
Component-based Data Layout for Efficient Slicing
of Very Large Multidimensional Volumetric Data

Jusub Kim
Institute for Advanced Computer Studies

Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

E-mail: jusub@umd.edu

Joseph JaJa
Institute for Advanced Computer Studies

Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

E-mail: joseph@umiacs.umd.edu

Abstract— In this paper, we introduce a new efficient
data layout scheme to efficiently handle out-of-core axis-
aligned slicing queries of very large multidimensional
volumetric data. Slicing is a very useful dimension reduc-
tion tool that removes or reduces occlusion problems in
visualizing 3-D/4-D volumetric data sets and that enables
fast visual exploration of such data sets. We show that the
data layouts based on typical space-filling curves are not
optimal for the out-of-core slicing queries and present a
novel component-based data layout scheme for a specialized
problem domain, in which it is only required to provide fast
slicing at everyk-th value, for any k > 1. Our component-
based data layout scheme provides much faster processing
time for any axis-aligned slicing direction at every k-th
value,k > 1, requiring less cache memory size and without
any replication of data. In addition, the data layout can
be generalized to any high dimension.

I. I NTRODUCTION

There is a consistent trend in almost all scientific and
medical domains toward increasingly generating higher
resolution data as computing power steadily increases,
and sensor and imaging instruments get more refined.
The high resolution data sets are often generated and
stored as 3-D or 4-D volumetric data or sometime
as even higher dimensional data sets. Scientists and
engineers often study physical phenomena by simulating
their mathematical models on supercomputers, thereby
generating time-varying volume data sets of sizes rang-
ing from hundreds of gigabytes to tens of terabytes.
Also, biomedical equipments such as CT, MRI, and 3-D
confocal microscopy are now capable of providing very
high resolution volumetric data. For example, the visible
human project [1] produced volumetric data up to 40 GB
representing complete normal adult anatomy.

However, the interactive visual exploration of high
resolution data sets currently presents substantial chal-
lenges, especially when the data cannot fit in main mem-

ory. Efficient data transfer from disk to main memory
is critical in achieving an efficient visual exploration
of the very large data sets. The performance of the
algorithms that have to deal with the data stored on
disks is very much determined by the data layout and the
corresponding access patterns because of the sequential
access property of disks.

In this paper, we introduce a new efficient data layout
scheme to efficiently handle out-of-core axis-aligned
slicing queries of very large multidimensional rectilinear
grids. In n-dimensional volumetric data, we define axis-
aligned slicing as the process of obtaining a (n-1)-
dimensional slice by taking the sample points on the n-
dimensional planeIj = α, where(I1, I2, ..., In) are the
dimensions andα is one of the grid values along thejth
dimension. Slicing is a very useful dimension reduction
tool because it removes or reduces occlusion problems in
visualizing 3-D/4-D volumetric data sets and it enables
fast visual exploration of such data sets. While a typical
example is the display of 3-D MRI or CT volumetric data
using 2-D slices, sequentially rendering each time step
of a time-varying volume data set is the case of slicing
a 4-D volumetric data set. When data is too large to fit
in main memory, we should only load the data relevant
to the particular slicing query. In this paper, we show
that the data layouts based on the typical space-filling
curves such as Z-order or Peano-Hilbert order [2] are not
optimal for the out-of-core slicing queries, and introduce
component-based data layout scheme in a specialized
problem domain, in which it is only required to provide
fast slicing at everyk-th value,k > 1.

Our scheme has four key features. First, it provides
much faster processing time for any type of axis-aligned
out-of-core slicing queries at everyk-th value,k > 1,
than any of the typical space-filling curves approaches.
And, the performance gap widens as we deal with

larger data. Second, it requires less cache memory size,
given the same data blocking factor. This is especially
desirable when we have to deal with large data in a very
limited system environment such as a laptop computer
with small amount of main memory. Third, it does not
replicate any of data. A typical solution to enable fast
slicing along every axis is to replicate data and store each
copy using a different lexicographical layout scheme.
However, our scheme is based on the divide and conquer
approach that avoids any replication of any part of the
data. Last, our data layout is mathematically defined
for any dimension and any value ofk > 1, and its
performance can be analyzed analytically.

We use this scheme to visually explore the visible
human male data set [1]. With the new approach, we
can interactively slice the extremely large 3-D volumetric
data (∼2 GB) in every direction achieving around 3×
and 10× performance improvements respectively at full
and half resolution while requiring 22% and 88% less
cache memory size than a typical Z-order scheme.

In the rest of paper, we first review related work
followed by introducing our new data layout scheme.
The analysis of our scheme and related experimental
results are then presented. We conclude with a brief
summary and plans for future work.

II. RELATED WORK

Due to their electromechanical components, disks
have two to three orders of magnitude longer access
time than random access main memory. A single disk
access reads or writes a block of contiguous data at
once. The performance of an out-of-core algorithm [3]
is often dominated by the number of I/O operations,
each involving the reading or writing of disk blocks.
Hence designing an efficient out-of-core visualization
algorithm requires a careful attention to data layout and
the organization of disk accesses in such a way that
necessary data blocks are moved in large contiguous
chunks into main memory.

A number of out-of-core techniques to handle a variety
of scientific visualization [4] problems have appeared
in the literature as larger and larger data sets are being
generated. Cox and Ellsworth [5] show that application-
controlled paging and data loading in a unit of subcube
with the ability of controlling the page size can lead
to better performance in out-of-core visualization. Out-
of-core isosurface extraction algorithms are reported in
[6], [7], [8]. Out-of-core volume rendering algorithms
are reported in [9], [10], [11]. Silva et al. [12] provide

a good survey on out-of-core algorithms for scientific
visualization and computer graphics.

For efficient out-of-core data accesses, it is important
to lay out data in a way that various access methods
retrieve the data sequentially. Space filling curves [2]
have been used for mapping n-dimensional data to 1-
dimension while trying to preserve the spatial locality
of the original n-dimensional data. The most popular
ones are the Z-order [13] and the Peano-Hilbert order
[14]. While the Peano-Hilbert order has a slightly higher
degree of locality than the Z-order, the Z-order has been
more frequently used because of the simplicity of the
conversion process between the key and its correspond-
ing element in the multidimensional space. Recently,
Lawder [15] examines different kinds of space filling
curves to develop indexing schemes for fast retrieval of
data in multi-dimensional databases. Pascucci and Frank
[16] present a variation of the Z-order for progressive
traversal and visualization of large regular grids. They
combine interleaved storage of the levels in the data
hierarchy while maintaining geometric proximity within
each resolution level.

III. E FFICIENT DATA LAYOUT FOR SLICING QUERY

The widely used space filling curves such as Z-order
and Peano-Hilbert order [2] store neighboring multidi-
mensional data as sequentially as possible in storage, and
hence they have been widely used because they provide a
good cache efficiency for accessing n-dimensional data.
While they are effective in the situation where data
access occurs across all n dimensions, more efficient data
layouts are needed for slicing queries because data access
occurs across only (n-1) dimensions for each such query.

For illustration purposes, Figure 1 shows how three
different layouts affect the disk I/O efficiency for a
slicing query in the 2-D case. Disk I/O efficiency can
be expressed by how many contiguous disk pages are
accessed for a given query. As shown in the figure,
the particular lexicographical-order sequentially stores
the 1-dimensional slice corresponding toy = β and
thus achieves the highest contiguity in disk access for
this particular slicing query while the other space filling
curves achieve very little contiguity.

However, employing the straightforward
lexicographical-order results in worse performance
for the least priority slicing query (x=α in the example)
although it achieves better performance for the other
(n-1) types of slicing queries for the n-Dimensional
data. The most naive approach of eliminating the single
worst case would be to create an additional copy of the

8642 7531

8642 7531 8642 7531 8642 7531

12 34 56 78

8642 7531 8642 7531

12 34 876 5

1234567 8

Disk

y = β

(a) Z-order (b) Peano-Hilbert order

(c) Lexicographical order

~ Column size /
2

21.5Avg.

Column size22y= β

121x= α

Lexicographical
Peano-
HilbertZ

Order

Query

~ Column size /
2

21.5Avg.

Column size22y= β

121x= α

Lexicographical
Peano-
HilbertZ

Order

Query

(d) The number of contiguous disk block
accesses

Fig. 1. Data access patterns for a slicing query in a 2-D case for three
different data layouts. Grey blocks correspond to the disk blocks
satisfying the slicing query y=β.

data and store that copy in the lexicographical-order
in favor of the least priority slicing. However, it is not
practical to duplicate the already very large data set.

In the following, we introduce ourcomponent-based
layout scheme to address this problem in a specialized
problem domain, in which it is only required to provide
fast slicing at everyk-th value, k > 1. The idea is
to divide a n-dimensional data set into non-overlapped
components and to systematically provide a different
layout that is especially tailored to each component in
such a way that isolated disk accesses are eliminated.

A. Case I: k=2

We first explain our component-based layout scheme
for k=2, meaning that it is required to provide fast out-of-
core slicing only at every other value. Figure 2 shows the
layout scheme on 2-Dimensional data for illustration pur-
poses. We divide the 2-D grid into four non-overlapping
components, and store each component in the following
way. First, we group the elements in component C1 into
1-D metacells and store the corresponding metacells in a
lexicographical order that favors the X-slicing since C1
is required only by the X-slicing. Note that a metacell
is a block of grid points which is of disk page size.
Similarly, we group the elements in component C2 into
1-D metacells and store them in a lexicographical order
that favors the Y-slicing. Second, we group the elements

���� ����
C0

C0C0

C0

C1C1 C3

C2

C1C1

C2

C2

C2

C3

C3

C3

X=α

Y=β

X=α+2

Y=β+2

(a) (b)

(d)(c)

�������� ���� ������������

�������� �� �� ���� �� ���� �� ���� �� ���� ���� ���� ���� �� �������� ���������� �� ���� �� ���� ���� �� �� ���� �� �� ��
Fig. 2. A 2-D example of the component-based layout for fast slicing
at every other value. Components C1 and C2 are grouped into 1-D
metacells and stored in the required lexicographical orders while C0
and C3 are grouped into 2-D metacells and stored according to the
Z-order. Note that a dotted box indicates each metacell.

in components C0 and C3 into 2-D metacells and store
the metacells by Z-order since they are either required
by both slicing types or not required by any type of
slicing. Now given a slicing query at every other value
as shown in the figure, half of the data that we access
are always stored in the lexicographical order in favor
of that particular slicing, providing maximum contiguous
data access, while half of them are stored in Z-order.

Now, we generalize the idea to n-dimensional data.
Given a n-dimensional regular grid, let (i1, i2, ..., in)
denote the index of a grid point. Then we de-
fine Component-Code (C-CODE) of the index, C-
CODE(i1, i2, ..., in), as a concatenation of (ij mod 2),
j=1,2,...,n. Then, we define each componentCi of the
n-dimensional regular grid as follows.

Ci ≡ {(i1, i2, ..., in)| C-CODE(i1, i2, ..., in)=i}

Gridn ≡ {Ci| i = 0, 1, ..., 2n − 1}

For example, the C-CODE of the 3-D grid point at (3,2,5)
is 5 (=1012) and thus belongs to componentC5.

Now we define a slicing query as the query to generate
the sample points residing on the hyperplaneIj = α,
where α mod 2 = 0 (becausek = 2). Then, a set
of necessary components,Aj , for answering the slicing
queryIj = α is

Aj = {Ci| the j-th most significant bit of i=0}

because only the components of whichij mod 2 = 0
can be sliced by the plane and there are total2n−1

such components. For example, given a componentCi

of which C-CODE is0102 in a 3-D grid, we know that
it is required for both X- and Z-slicing.

The 2n components comprising a n-dimensional grid
consists of 4 types of components. Let p denote the
number of slicing types that a component may be subject
to (Note that it is the same as the number of ‘0’s in
the C-CODE of the component). Then each component
belongs to one of the following types.

1) Type I (p=0): A component that is not required
by any type of slicing. There is only one such
component such that all the bit values of its C-
CODE are equal to ‘1’.

2) Type II (p=1): A component that is exclusively
required by a particular slicing. There are n such
components, each of which has a C-CODE having
only one bit equal to ‘0’.

3) Type III (2 ≤ p ≤ n − 1): A component that is
commonly required by p different types of slicing.
Given p, there arenCp such components.

4) Type IV (p=n): A component that is required by all
slicing types. There is only one such component
such that all the bit values of its C-CODE are equal
to ‘0’.

For out-of-core access, we store each type of compo-
nents in the following way.

• Type I and IV (p=0 or n): The elements of each
component are grouped into n-dimensional meta-
cells, which are then stored according to Z-order.

• Type II (p=1): The elements of each component are
grouped into (n-1)-dimensional metacells, which are
then stored in a lexicographical order in a way that
the exclusive slicing type gets the highest priority.

• Type III (2 ≤ p ≤ n − 1): The elements of
each component are grouped into n-dimensional
metacells, which are then stored in a lexicographical
order in a way that all the p types of slicing get
higher priority than the remaining (n-p) types.

Note that for type II, we group elements into (n-1)-
dimensional metacells because it is exclusively sliced by
a particular slicing type. For type III, we always avoid
the worst case, in which any of the p types of slicing gets
the least priority in the lexicographical order, since there
is always at least one slicing axis that does not require
the component and the least priority can be assigned to
that dimension.

B. Case II: k > 2

Now, we consider the general case where it is required
to provide fast slicing at everyk-th value,k > 2. Figure
3 shows a 2-D example in the case of k=3. Note that
the only change is the element size of each component,
where the element of each component is the maximal
group of contiguous grid points which belong to the same
component.

C0

X=α

Y=β

X=α+3

Y=β+3

(a) (b)

C0

C0C0

C2

C1 C1

C2

C3

���� ���� ����
�� ���� ���� ��

���	 �	�	 �	�� ���	 �	 �	�	�	
(d)(c)

��
Fig. 3. A 2-D example of the component-based layout for fast
slicing at every third value. Note that the only change is the element
size of each component.

We redefine a slicing query as retrieving the sample
points on the planeIj = α, whereα mod k = 0. Then,
we only need to generalize the previous Component-
Code (C-CODE) definition as follows.

C-CODE(i1, i2, ..., in) ≡ a concatenation ofbj , j=1,2,...,n.

bj =

{

0, if (ij mod k)=0.
1, if (ij mod k) 6= 0.

Now, the element size of each component increases
by a factor of (k-1) per a bit value ‘1’ of the C-CODE
because (k-1)-times more grid points get included due
to (ij mod k) 6= 0. Hence, the size increases by a factor
of (k − 1)n−p, where p is the number of ‘0’s and thus
n-p is the number of ‘1’s in the C-CODE.

Since the other descriptions in the case of k=2 for
n-Dimensional data only depends on the C-CODE of a
component, they apply to the general case ofk > 2 in
the same way.

C. Analysis

To analyze and compare the performance of our
scheme to other schemes, we defineContiguity as the
ratio of the average number of disk blocks that can be
accessed sequentially to the total number of disk blocks
needed for a particular slicing, andEffectiveness as the
ratio of the amount of data needed to the amount of
data transferred. Both indices are equally important in
terms of disk I/O cost. In fact, disk access time can
be approximated by the the time to read the necessary
data at maximum transfer rate× 1

Effectiveness , plus

the time for disk head movement× 1

Contiguity . Hence,
using the two indices, we can compare the component-
based layout scheme with the typical Z-order scheme in
which the data is first decomposed into n-Dimensional
metacells of which size is equal to the disk page and
then stored by Z-order.

Let COz and EFz denote the contiguity and the
effectiveness of the Z-order scheme whileCOc andEFc

correspond to the component-based data layout scheme.
Assuming that an n-D metacell is of sizeL × L × ... × L

︸ ︷︷ ︸

n
(and hence the size of a disk block isLn) and the
n-D volume consists ofM × M × ... × M

︸ ︷︷ ︸

n

metacells

(M ≫ 2n−1), a slice of the metacell is of sizeLn−1

and thus the effectiveness of the n-D metacell is always
1

L
(=Ln−1

Ln
).

The number of sequentially accessed blocks in Z-order
is 1,2,4,...,or2n−1 according to the slicing axis. Table I
shows the contiguity and the effectiveness of the Z-order
combined with the n-D metacell scheme.

Contiguity (COz) Effectiveness (EFz)

Z-order ©(2
n−1

Mn−1
) 1

L

TABLE I

CONTIGUITY AND EFFECTIVENESS OFZ-ORDER+ N-D METACELL

SCHEME.

On the other hand, in a lexicographical order in favor
of a certain slicing priority, the contiguity becomes 1,1

M
,

1

M2 ,... in a decreasing order of the priority of the slicing.
Table II shows the contiguity and the effectiveness
in each type of a component in the component-based
layout, assuming that each component is of full volume
size. Note that type I components are never required
and that type II components have no discontiguous disk
accesses and do not load any redundant data.

Contiguity (COc) Effectiveness (EFc)

Type II 1 1
Type III Ω(1

Mn−2
) EFz

Type IV COz EFz

TABLE II

CONTIGUITY AND EFFECTIVENESS IN EACH TYPE OF A

COMPONENT.

SinceCOz is upper bounded by(2

M
)
n−1

andCOc of
type III is lower bounded by 1

Mn−2 , the value ofCOc

for type III components is at leastM
2n−1 times as high

as theCOz. Thus, type III components always have
better contiguity than type IV components of Z-order and
the benefit increases as the volume size gets larger.For
example, in the case of n=3, i.e., a 3-dimensional vol-
ume, type III components have at leastM

4
times as high

contiguity as type IV components of Z-order, i.e.,4

M
less

discontiguous disk head movements than Z-order.
Now given a slicing query, there are total2n−1

components needed to answer the query and among
them there is only one component of type II or IV and
the other2n−1-2 components are of type III.

1) Case I (k = 2): Since the number of elements of
all the 2n−1 components comprising a slice is the same,
we have

1

COc

=
1

2n−1
·

1

COz

+ (1 −
1

2n−1
) ·

1

COc

1

EFc

= (1 −
1

2n−1
) ·

1

EFz

+
1

2n−1
· 1

(Note that we use harmonic mean for more correct
averaging of the two indices.COc is an average ofCOc

for type II and III.)
There is always contiguity improvement over the

Z-order scheme, which is upper bounded by2n−1 times
as high contiguity, and as n increases, the contiguity
improvement gets larger as long asM ≫ 2n−1. In
addition, there is always effectiveness improvement
upper bounded by a factor of2

n−1

2n−1
−1

. Note that the
higher effectiveness also means less cache memory size
required for the same slicing query.

2) Case II (k > 2): Since the element size of each
component of which the C-CODE bit values have p ‘0’s
increases by a factor of(k− 1)n−p, 2n−1 is replaced by
Rn(k) (=

∑n
p=1 n−1Cp−1 · (k − 1)n−p), which is lower

bounded by2n−1 for k > 2, then,

1

COc

=
1

Rn(k)
·

1

COz

+ (1 −
1

Rn(k)
) ·

1

COc

1

EFc

= (1 −
(k − 1)n−1

Rn(k)
) ·

1

EFz

+
(k − 1)n−1

Rn(k)
· 1

Note that the portion that the type IV component
of Z-order contributes to the slice decreases while the
contribution of type II increases more than any other
types since the element size of type II (p=1) increases
by the largest factor(k − 1)n−1 while that of type IV
(p=n) does not increase. As a result, we achieve better
contiguity and effectiveness as k increases.

IV. EXPERIMENTAL RESULTS

We evaluated the performance of our scheme for k=2,
in which it is required to fast process slicing queries at
every other value. For the evaluation, we used a subset
of the visible human male anatomical image data set [1].
The test volumetric data consists of2048 × 1216 × 800
grid with 1-byte values, resulting in 2 GB.

We ran all the tests on a single Linux machine which
has dual 3.0 GHz Xeon processors with∼50 MB/s
maximum disk I/O transfer rate. In all our experiments,
we made use of only one of the two processors. Also,
we used a simple buffer management system in order to
control disk I/O. The blocking factor for the data was
selected arbitrarily to be8 × 8 × 8.

Type IV Type IV

Type IV

Type III-1

Type III-1

Type III-1
��
 �����
��
 �����
�� �� �����

���� ��
��
 ���� �� ��
0

50

100

150

200

250

300

350

400

X Y Z

m
s
e
c

Fig. 4. Contribution of each type of components to total time for
X, Y, and Z=α queries.

Figure 4 shows the contribution of each type of
components to the total time in performing each type
of the slicing queries. Given a slicing query, there are
total 4 components required, among which there are

only one type II and IV component and two type III
components. The type IV component which is stored in
Z-order takes the largest 48% of the total time while the
type II component which is stored in a lexicographical
order in a way that the exclusive slicing type gets the
highest priority takes only 4% of the total time. Each of
the two type III components takes 40% and 8% of the
total time respectively. The Z-slicing takes the longest
time because the slice size is the largest.

We compare the performance of the component-based
data layout scheme with the Z-order combined with the
n-D metacell scheme for three different types of axis-
aligned slicing queries.

0

1000

2000

3000

4000

5000

6000

1
0
0
0

1
0
0
6

1
0
1
2

1
0
1
8

1
0
2
4

1
0
3
0

1
0
3
6

1
0
4
2

1
0
4
8

1
0
5
4

1
0
6
0

1
0
6
6

1
0
7
2

1
0
7
8

1
0
8
4

1
0
9
0

1
0
9
6

X

m
s
e
c

Z-order CBL

Fig. 5. Performance comparison for loading X=α slices (1216 ×

800).

0

500

1000

1500

2000

2500

3000

3500

6
0
0

6
0
6

6
1
2

6
1
8

6
2
4

6
3
0

6
3
6

6
4
2

6
4
8

6
5
4

6
6
0

6
6
6

6
7
2

6
7
8

6
8
4

6
9
0

6
9
6

Y

m
s
e
c

Z-order CBL

Fig. 6. Performance comparison for loading Y=α slices (2048 ×

800).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

5
0
0

5
0
6

5
1
2

5
1
8

5
2
4

5
3
0

5
3
6

5
4
2

5
4
8

5
5
4

5
6
0

5
6
6

5
7
2

5
7
8

5
8
4

5
9
0

5
9
6

Z

m
s
e
c

Z-order CBL

Fig. 7. Performance comparison for loading Z=α slices (2048 ×

1216).

Figure 5, 6, and 7 compare the total disk I/O time
for reading X, Y, or Z=α slices at full resolution. The
component-based lay out scheme always achieves better
performance, in average by a factor of 3.2. In addition, it
requires 16 MB cache memory, which is 22% less than
what the Z-order scheme requires. These experimental
results are close to the analytical upper bound in our
analysis, by which we expect the performance improve-
ment and the cache size reduction to be upper bounded
by respectively a factor of 4 and 25%. Note that the same
improvements can be expected on any data of the same
size given the same blocking factor, since the content of
the data is not considered in any of the above process.

Half-Resolution

0

200

400

600

800

1000

1200

1
0
0
0

1
0
0
6

1
0
1
2

1
0
1
8

1
0
2
4

1
0
3
0

1
0
3
6

1
0
4
2

1
0
4
8

1
0
5
4

1
0
6
0

1
0
6
6

1
0
7
2

1
0
7
8

1
0
8
4

1
0
9
0

1
0
9
6

X

m
s
e
c

Z-order CBL

Fig. 8. Performance comparison for loading X=α slices at half
resolution (608 × 400).

For k=2, an additional benefit of the component-based

Half-Resolution

0

100

200

300

400

500

600

700

800

900

6
0
0

6
0
6

6
1
2

6
1
8

6
2
4

6
3
0

6
3
6

6
4
2

6
4
8

6
5
4

6
6
0

6
6
6

6
7
2

6
7
8

6
8
4

6
9
0

6
9
6

Y

m
s
e
c

Z-order CBL

Fig. 9. Performance comparison for loading Y=α slices at half
resolution (1024 × 400).

Half-Resolution

0

200

400

600

800

1000

1200

1400

1600

1800

2000

5
0
0

5
0
6

5
1
2

5
1
8

5
2
4

5
3
0

5
3
6

5
4
2

5
4
8

5
5
4

5
6
0

5
6
6

5
7
2

5
7
8

5
8
4

5
9
0

5
9
6

Z

m
s
e
c

Z-order CBL

Fig. 10. Performance comparison for loading Z=α slices at half
resolution (1024 × 608).

data layout scheme is to be able to perform all types of
the half-resolution slicing queries at the maximum disk
transfer rate because for every axis-aligned slicing type
there is always one half-resolution type II component
which is stored in an optimal way for the slicing type.
Figure 8, 9, and 10 compare the total disk I/O time
for reading X, Y, or Z=α slices at half resolution.
The component-based lay out scheme is an order of
magnitude faster in average without any performance
fluctuation as seen in the figures. In addition, it requires
only 1

8
of the cache memory size for the Z-order scheme,

given the particular blocking factor. Note that we com-
pare with the Z-order scheme at half-resolution data (i.e.,
type IV component).

Figure 11 shows a sample output slice image in each

Jusub Kim
These experimental

Jusub Kim
analytical upper bound in our

Jusub Kim
expect the performance improvement

Jusub Kim
by which

Jusub Kim
results

Jusub Kim
reduction to be upper bounded

Jusub Kim
cache

Jusub Kim
size

Jusub Kim
and

Jusub Kim
the

Jusub Kim
we

Jusub Kim
close

Jusub Kim
respectively

Jusub Kim
factor

Jusub Kim
25%.

Jusub Kim
Note

Jusub Kim
that

Jusub Kim
the

Jusub Kim
same

Jusub Kim
improvements

Jusub Kim
can

Jusub Kim
expected

Jusub Kim
any

Jusub Kim
data

Jusub Kim
same

Jusub Kim
given

Jusub Kim
same

Jusub Kim
blocking

Jusub Kim
factor,

Jusub Kim
the

Jusub Kim
content

Jusub Kim
data

Jusub Kim
considered

Jusub Kim
any

Jusub Kim
of

Jusub Kim
the

Jusub Kim
above

Jusub Kim
process.

Jusub Kim
since

Jusub Kim
of

Jusub Kim
the

Jusub Kim
on

Jusub Kim
4

Jusub Kim
of

Jusub Kim
a

Jusub Kim
by

Jusub Kim
the

Jusub Kim
size

Jusub Kim
the

Jusub Kim
is

Jusub Kim
not

Jusub Kim
in

Jusub Kim
be

Jusub Kim
and

Jusub Kim
of

Jusub Kim
the

Jusub Kim
to

Jusub Kim
are

Jusub Kim
analysis,

Fig. 11. Sample slice images of the test volumetric data at X, Y,
and Z=α. (1216 × 800, 2048 × 800, and2048 × 1216 from top to
bottom.)

type of the slicing queries from our test volumetric data.

V. D ISCUSSION

The component-based data layout scheme shows two
times larger intervals in performance fluctuation in the
timing results. The performance fluctuation is related to
the blocking factor. The blocking essentially prefetches
the data under the assumption that the slicing queries are
given incrementally. While the Z-order + n-D metacells
scheme prefetches the data not needed by everyk-
th value slicing (k > 1) as well as the necessary
data, the component-based scheme does not prefetch the
unnecessary data. Thus it can effectively prefetch larger
intervals given the same blocking factor.

Being able to perform the half-resolution queries at
maximum disk I/O transfer rate in every slicing type
(when k=2) becomes more beneficial when we deal
with larger dimension. For a time-series of the test
volumetric data, one 3-D slice could easily be of size in
hundreds of megabytes to gigabytes. Unless we replicate
the already large data, it will be very difficult to achieve
the maximum disk I/O transfer rate in all the slicing
types by using previous methods. In addition, our scheme
requires only the cache memory size equal to the slice
size for half-resolution queries.

While the contiguity of type III components is at
least M

2n−1 times as high as that of type IV compo-
nents stored in Z-order as shown in the analysis, the
performance result in Figure 4 shows that type III
components take almost equivalent time (only 8% less)
to type IV components of Z-order at the worst case. We
believe that this is because the disk head movement time
is different between Z-order and lexicographical order.
Although Z-order has more discontiguous disk block
accesses, the distance between two discontiguous disk
blocks is shorter than lexicographical order. In order
to investigate this further, we ran all the tests with a
16 × 16 × 16 blocking factor, which is 8 times bigger
disk page size. And we observed 60% less time in type
III components compared to type IV components at the
worst case. Overall, the blocking factor change results
in 23% less time in component-based scheme and 15%
less time in the Z-order scheme due to two times large
cache memory, but with worse peak processing time.
Performance improvement was slightly bigger 3.5 at full
resolution.

VI. CONCLUSION

In this paper, we have presented a new data layout
scheme to efficiently handle out-of-core axis-aligned
slicing queries of very large multidimensional rectilinear
grids. We have analytically shown that our scheme
provides faster processing time and requires less cache
memory than the typical Z-order scheme for any type
of axis-aligned out-of-core slicing queries at everyk-th
value (k > 1), without any data replication. Through
experimental results, we have also demonstrated that it
could achieve 3× and 10× performance improvements
requiring only 78% and 12% of the cache memory size
for the Z-order scheme respectively at full and half
resolution.

We plan to further investigate how this scheme affects
memory cache efficiency at upper level (L1 or L2 cache)
in the memory hierarchy. Our future plan also includes

application to 4-Dimensional data for efficient out-of-
core time-varying volume visualization.

REFERENCES

[1] The Visible Human project, National Library
of Medicine, National Institutes of Health,
http://www.nlm.nih.gov/research/visible/visiblehuman.html.

[2] H. Samet,The design and analysis of spatial data structures.
Addison-Wesley, 1990.

[3] J. Vitter, “External memory algorithms and data structures:
Dealing with massive data.”ACM Computing Surveys, March
2000.

[4] C. Hansen and C. Johnson,The visualization handbook. El-
sevier Butterworth-Heinemann, 2005.

[5] M. Cox and D. Ellsworth, “Application-Controlled Demand
Paging for Out-of-Core Visualization,”Proceedings of the 8th
conference on Visualization, 1997.

[6] P. M. Sutton and C. D. Hansen, “Accelerated isosurface extrac-
tion in time-varying fields,”IEEE Transactions on Visualization
and Computer Graphics, vol. 6, no. 2, pp. 98–107, Apr 2000.

[7] Y.-J. Chiang, “Out-of-core isosurface extraction of time-varying
fields over irregular grids,” inProceedings of IEEE Visualiza-
tion, 2003, pp. 29–36.

[8] Q. Shi and J. JaJa, “Isosurface extraction and spatial filtering
using persistent octree,” inIEEE Visualization, 2006.

[9] H. Shen, L. Chiang, and K. Ma, “A fast volume rendering
algorithm for time-varying fields using a time-space partitioning
(TSP) tree,”Proceedings of the conference on Visualization’99:
celebrating ten years, pp. 371–377, 1999.

[10] P. Leutenegger and K. Ma, “Fast retrieval of disk resident
unstructured volume data for visualization,”External Memory
Algorithms and Visualization, vol. 50, 1999.

[11] R. Farias and C. Silva, “Out-of-core rendering of large un-
structured grids,”IEEE Computer Graphics and Applications,
vol. 21, no. 4, pp. 42–50, 2001.

[12] C. Silva, Y. Chiang, J. El-Sana, and P. Lindstrom, “Out-of-core
algorithms for scientific visualization and computer graphics,”
IEEE Visualization Course Notes, 2002.

[13] J. Orenstein and T. Merrett, “A class of data structures for asso-
ciative searching,” inThird ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, April 1984, pp. 181–190.

[14] D. Hilbert, “Ueber stetige abbidung einer linie auf ein flachen-
stuck,” Mathematische Annalen, vol. 38, pp. 459–460, 1891.

[15] J. Lawder, “The application of space-filling curves to the storage
and retrieval of multi-dimensional data,” Ph.D. dissertation,
University of London, 2000.

[16] V. Pascucci and R. Frank, “Global Static Indexing for Real-
Time Exploration of Very Large Regular Grids,” inSupercom-
puting, ACM/IEEE 2001 Conference, 2001, pp. 45–45.

