontour visualization using random data distribution,”
in Proceedings of the IEEE symposium on Parallel visualization and
graphics, 2002, pp. 9–17.

[10] Y.-J. Chiang, “Out-of-core isosurface extraction of time-varying fields
over irregular grids,” inProceedings of IEEE Visualization, 2003, pp.
29–36.

[11] Q. Shi and J. JaJa,Efficient Isosurface extraction for large scale time-
varying data using the persistent hyperoctree (PHOT). Unpublished,
2005.

[12] C. Silva, Y. Chiang, J. El-Sana, and P. Lindstrom, “Out-of-core al-
gorithms for scientific visualization and computer graphics,” IEEE
Visualization Course Notes, 2002.

[13] H. Samet,The design and analysis of spatial data structures. Addison-
Wesley, 1990.

[14] T. M. Cover and J. A. Thomas,Elements of Information Theory. John
Wiley, 1991.

[15] Time-Varying Volume Data Repository, The Five Jets dataset,
http://www.cs.ucdavis.edu/∼ma/ITR/tvdr.html.

Jusub Kim
reduction

Jusub Kim
mainly

Jusub Kim
comes

Jusub Kim
from

Jusub Kim
using

Jusub Kim
temporal

Jusub Kim
coherence

Jusub Kim
in

Jusub Kim
the

Jusub Kim
indexing

Jusub Kim
structure.


