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Abstract

Efficient evaluation of spatial join is an important
issue in spatial databases. The traditional evaluation
strategy is to perform a join of “minimum bounding
rectangles” (mbr) of the spatial objects (mbr-filter)
and evaluate the actual join of the objects using the
results of the join on approximations. Improvements
to add additional filtering using more accurate approx-
imations were also considered.

In the present paper, we develop efficient algo-
rithms for evaluating joins of “trapezoids” without us-
ing mbr’s. For the case where there are no intersect-
ing non-horizontal boundaries of trapezoids in the same
set, a spatial join of two sets of N trapezoids can be
evaluated in O(N logb N+k) I/Os, where b is the page
size and k the number of trapezoid intersections. For
the general case without any assumptions, a join can be
done in O((N+l+k) logb N) I/Os, where l is the total
number of intersections of non-horizontal boundaries
within the same set, and N, k, b are the same as above.

The new algorithms can be used to evaluate spatial
joins for polygons. One possibility is to decompose poly-
gons into trapezoids and apply a trapezoid join algo-
rithm. In particular, this approach is efficient for “I/O
bounded polygons” (each of which can be retrieved in a
constant number of I/Os). Given two sets of N I/O
bounded polygons, we show that in the case where there
are no boundary intersections among polygons of the
same set, the join of the two sets can be computed in
O(N logb N+k) I/Os, and in the case where there is no
such assumption, the join takes O((N + l + k) logb N)
I/Os, where b is the page size, k the number of pairs
of intersecting polygons, and l the number of boundary
intersections within the same polygon set. Another pos-
sibility is to approximate objects by I/O bounded poly-
gons (e.g., 5-corner convex polygons) which are finer
than rectangles and use the new algorithms as a filter.

∗Support in part by NSF grants IRI-9700370 and IIS-9817432.

1 Introduction

Efficient evaluation of spatial queries is an important
issue in spatial databases, constraint databases, ge-
ographical information systems [17, 15, 16]. Among
spatial operations, spatial join operations, which link
together tuples that have overlapping spatial values,
are very useful but costly to evaluate. There are two
sources that contribute to the complexity of spatial
joins. First, similar to join operations in traditional
databases, a spatial join involves two relations which
are usually very or extremely large. A naive nested loop
evaluation will have I/O operations quadratic in the
cardinalities of the relations involved. Second, spatial
objects are different from traditional data in their data
structures and semantics, and the size of an object can
be very large. As a result, efficient evaluation of spatial
joins is more difficult. The focus of this paper is on ef-
ficient evaluation of spatial joins in spatial/constraint
databases.

Spatial joins have been well studied in the litera-
ture. The traditional approach to evaluating a spatial
join employs the following two steps [21]: (1) mbr-
filter step, which performs a spatial join on minimum
bounding rectangles (mbr’s) of the objects; and (2)
refinement step, which determines whether the objects
discovered by the previous step actually intersect. This
two-step approach can be augmented by extra but more
refined filter steps. For example, one can use a new ex-
tra step which determines intersection of finer approx-
imations (than mbr’s) such as convex hulls and mini-
mum n-corner bounding convex polygons [8] or rasters
[31] on the results generated by the mbr-filter step. For
spatial objects that are polygons, there are no partic-
ular reasons to use approximations and multiple steps
in the join evaluation. Indeed, if efficient algorithms
can be developed, it is desirable to avoid approxima-
tions and to evaluate join directly on polygons. How-
ever, this remains an interesting open problem. In this
paper, we study I/O efficient spatial join algorithms
for a subclass of polygons, trapezoids. One immedi-
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ate implication is that evaluation of spatial joins for
I/O bounded polygons, each of which takes a constant
number of I/O’s to read, does not have additional I/O
cost in terms of big-O. For polygons in the general
case, one can decompose polygons into trapezoids or
I/O bounded polygons and then use the efficient algo-
rithms to compute a polygon join. Another possibility
is to use trapezoids or I/O bounded polygon as finer
approximations than mbr’s and replace the mbr-filter
step with a “trapezoid or I/O bounded polygon based
filter step” in the traditional two step spatial join.

In this paper, we give I/O efficient algorithms for
spatial joins of trapezoids without using any approx-
imations. The main results are the following. For
the case where there are no intersecting non-horizontal
boundaries of trapezoids in the same set, we show that
evaluation of a spatial join of two sets of N trapezoids
can be done within O(N logb N + k) I/Os, where b is
the page size and k is the number of trapezoid inter-
sections. For the general case without any assump-
tions, we show that a join can be performed within
O((N+ l+k) logb N) I/Os, where l is the total number
of intersections of non-horizontal boundary lines within
the same set, and N, k, b are the same as above. The
trapezoid algorithm is then used to compute the spatial
join of I/O bounded polygons. The basic idea is to de-
compose I/O bounded polygons into constant number
of trapezoids and apply the trapezoid join algorithm on
the results. We show that in the case where there are
no boundary intersections of polygons within the same
input set, the join of two sets of N I/O bounded poly-
gons can be computed in O(N logb N + k) I/Os, where
k, b are the same as above. In the general case where
there is no such assumption, we show that the join
takes O((N + l + k) logb N) I/Os, where l is the num-
ber of boundary intersections within the same polygon
set, and k, b are the same as above.

We now briefly summarize the key ideas and tech-
niques developed in this paper. Observe that two
trapezoids intersect if and only if (1) their non-hori-
zontal boundaries intersect, or (2) either one contains
the other or their boundary intersection involve hori-
zontal lines. This property allows us to consider the
two cases separately in evaluating a trapezoid join.
Specifically, one case is to determine intersections of
non-horizontal boundaries of trapezoids. This step is
closely related to the line segment intersection prob-
lem [7, 10, 20, 19, 11, 12, 5, 24]. The other case is to
find intersections that are caused by containment or
horizontal lines.

While many existing algorithms [7, 10, 20, 19, 11,
12, 5, 24] can be the candidates for the first compo-
nent, the second component seems new and unrelated

to known problems. Surprisingly, we show that the
containment and horizontal boundary intersection con-
ditions on trapezoids can be reduced to a “dynamic”
version of the rectangle join problem. The reduction
is based on a mapping from trapezoids to rectangles
such that when the non-horizontal boundaries of two
trapezoids do not intersect, the trapezoids intersect if
and only if the mapped rectangles intersect. The key
to obtaining this mapping is the “orderings” of non-
horizontal boundaries intersecting a horizontal sweep
line y = α. The ordering changes when the sweep line
changes. We show that this mapping can be computed
efficiently.

Therefore, a trapezoid join can be evaluated in the
following three steps:

1. Compute non-horizontal boundary intersections,
2. Compute the mapping from trapezoids to rectan-

gles, and
3. Compute rectangle intersections.

Theoretically it is possible to use three algorithms, one
for each of the three steps listed above, and run them in
an isolated fashion. We argue that it is more desirable
to have integrated algorithms with three steps running
in parallel and pipelined. Also, the computation of the
trapezoid-to-rectangle mapping shares several partic-
ular steps of line segment intersection algorithm and
also requires that the rectangle join be done in a dy-
namic fashion. Simply using one algorithm for each
step would require many unnecessary and redundant
steps.

To achieve the efficiency goal, we extend the al-
gorithm by Mairson and Stolfi [19] (for the case of
no non-horizontal boundary intersection) and the al-
gorithm by Bentley and Ottmann [7] (for the gen-
eral case) for Step 1. We show that Step 2 can be
done by modifying Step 1. However, Step 2 also re-
stricts Step 3 to be done in a dynamic way. The
new algorithm is needed since the existing algorithms
[21, 23, 22, 26, 6, 9, 13, 18, 25, 27, 14, 2, 29] either in-
crease the I/O complexity or cannot be easily tailored
to fully utilize the properties of the rectangles gener-
ated by Step 2. Detail discussions on the choices are
provided in the technical presentation.

The organization of this paper is as follows. Sec-
tion 2 discusses approaches to evaluate spatial joins of
general polygons. Section 3 presents the line segment
intersection algorithms. Section 4 develops a new rect-
angle join algorithm. Section 5 gives the trapezoid join
algorithm. Section 6 discusses the join evaluation for
I/O bounded polygons. Section 7 concludes the paper.



2 Spatial Joins: Rectangles, Polygons,
and Trapezoids

The traditional approach [21] of spatial join evaluation
first finds all pairs of objects whose mbr’s intersect
and then examines for every pair of spatial objects pro-
duced if the objects intersect. Consider two polygons t
and t′ in Fig. 1(i). The traditional algorithm will report
the mbr’s of t and t′ intersect. However, the objects
actually do not intersect.

t

t’

t

t’

(i) (ii)

Figure 1. MBR’s and 5-corner approximations

An improvement [8] is to add an extra step to de-
tect the intersections of n-corner (e.g., 5-corner) con-
vex polygons (or other approximations) for those whose
mbr’s intersect. Fig. 1(ii) shows that the 5-corner ap-
proximations for t and t′ do not intersect. In this way,
we know t and t′ do not intersect without actually ex-
amining t and t′.

An idea to further improve the filter effectiveness
is to combine the mbr-filtering with n-corner approx-
imation intersection testing into a single direct join
algorithm for n-corner approximations. For example,
we can represent a 5-corner convex polygon by four
“trapezoids”. A trapezoid is a four corner convex poly-
gon with two horizontal boundaries. Fig. 1(ii) shows a
decomposition of the 5-corner approximation of t into
four trapezoids. A focus of this paper is on the efficient
evaluation of spatial joins on trapezoids without using
any approximations.

t’t

Figure 2. 5-corner approximations

However, these approaches using approximations re-
quire the approximations to be computed in advance
and the approximations themselves take extra storage
space. In addition, since intersections of two approxi-
mations do not imply object intersections, further op-
erations need to be performed on actual objects. A
better alternative can evaluate join operations directly
on polygon objects, if efficient algorithms exist. For
example, Fig. 2 shows two polygons that do not inter-
sect although their 5-corner approximations do. One
idea is to decompose polygons into trapezoids and use

an efficient trapezoid join algorithm to evaluate poly-
gon joins. Such an algorithm will still work as long as
the size of each polygon involved is not too large, e.g.,
“I/O bounded” (retrieval of one polygon can be done
in a constant number of I/Os). However, in the general
case, since a polygon could be decomposed into a large
(unbounded) number of trapezoids, it remains open if
a polygon join can be evaluated efficiently.

3 Line Orderings and Line Segments
Intersections

The first step of a trapezoid join is to detect non-
horizontal boundary intersections. This problem is
closely related to line segment intersection [7, 10, 20,
12, 5] in computational geometry. When there are
no intersections among the non-horizontal boundaries
of the same trapezoid set, the problem is closely re-
lated to the red/blue line segment intersection problem
[19, 11, 24], a variant of line segment intersection. In
this section, we show that some in-memory algorithms
for these two problems can be extended to detect inter-
sections between non-horizontal boundaries of trape-
zoids in trapezoid join. In particular, the extended al-
gorithms can produce the orderings of non-horizontal
boundaries along a horizontal line which is critical in
computing the trapezoid-to-rectangle mapping.

Let r, s be two sets of N trapezoids, b the page size,
and k the total number of intersections between non-
horizontal boundaries of trapezoids in r and of trape-
zoids in s. When non-horizontal boundaries of trape-
zoids in the same set do not intersect, the red/blue line
segment intersection algorithm of Mairson and Stolfi
[19] is extended in this section to find all intersections
of non-horizontal boundaries of trapezoids in r and s
in O(N logb

N
b + k) I/Os. For the general case, we

extend the algorithm for line segment intersection by
Bentley and Ottmann [7] for finding all intersections of
non-horizontal boundaries of trapezoids in r and s in
O((N + k + l) logb

N
b ) I/Os, where l is the total num-

ber of intersections between non-horizontal boundary
lines of trapezoids in the same set. Although both ex-
tensions apply the plane sweeping technique as their
respective in-memory versions, the primary difference
is that the extended algorithms use B-trees as the in-
termediate data structures rather than balanced binary
search trees.

It is important to note that one key piece of informa-
tion used in the trapezoid join algorithm is the ordering
of non-horizontal boundaries along a horizontal sweep
line. Roughly, all boundary lines intersecting the sweep
line can be ordered based on the x-coordinates of their
intersection points along the sweep line. The sweep



line moves from bottom up, and the ordering of the
boundaries changes only when the sweep line encoun-
ters an endpoint of a line segment or an intersection
point. An important property of the two extended al-
gorithms mentioned above is that we can obtain the
ordering of non-horizontal boundaries at any position
of the sweep line during their execution. This is a key
for the second step of the trapezoid join algorithm.

More specifically, for a fixed position of the sweep
line �, all boundary lines intersecting � are ordered
by the intersection points with the line � (from left
to right). Since the ordering changes when the sweep
line moves, there is a list of orderings of line segments.
This list of ordering is critical for the trapezoid join
because it is used in the second step of trapezoid join
to map trapezoids into rectangles that preserve certain
topological relationships. Before we discuss the details
of the line segment intersection algorithm, we formal-
ize the notion of an “ordering” and a (sorted) list of
orderings.

Let S be a set of line segments. An S-sequence is a
sequence of distinct line segments (not necessarily all)
in S. In particular, an empty sequence (denoted by ∅)
contains no line segment.

Definition 3.1 Let S be a set of line segments and
α a real number. An ordering of S at α, denoted by
order(S, α), is defined as an S-sequence l1, ..., lk (k ≥ 0)
such that:
• l1, ..., lk are all line segments in S that intersect the

horizontal line y=α, and
• for all 0 ≤ i < j ≤ k, if (pi

x, p
i
y), (p

j
x, p

j
y) are the

intersection points of y=α with li, lj (respectively),
then pi

x ≤ pj
x.

l3 l4 l5
l1 l25

10

Figure 3. An ordering of S at 10
Intuitively, an ordering of S at α is a sequence of

line segments in S sorted by the intersection points
with the line y=α. If two lines have exactly the same
intersection point, the order is arbitrary. Fig. 3 shows
a set of line segments S={�1, ..., �5}. The dashed line is
y=10, and the ordering of S at 10 is then 〈�1, �3, �4, �5〉.
In the following, we capture the changes to the ordering
during sweeping.

Definition 3.2 Let S be a set of line segments. An
ordering list of S, denoted by OrdList(S), is defined

as a sequence of pairs (α1, T1), . . . , (αk, Tk) for some
positive integer k such that the following conditions
are all true.
• α1 < · · · < αk,
• Ti is an ordering of S at αi for each 1 ≤ i ≤ k and

Ti is different from Ti+1 for each 1 ≤ i < k, and
• for each real number α �∈ {α1, ..., αk}, let � be the

largest i such that αi < α if it exists or 0 otherwise.
Then, the following are true:
1. if � = 0, T1 =order(S, α),
2. if � = k, Tk =order(S, α), and
3. otherwise, either T� or T�+1 equals order(S, α).

For example,the following is an ordering list of the
set S shown in Fig. 3:

(−1, ∅)
( 0, 〈�1〉),
( 1, 〈�1, �2〉),
( 2, 〈�1, �2, �5〉),
( 5, 〈�1, �2, �3, �4, �5〉),
( 8, 〈�1, �3, �4, �5〉),
(14, 〈�1, �4, �5〉),
(20, ∅).

We now discuss how to extend the in-memory algo-
rithms for line segment intersection problem to detect
non-horizontal boundary intersections of trapezoids. In
order to be used in the trapezoid join algorithm, the
extended algorithm must have the property of report-
ing the ordering lists of non-horizontal boundaries in
the trapezoid sets. We develop an external algorithm
lintersect extended from the algorithm MS by Mairson
and Stolfi [19] for the case of no non-horizontal bound-
ary intersections in the same set, and another external
algorithm extended from the line segment intersection
algorithm BO of Bentley and Ottmann [7] for the gen-
eral case where non-horizontal boundaries in the same
set may intersect.

For efficient evaluation of trapezoids, line segment
intersection algorithms to be used for non-horizontal
boundary intersection should keep the I/O complexity
as low as possible. More importantly, we must be able
to obtain the ordering lists of non-horizontal bound-
aries during the execution. The algorithms of [11, 24, 4]
do not seem to provide the ordering lists easily. We use
the algorithm MS because we can obtain the ordering
lists from it and it has low (in-memory) complexity. For
the general case, the algorithms of [12, 20] use random-
ization and do not have optimal worst case complexity.
The in-memory algorithms of [10, 5] and external al-
gorithm of [4] have lower complexity but we cannot
obtain the ordering information from them. For this
reason, we use the algorithm BO.



We first present the algorithm lintersect, which ex-
tends MS and uses the plane sweeping technique [28]
for the case where there are no non-horizontal bound-
ary intersections in the same set. We then give a brief
description of an algorithm that extends BO for the
general case.

For the case of no non-horizontal boundary inter-
section, we let r and s be two sets of line segments.
In lintersect, the sweep line is horizontal and moves
vertically from small to larger value during the execu-
tion of the algorithm. The sweep line is initially below
the lowest endpoint of all line segments in r and s. A
line segment becomes active if it intersects the current
sweep line. Two active sets are used to keep track of
the active line segments in r and s, respectively. Ini-
tially, both active sets are empty. A line segment is in-
serted into the corresponding active set when the sweep
line reaches its lower endpoint. It becomes dead and is
deleted from the active set when the sweep line meets
its upper endpoint. For each position α of the sweep
line, the active sets of r and s maintain order(r, α) and
order(s, α), respectively. Because there are no inter-
sections between line segments from the same set, the
active set only changes when a line segment becomes
active or dead. In MS, balanced binary search trees are
used to maintain the active sets. In lintersect, however,
we use B-trees in order to achieve I/O efficiency. Each
entry in a node of a B-tree stores an active line segment.
Inserting, deleting, and searching of a line segment in
an active set can be done in O(logb

N
b ) I/Os. In ad-

dition, for every entry e corresponding to line segment
� in a B-tree, we maintain a link to the node contain-
ing the entry for the successor of � and a similar link
for the predecessor of �. Adding these links does not
increase the I/O complexity of the insertion, deletion,
and search operations on B-trees but allows to locate
the successor and predecessor of � at any position of
the sweep line in O(1) I/Os.

(i)

line
sweep

(ii)

t’tt’t

Figure 4. A cone: before and after it is broken

Now we discuss how the algorithm finds intersec-
tions between line segments. We only give the basic
idea here, details can be found in [19]. The algorithm
ensures that when a line segments � is about to be
deleted from the active set, all intersections of � with
line segments in the opposite set are reported. To help
understand the algorithm, the concept “cone” is intro-

duced in [19]. When two active line segments t ∈ r and
t′ ∈ s intersect, the region bounded by t, t′ and the cur-
rent sweep line (which must be above the intersection
point of t and t′) forms a cone. Fig. 4(i) shows an ex-
ample. The Cone Invariant says that no active line
segment begins in a cone. It was proved in [19] that
if the Cone Invariant holds, all active line segments �
in r (or s) intersecting an arbitrary line segment �′ in
the opposite set will occur in consecutive position in
the ordering of r (or s) at the upper endpoint of �′.
To ensure that the Cone Invariant holds, whenever a
new line segment is to be inserted into the active set,
we must check if it lies in any cones; and if it does,
we must break all those cones by truncating the line
segments that form the cones to just above their inter-
section points. Fig. 4(ii) shows such a situation. Mean-
while, all intersections that forms these cones must be
reported. Also because the Cone Invariant holds, the
reporting of intersections on an active line segment �
becomes simple. When � is about to be removed from
the active set, we follow the ordering preserved in the
opposite active set, report its intersections with active
line segments in the opposite set, starting from its suc-
cessor or predecessor in the ordering of the opposite
set, whichever intersects �, until the sweep line meets
the first line segment that does not intersect �.

The following example illustrates the execution of
algorithm lintersect.

Example 3.3 Let r and s be two sets of line segments.
Part of r and s are shown in Fig. 5, where A,B are in
r and a, b in s. When the sweep line reaches the lower
endpoint of b (Fig. 5), because b lies in the cone formed
by A, a, and the current sweep line, the cone must be
broken and the intersection of A and a is reported.

b

a

B

A

sweep line

Figure 5. Two sets of line segments
When the sweep line encounters the upper endpoint

of a, the successor and predecessor of a in the opposite
set are examined. In this case, the successor, B, in-
tersects a and is reported. The algorithm then checks
the successor of B, which is A. Because both A and a
are truncated when the cone formed by them is broken
in previous processing, they do not intersect now. The
algorithm then deletes a from the active set and moves
to the next position.



The algorithm lintersect uses the same idea as MS
except that it uses B-trees for active sets. The cor-
rectness of lintersect follows the proof in [19]. We now
consider the I/O complexity of lintersect.

Theorem 3.4 Let r, s be two sets of N line segments.
The I/O complexity of lintersect is O(N logb N + k),
where k the number of pairs of rectangles that intersect.

Proof: (Sketch) Assume that all endpoints of line seg-
ments in r and s are sorted by their y coordinates. The
sweeping takes O(N

b ) I/Os. Because B-trees are used to
maintain the active sets, all insertion and deletion op-
erations during the sweeping takes O(N logb

N
b ) I/Os.

It follows from [19] that at each lower endpoint of a
line segment �, breaking the cones takes O(logb

N
b +c�)

I/Os, where c� is the number of intersections that form
these cones. Also, at each upper endpoint of a line seg-
ment �, locating the successor and predecessor of � in
the opposite set takes O(logb

N
b ) I/Os, and reporting

all the intersections takes O(k�) I/Os, where k� is the
number of intersections reported. Therefore, the total
I/O complexity of this algorithm is O(logb

N
b +k) I/Os,

where k is the total number of line intersections.

The computation of the trapezoid-to-rectangle map-
ping needs the ordering lists of non-horizontal bound-
aries of trapezoids. The extended algorithm lintersect
can be used in the trapezoid join because it has the
following property.

Lemma 3.5 Let r, s be two sets of line segments. For
each real number α, there exists an execution instant
τ in lintersect such that the orderings order(r, α) and
order(s, α) are stored in the B-trees of lintersect at time
τ . Moreover, for all real numbers α, α′ such that α <
α′, if the orderings at α, α′ are stored at times τ, τ ′

(respectively), then τ < τ ′.

From the description of the algorithm, we know that
during the execution of lintersect, two B-trees are built
to maintain the orderings of r and s at any position
of the sweep line. In particular, when a line segment
becomes active, the ordering changes and the B-tree is
modified based on the change. Therefore each possible
ordering is stored at some point of the execution. Fur-
thermore, the orderings are “sorted” according to the
time of their occurrences.

Finally we briefly discuss the general case where
boundary lines in the same set may intersect. For this
case we extend the plane sweeping based algorithm BO
by Bentley and Ottmann [7] for line segment intersec-
tion.

Let r, s be two sets of trapezoids and rl, sl the sets
of non-horizontal boundary lines of r and s, respec-
tively. To find the intersections between non-horizontal

boundary lines of trapezoids in r and s, we extend BO
and apply it on rl and sl. Like BO, the extended algo-
rithm applies the plane sweeping technique. It main-
tains line segments of r and s that intersect the cur-
rent sweep line in two intermediate data structures
called “active sets”, respectively. The basic idea of
the extended algorithm is the same as BO. But in
BO, the active sets are maintained by balanced binary
search trees, while in the extended algorithm, B-trees
are used for I/O efficiency. It is not hard to verify
that the I/O complexity of the extended algorithm is
O((N + k + l) logb

N
b ), where k is the number of inter-

sections between non-horizontal boundary lines from
different sets, and l is the number of intersections of
non-horizontal boundary lines within the same trape-
zoid set.

4 Rectangle Join Revisited

Section 3 covers non-horizontal boundary intersections
of trapezoids. The remaining cases of trapezoid in-
tersection are trapezoid containment and intersections
involving horizontal boundaries. It seems that deter-
mining the intersections of trapezoids can be extended
from the line segment intersection algorithm presented
in Section 3. Surprisingly, in Section 5, we show that
trapezoid containment and intersections involving hor-
izontal boundaries can be reduced to a restricted ver-
sion of rectangle join using the ordering lists of non-
horizontal boundaries. This has a cost. The existing
algorithms [21, 23, 22, 26, 6, 9, 13, 18, 25, 27, 14, 2, 29]
either lead to high complexity or cannot be pipelined
with the line segment intersection algorithm. For this
reason, we develop a new rectangle join algorithm rjoin
which can be extended for the restricted rectangle join.
We show that rjoin evaluates a join of two sets of N
rectangles in O(N logb N+k) I/Os, where b is the page
size and k is the number of rectangle intersections.

The rectangle join algorithm used in trapezoid join
should process rectangles incrementally from bottom
up so that it can be pipelined with the previous steps
of trapezoid join. Recall that a trapezoid join has
three steps. The first step computes the non-horizontal
boundary intersections, and the last two steps map
trapezoids into rectangles and compute rectangle in-
tersections (respectively). Theoretically it is possible
to compute the three steps separately. However, it is
more desirable to have an integrated algorithm that
pipelines all three steps. As we will show later in Sec-
tion 5, the computation of the trapezoid-to-rectangle
mapping can be pipelined with the first step of trape-
zoid join and generate the rectangles incrementally in
the direction of sweeping (bottom up). To be pipelined
with these steps, the rectangle join algorithm should



also process rectangles in the same order.
We now examine existing rectangle join algorithms.

The algorithms of [21, 23, 22, 26, 6, 9, 13, 25, 18, 27, 14]
cannot guarantee optimal worst case I/O complex-
ity. In the worst cases, the I/O complexity could be
quadratic even when the number of rectangle intersec-
tions is small. The algorithms in [1] and [29] have de-
sirable I/O complexity. But both algorithms require
index structures on the x-projections of rectangles to
be constructed before processing the join. This makes
pipelining impossible and causes additional I/Os and
storage space. The I/O efficient algorithm in [2] does
not use any index structures. However, it requires all
rectangles to be sorted both vertically and horizontally
before the join, thus cannot be pipelined with the line
segment intersection algorithm. Sorting also requires
additional I/Os and storage space.

In this section, we present a new rectangle join al-
gorithm rjoin. Unlike other algorithms, rjoin does not
require any index structure or pre-computation. It ap-
plies plane sweeping technique, processes one rectan-
gle at a time, thus can be pipelined with the line seg-
ment intersection algorithms and the computation of
the trapezoid-to-rectangle mapping to solve trapezoid
join efficiently. The key technique of algorithm rjoin is
that it maps rectangles into 2-dimensional points. The
y-coordinates of these points change when the sweep
line moves. Rectangle intersections are detected by
3-sided range searches performed on the points corre-
sponding to rectangles in the opposite set.

We now give a brief description of the basic idea of
rjoin. Let r and s be two sets of rectangles. The algo-
rithm rjoin uses a horizontal sweep line that initially
lies below the lowest rectangle in r and s. During
the execution of the algorithm, the sweep line moves
from bottom up. Rectangles intersecting the current
sweep line are mapped into two 2-dimensional points
and stored in intermediate data structures called past
sets. More importantly, when the sweep line leaves
the upper boundary of a rectangle t, the y-coordinates
of the points corresponding to t change and a 3-sided
range search is performed to find rectangles in the op-
posite set that intersect t.

We first define the mapping between rectangles and
points.

Let t be a rectangle. In the remainder of this section,
we denote by t.x the projection of t on the x axis (x-
projection), and t.y the projection of t on the y axis
(y-projection). Moreover, t.xL, t.xU denote the lower,
upper boundary of t.x (respectively), and t.yL, t.yU

refer to the lower, upper boundary of t.y (respectively).
Let B be the set of rectangles in plane and R the

set of real numbers. We denote R ∪ {+∞} by R
+.

"+ "
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Figure 6. A rectangle and its mapped points

Definition 4.1 We define a partial mapping f : B ×
R → ((R × R

+)× (R × R
+)) such that for every t ∈ B

and α ∈ R,
1. If α < t.yL, f(t, α) is undefined;
2. If t.yL ≤ α ≤ t.yU , f(t, α) = ((t.xL,+∞),

(t.xU ,+∞)); and
3. If α > t.yU , f(t, α) = ((t.xL, t.yU ), (t.xU , t.yU )).

The following example illustrates the mapping.

Example 4.2 The left part of Fig. 6 shows a rectan-
gle t whose x-projection and y-projection are [5, 20]
and [5, 15], respectively. When α is less than 5, f(t, α)
is undefined. There is no point corresponding to t in
the right part of Fig. 6. When α is in between 5 and
15, the two points corresponding to t are (5,+∞) and
(20,+∞), the darker ones in the right part of Fig. 6.
When α is greater than 15, the two points correspond-
ing to t are (5, 15) and (20, 15), the lighter ones in the
right part of Fig. 6.

The mapping f has the following property. Intu-
itively, the property says that if two rectangles t and
t′ intersect, then when α equals the upper boundary of
one of them, say t, one of the points mapped from t′

must lies in the region between the vertical boundary
lines of t and above the lower boundary of t.

Theorem 4.3 Let t, t′ be two rectangles in B. t in-
tersects t′ if and only if the following is true:

1. f(t′, t.yU ) is defined and = ((a, b), (c, b)) for some
a, c ∈ R and b ∈ R

+, b ≥ t.yL, and either a ∈
[t.xL, t.xU ] or c ∈ [t.xL, t.xU ], or

2. f(t, t′.yU ) is defined and = ((a, b), (c, b)) for some
a, c ∈ R and b ∈ R

+, b ≥ t′.yL, and either a ∈
[t′.xL, t′.xU ] or c ∈ [t′.xL, t′.xU ].

Proof: (Sketch) We first consider the only if direc-
tion. Since t intersects t′, their y-projections over-
lap. Because t, t′ are symmetric in the statement
of the theorem, we assume w.o.l.g. that t.yU is less
than or equal to t′.yU . It follows that t.yU must be
greater than (or equal to for the degenerated case)
t′.yL. By Definition 4.1, f(t′, t.yU ) is defined and equal
to ((t′.xL,+∞), (t′.xU ,+∞)). Obviously, +∞ > t.y.L.



Because t intersects t′, their x-projections over-
lap too. Two x-projections overlap if and only if
one contains at least one endpoint of the other. If
the x-projection of t contains one endpoint of the x-
projection of t′, say t′.xL, then t′.xL ∈ [t.xL, t.xU ].
Condition (1) is satisfied.

If the x-projection of t′ contains at least one end-
point of the x-projection of t, say t.xL, then t.xL ∈
[t′.xL, t′.xU ]. From the assumption, we know that t′.yU

is greater than t.yU . It follows that f(t, t′.yU ) is defined
and equal to ((t.xL, t.yU ), (t.xL, t.yU )). Because t in-
tersects t′, t.yU must be greater than or equal to t′.yL.
Condition (2) holds.

Now for the if direction. Suppose that t and t′ sat-
isfy Condition (1). Obviously, the x-projection of t
intersects the x-projection of t′. Because f(t′, t.yU ) is
defined, by Definition 4.1, t.yU ≥ t′.yL. If it is the
case that t.yU ≤ t′.yU , then the y-projection of t′ also
intersects the y-projection of t, t and t′ intersect. Oth-
erwise, f(t′, t.yU ) = ((t′.xL, t′.yU ), (t′.xU , t′.yU )). By
the condition we know that t′.yU ≥ t.yL. Thus the
y-projection of t′ intersects the y-projection of t, t in-
tersects t′. The case when Condition (2) holds can be
proved in a similar way.

Based on the above discussions, the algorithm rjoin
can be easily developed. We illustrate rjoin with the
following example.

Example 4.4 Let r and s be two sets of rectangles.
Parts of r and s are shown in Fig. 7, where A,B,C
are in r and a, b, c are in s. Initially, the sweep line is
below the lowest rectangle, B, and the past sets of r
and s contain no points. Fig. 7(ii) and (iii) illustrate
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Figure 7. Rectangle sets and their past sets

the points mapped from the rectangles in Fig. 7(i) when
the sweep line is at two different positions.

During the execution of rjoin, the sweep line moves
up. When the sweep line moves to the lower bound-
ary of B (y = 1), the two points defined by f(B, 1),
(5,+∞) and (15,+∞), are inserted into the past set of
r.

When the sweep line reaches the lower boundary of
a (y = 5), the points mapped from B and C are already
in the past sets of r. Two points defined by f(a, 5) are
now inserted into the past set of s. Fig. 7(ii) shows
the points currently stored in the past sets of r and s
(respectively), where the dark ones are for r and the
light ones are for s.

When the sweep line moves to the upper boundary
of A (y = 15), it is above rectangles B,C, and a. The
points mapped from these rectangles are different from
those in Fig. 7(ii). Now these points are all below the
sweep line y = 15, as shown in Fig. 7(iii). Rectan-
gles A, b, and c intersect the sweep line, and the points
mapped from them locate on y = +∞. A 3-sided range
search is performed at this moment to find all points
(x, y) that satisfy 2 ≤ x ≤ 19 and y ≥ 7 (i.e., points
that locate within the shaded region in Fig. 7(iii)). As
a result, a, b, and c are reported.

The sweep line keeps moving up and the algorithm
completes when the sweep line leaves the highest upper
boundary of rectangles in r and s.

The correctness of algorithm rjoin follows from The-
orem 4.3.

We now consider the I/O complexity of rjoin. A key
factor in the performance of rjoin is the performance
of the insertion, update, and 3-sided range search op-
eration on the past sets of r and s. To achieve I/O
efficiency, we must organize the past sets in such a way
that these operations can be implemented efficiently.
We decide to use the external priority search tree de-
veloped in [3]. The external priority search tree is a
tree structure designed to solve 3-sided range search
problem. It is shown in [3] that an external priority
search tree occupies O(N

b ) pages and it supports inser-
tions and deletions in O(logb N) I/Os and 3-sided range
searches in O(logb N+k) I/Os, where N is the number
of points, b is the page size, and k is the number of
points in the query results.

Theorem 4.5 Let r, s be two sets of N rectangles.
The I/O complexity of rjoin is O(N logb N + k), where
k is the number of pairs of intersecting rectangles.

Proof: (Sketch) The algorithm rjoin sweeps through
all rectangles in r and s and executes procedures for
each rectangle encountered. The I/O complexity of
rjoin is determined by the number of rectangles and
the processing of each rectangle.



The sweep accesses each rectangle in r and s at most
twice (one for each horizontal boundary). The number
of I/Os for this phase is O(N

b ). And the total number
of executions of each operation (insertion, update, and
3-sided range search) is O(N).

Each past set contains at most 2N points during the
execution. The past sets are implemented by external
priority search trees. It is shown in [3] that the inser-
tion operation on an external priority search tree takes
O(logb N) I/Os. And one can also show that the up-
date operation also takes no more than O(logb N) I/Os.
Thus all executions of insertion and update operations
take O(N logb N) I/Os.

For each rectangle t, a 3-sided range search is also
executed. This takes O(logb N + kt) I/Os according to
[3], where kt is the number of intersections discovered
by the range search. We observe that one pair of in-
tersection is discovered by at most two executions of
a 3-sided range search. This is because range searches
are only executed at the upper boundaries of rectan-
gles. Let k be the total number of rectangle intersec-
tions. It follows that Σt∈r∪skt = O(k). Therefore, all
executions of the range searches take O(N logb N + k)
I/Os.

In conclusion, the total number of I/Os needed by
rjoin is O(N logb N + k), where k is the number of in-
tersections.

5 Spatial Join for Trapezoids

In the previous two sections, we introduced the key
techniques for the first (computation of non-horizontal
boundary intersections) and third (computation of
rectangle intersections) steps of trapezoid join. In this
section, we introduce the technique of computing the
trapezoid-to-rectangle mapping and show how to use
the line segment intersection algorithms introduced in
Section 3 to compute the mapping based on the order-
ing lists obtained from the execution of the algorithms.
We combine all these techniques together into efficient
trapezoid join algorithms. The main results of this
section are the following. In the case where there are
no intersecting non-horizontal boundaries of trapezoids
in the same set, the join of two sets of N trapezoids
can be computed in O(N logb N + k) I/Os, where b is
the page size and k is the number of trapezoid intersec-
tions. In the general case the problem can be evaluated
in O((N + l+k) logb N) I/Os, where l is the number of
intersections of non-horizontal boundaries within the
same trapezoid set, and b, k are as above.

The key technique of trapezoid join is to reduce the
trapezoid join problem into the rectangle join prob-
lem. Basically, trapezoids are mapped into rectangles
that preserve the ordering of non-horizontal boundary

lines such that trapezoid containment and intersections
involving horizontal boundaries can be determined by
checking intersections of the corresponding rectangles.
These rectangles are called the “rectangle representa-
tions” of trapezoids.

In this section, we first assume that there are no in-
tersecting non-horizontal boundary lines of trapezoids
in the same set and give details of the trapezoid join
algorithm tjoin. We then give a brief description of the
algorithm for the general case. In the remainder of this
section, we fix the following notations. Let r, s be two
sets of N trapezoids and rl, sl the sets of non-horizontal
boundaries of r, s (respectively). We use tL and tR to
denote the left and right (respectively) non-horizontal
boundaries of a trapezoid t.

Definition 5.1 A pre-representation of r, s is a map-
ping from rl ∪ sl to R such that for all lines � and �′ in
rl ∪ sl, if �′ intersects the horizontal line that overlaps
the lower endpoint (x0, y0) of � at (x′

0, y0) and x′
0θx0,

where θ ∈ {>,<,=}, then f(�′)θf(�).

We now give the definition of “rectangle representa-
tions” of trapezoids.

Definition 5.2 Let f be a pre-representation and t
a trapezoid in r ∪ s. The rectangle representation of
t under f wrt r and s, denoted by f̄(r ∪ s, t), is the
rectangle defined as follows:
1. The y-projection of f̄(r ∪ s, t) is the same as the

y-projection of t, and
2. The x-projection of f̄(r ∪ s, t) is [f(tL), f(tR)].

Note that a pre-representation of r, s does not nec-
essarily map a non-horizontal boundary � to the x-
coordinate of �’s lower endpoint. The importance of
pre-representations is that they preserve the orderings
of rl and sl (respectively) at the lower boundary line
of every trapezoid. In particular, it can be shown that
a pre-representation f has the following property. For
every non-horizontal boundary � ∈ rl ∪ sl with lower
endpoint (x0, y0), if order(rl ∪ {�}, y0) is �1, ..., �k for
some k ≥ 1, then f(�1) ≤ · · · ≤ f(�k). Similar prop-
erty holds for order(sl ∪ {�}, y0).

Recall that two trapezoids intersect if and only
if their non-horizontal boundaries intersect, one con-
tains the other, or their boundaries intersect but non-
horizontal boundaries do not intersect. The following
lemma shows that the last two cases of trapezoid in-
tersection can indeed be captured by the intersection
of their rectangle representations.

Lemma 5.3 Let f be a pre-representation of r, s and
t, t′ two trapezoids in r, s (respectively) whose non-
horizontal boundaries do not intersect. Then t inter-
sects t′ if and only if f̄(r ∪ s, t) intersects f̄(r ∪ s, t′).



Proof: (Sketch) Let the lower bounds of the y-
projections of t and t′ be y0 and y′0, respectively.

We first consider the if direction. If f̄(r∪ s, t) inter-
sects f̄(r ∪ s, t′), by Definition 5.2 the y-projections of
t and t′ must intersect. Without loss of generality, we
assume that y0 is less than y′0.

f(t) f(t)

f(t’) f(t’)

t

t’

t

t’

(ii)(i)

Figure 8. Rectangle representations and their
corresponding trapezoids

It is also true that the x-projection f̄(r ∪ s, t).x of
f̄(r ∪ s, t) intersects the x-projection f̄(r ∪ s, t′).x of
f̄(r ∪ s, t′). Two intervals intersect if one contains the
endpoint of the other. Assume that f̄(r ∪ s, t′).x con-
tains one endpoint of f̄(r∪s, t).x, without loss of gener-
ality, let it be the lower endpoint (Fig. 8(i)). By Defini-
tion 5.2, the intersection point of tL and the horizontal
line y = y′0 must be between the lower endpoints of t′L

and t′R on y = y′0, as shown in Fig. 8(i). Then tL must
intersect the lower boundary of t′, thus t intersect t′.
Now consider the case where f̄(r ∪ s, t).x contains one
endpoint of f̄(r ∪ st′).x, without loss of generality, let
it be the lower endpoint (Fig. 8(ii)). By Definition 5.2,
on the horizontal line y = y′0, the lower endpoint of
t′L must lie between the intersection point of tL and
y = y′0 and the intersection point of tR and y = y′0
(Fig. 8(ii)). Thus t intersects t′.

Now we consider the only if direction.
For the case where t contains t′, it is easy to see that

the y-projection of f̄(r∪ s, t) contains the y-projection
of f̄(r∪s, t′). The non-horizontal boundaries of t must
intersect the horizontal line y = y′0. And on the line
y = y′0, the lower endpoints of t′L and t′R must lie
between the intersection points of y = y′0 and tL, tR.
By Definition 5.2, f(tL) is less than or equal to f(t′L)
and f(t′R), and f(tR) is greater than or equal to f(t′L)
and f(t′U ). The x-projection of f̄(r ∪ s, t) contains
the x-projection of f̄(r ∪ s, t′). Therefore, f̄(r ∪ s, t)
intersects f̄(r ∪ s, t′). The case where t′ contains t can
be proved similarly.

t
t’f(t’)

f(t)

Figure 9. Rectangle representations and the
corresponding trapezoids

Now we consider the case where the boundary lines
of t and t′ intersect. We prove this by contradiction.

Assume that f̄(r∪s, t) does not intersect f̄(r∪s, t′). If
their y-projections do not intersect, by Definition 5.2,
the y-projections of t and t′ do not intersect. This
contradicts the fact that t intersects t′. Therefore, the
y-projections of f̄(r∪s, t) and f̄(r∪s, t′) must intersect.
Without loss of generality, we assume that y0 is less
than y′0. It follows that both tL and tR intersect the
horizontal line y = y′0. If the x-projections of the two
rectangles do not intersect, then on y = y′0, either the
intersection points of tL and tR with y = y′0 are to the
left of the lower endpoint of t′L, or both of them are to
the right of the lower endpoint of t′R. Without loss of
generality, assume it is the first case (Fig. 9). Because t
intersects t′, it must be true that tR intersects t′L, This
conflicts the fact that the non-horizontal boundaries of
t and t′ do not intersect. Therefore, the assumption
that f̄(r ∪ s, t) does not intersect f̄(r ∪ s, t′) is not
correct, f̄(r ∪ s, t) and f̄(r ∪ s, t′) intersect.

We now discuss the trapezoid join algorithm tjoin.
Recall that tjoin has the following three steps:
1. Compute non-horizontal boundary intersections,
2. Compute the mapping from trapezoids to rectan-

gles, and
3. Compute rectangle intersections.

Step 1 can be done using the line segment intersec-
tion algorithm lintersect introduced in Section 3. Since
Step 2 computes a pre-representation of r, s and gen-
erates the rectangle representations of trapezoids, Step
3 can be done using the rectangle join algorithm rjoin
developed in Section 4, except that the inputs are now
pipelined from Step 2. The major remaining problem
is Step 2.

Step 2 is to compute the pre-representation of r, s
and the rectangle representations of trapezoids in-
crementally from bottom up. We show below that
this can be done efficiently. For simplicity, we first
give a conceptual procedure that computes the pre-
representation using the ordering lists of rl and sl.
Then we give the actually computation which is mod-
ified from the algorithm lintersect. The computation
can access the data structures (B-trees) used in linter-
sect to incrementally obtain the ordering information
and generate the mapping from non-horizontal bound-
aries to real numbers in the direction of the sweeping
in lintersect.

Assume that the ordering lists OrdList(rl) and
OrdList(sl) of rl and sl are available. We compute a
pre-representation f of r, s using plane sweeping tech-
nique. The sweep line is a horizontal line that ini-
tially lies below the lowest endpoints of all boundaries
in rl ∪ sl. The sweeping can be implemented by sort-
ing all boundaries in rl ∪ sl lexicographically by the y-
coordinates and then the x-coordinates of their lower



endpoint (in the actually computation, sorting the x-
coordinates is not necessary). Let �1, . . . , �n be this
sorted list of lines in rl ∪ sl, n ≥ 0.

We compute a pre-representation f for �1, . . . , �n as
following:

• Set f(�1) to be the x-coordinate of the lower end-
point of �1.

• When the sweeping line encounters the lower end-
point (xi, yi) of �i ∈ rl ∪ sl (1 < i ≤ n), we
look for the predecessors of �i in order(rl, yi) and in
order(sl, yi), let the predecessors be pred(rl, yi, �i)
and pred(sl, yi, �i), respectively. Note that the or-
derings order(rl, yi) and order(sl, yi) can be easily
obtained from OrdList(rl) and OrdList(sl)). We also
search in order(rl, yi) and in order(sl, yi) for the first
boundaries succ+(rl, yi, �i) and succ+(sl, yi, �i) that
are after �i and the mapping of which have been
computed. Note that not all these lines can be found
in the orderings of rl and sl. We then computed
f(�i) based on the following rule:

– If there exists a line �′ in the set {succ+(rl, yi, �i),
succ+(sl, yi, �i), pred(rl, yi, �i), pred(sl, yi, �i)},
such that xi is the x-projection of the intersection
point of �′ and the horizontal line y = yi, then
f(�i) = f(�′).

– If none of the four lines above exist, We set f(�i)
to be the x-coordinate of the lower endpoint of �i.

– If only pred(rl, yi, �i) and pred(sl, yi, �i) exist, let
f(�i) =

4
3 max{f(pred(rl, yi, �i)), f(pred(sl, yi, �i))}.

– If only succ+(rl, yi, �i) and succ+(sl, yi, �i) exist,
let f(�i) =

1
3 min{f(succ+(rl, yi, �i)), f(succ+(sl, yi, �i))}.

– If all four lines exist, let f(�i) be the sum

2
3 max{f(pred(rl, yi, �i)), f(pred(sl, yi, �i))}+
1
3 min{f(succ+(rl, yi, �i)), f(succ+(sl, yi, �i))},

when �i is the left boundary of a trapezoid, and

1
3 max{f(pred(rl, yi, �i)), f(pred(sl, yi, �i))}+
2
3 min{f(succ+(rl, yi, �i)), f(succ+(sl, yi, �i))},

when �i is the right boundary of a trapezoid.

The computation stops when there is no boundary
starts above the sweeping line.

It is easy to see that the above computation gener-
ates a pre-representation f of r, s. The following ex-
ample illustrates this procedure.
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Figure 10. The trapezoids in r and s

Example 5.4 Parts of r and s are shown in Fig. 10(i),
where t1, t2 are trapezoids in r and t′1 are in s. The
computation starts from the leftmost boundary with
the lowest endpoint, tL1 . We set f(tL1 ) to be 6, the
same as the x-projection of the lower endpoint of tLl .
The next boundary to be considered is tR1 . It only has
a predecessor in order(rl, 0), thus f(tRl ) =

4
3 × 6 = 8.

Because t′L1 only has a successor in order(rl, 1),
which is tLl , f(t

′L
1 ) =

1
3f(t

L
1 ) =

1
3 × 6 = 2. The succes-

sor and predecessor of t′R1 in order(rl, 1) are tR1 and tL1
(respectively), therefore, f(t′R1 ) =

2
3f(t

L
1 ) +

1
3f(t

R
1 ) =

2
3 × 6 + 1

3 × 8 = 62
3 .

We continue compute the mapping for tL2 then tR2 ,
and get f(tL2 ) =

1
3f(t

′L
1 ) +

2
3 min{f(tL1 ), f(t′R1 )} = 1

3 ×
2 + 2

3 × 6 = 42
3 , and f(tR2 ) = 2

3 max{f(tL1 ), f(t′L1 )} +
1
3 min{f(tR1 ), f(t′R1 )} = 2

3 × 6 + 1
3 × 6 2

3 = 62
9 .

Given a pre-representation f , we can then gener-
ate the rectangle representations of trapezoids in r and
s. For example, Fig. 10(ii) shows the rectangle rep-
resentations of trapezoids in Fig. 10(i) using the pre-
representation computed in Example 5.4.

Now we consider the actual computation of a pre-
representation f in tjoin. The first step of tjoin uses
lintersect to compute the non-horizontal boundary line
intersections. By Lemma 3.5, the ordering lists of rl

and sl can be obtained from the execution of lintersect.
So we can actually compute a pre-representation by
modifying lintersect. Basically, we obtain the ordering
information from the two B-trees for r, s (respectively)
in lintersect which are uses to capture the changes of or-
derings and compute the pre-representation incremen-
tally.

Recall that lintersect also uses plane sweeping tech-
nique. The sweep line moves from bottom up. B-trees
are used to maintain the ordering of boundaries that
intersect the current sweep line. Moreover, each bound-
ary � in the B-tree is associated with links to the nodes
that contains the processor and successor (respectively)
of � in the current ordering. We can then find the pre-
decessor and successor of a given boundary � in no more
than O(logb

N
b ) I/Os, and find all lines lie before (or af-

ter) it following the links.
In order to compute a pre-representation f , we mod-



ify lintersect in the following way. When the sweep line
encounters the lower endpoint of a boundary �, we com-
pute f(�) before lintersect insert � into the correspond-
ing B-tree. Once the computation and other operations
in lintersect complete, we insert � into corresponding B-
tree along with f(�). To compute f(�), we search for
the successor and predecessor of � in both B-trees and
compute f(�) based on the conceptual procedure pre-
sented earlier. Note that the successor of � in both
B-tree must have been mapped, because we compute
the mapping of every boundary before it is inserted
into corresponding B-tree. By doing so, we compu-
tation of pre-representation is pipelined with lintersect
and it is easy to see that every computation takes only
O(logb

N
b ) I/Os.

Theorem 5.5 For each trapezoid t ∈ r and each t′ ∈
s, t intersects t′ if and only if the pair t, t′ is reported
by tjoin. Furthermore, the I/O complexity of tjoin is
O(N logb N + k), where k is the number of pairs of
trapezoids that intersect.

Proof: (Sketch) Let t ∈ r, t′ ∈ s be two arbitrary
trapezoids. We first show that t intersects t′ if and only
if the pair (t, t′) is reported by the algorithm tjoin.

Consider the only if direction. If a non-horizontal
boundary line of t intersects a non-horizontal bound-
ary line of t′, by the proof in [19] and the description
of tjoin, it is easy to see that t and t′ will be reported
by the steps of lintersect. Otherwise, t and t′ either
have containment relation ship, or their intersection in-
volves horizontal boundary lines. Then, by Lemma 5.3,
rect(r∪s, t) must intersect rect(r∪s, t′). And it follows
from Theorem 4.3 that tjoin will report t and t′.

For the if direction, suppose that two trapezoids,
t ∈ r and t′ ∈ s, are reported by tjoin. By the descrip-
tion of the algorithm we know that t and t′ must be
reported by the steps of lintersect or by a 3-sided range
search. If the pair is reported in the first case, by the
proof in [19] and the description of tjoin, it is straight-
forward that the non-horizontal boundary lines of t and
t′ must intersect, therefore t intersects t′. If the pair
is reported by a 3-sided range search, by Theorem 4.3,
rect(t) intersects rect(t′). It follows from Lemma 5.3
that t intersects t′.

Now we consider the I/O complexity of the algo-
rithm tjoin. The algorithm applies plane sweeping tech-
nique, pipelines the steps in lintersect, computation of
representative mapping, and the steps in rjoin together.
Each pair of intersecting trapezoids will be discovered
by no more that 4 times, either by lintersect, or by rjoin.

By Theorems 3.4 and 4.5, we can easily show that
all the executions of the operations in the sweeping
take O(N logb N + k) I/Os, where k is the number of

intersections.

Now we briefly discuss the trapezoid join algorithm
for the case where intersecting non-horizontal bound-
ary lines of trapezoids in the same set may intersect.
Similar to tjoin, the algorithm evaluates trapezoid join
in three steps. The first step checks non-horizontal
boundary intersections, the second step maps trape-
zoids into rectangles, and the third step compute rect-
angle intersections. However, there are following dif-
ferences.

First, since there are intersections between non-
horizontal boundary lines of trapezoids in the same
set, the algorithm lintersect does not work. However,
we can use the algorithm extended from the line seg-
ment intersection algorithm of [7] (as shown in Sec-
tion 3) can be used. Same as lintersect, this extended
algorithm can detect all intersections between non-
horizontal boundaries of trapezoids from different set.
Also like lintersect, it can generate the ordering lists of
non-horizontal boundaries of trapezoids. But in this

(i)

t1

t2

f(t1)

f(t2)

(ii)
Figure 11. Trapezoids and their rectangles

case, the orderings of line segments change not only
when the sweep line encounters new line segments or
leaves line segments, but also at the intersection point
of two line segments in the same set. For example,
considering two trapezoids t1 and t2 in the same set r
(Fig. 11(i)). The right boundary of t1 is before both
non-horizontal boundaries of t2 before it intersects the
left boundary of t2. After the intersection, the right
boundary of t1 lies between the two non-horizontal
boundaries of t2.

This change affects the second step of the join. Now
a trapezoid may be represented by one or more rect-
angles. Each of the rectangle represents a change of
ordering caused by intersections within the same set.
The number of rectangles representing a trapezoid t is
determined by the number of non-horizontal boundary
lines intersecting t that are from the same set as t. For
example, each of t1 and t2 in Fig. 11(i) is represented
by two rectangles (Fig. 11(ii)). Lemma 5.3 can be ex-
tended for this case, i.e., if two trapezoids do not have
non-horizontal boundary intersection, then they inter-
sect if and only if some rectangles representing them
intersect. This resembles spatial joins for rectilinear
polygons [30].

The I/O complexity of this algorithm is higher than
tjoin. Let b be the page size and k the number of trape-



zoid intersections. The line segment join algorithm now
takes O((N + k1 + l) logb N), where l is the number of
intersections of non-horizontal boundary lines within
the same trapezoid set, and k1 is the number of inter-
sections of non-horizontal boundary lines from different
trapezoid set, Each trapezoid may now be transformed
into more than one rectangles, which makes the total
I/O cost of rjoin to be O((N + l) logb N +k2), where k2

is the total number of intersections discovered by rjoin.
We can show that k1+k2 = O(k). Thus this algorithm
takes no more than O((N + l + k) logb N) I/Os.

6 I/O Bounded Polygons

In this section, we use the trapezoid join algorithms
introduced in the previous section to compute spatial
joins of “I/O bounded polygons.” Intuitively, each
I/O bounded polygon can be retrieved with a constant
number of I/Os. We show that the join problem of
two sets of N I/O bounded polygons can be evaluated
in O(N logb N + k) I/Os, when there are no boundary
intersections between polygons of the same set, and in
O((N + l + k) logb N) I/Os in the general case, where
N is the total number of polygons, b the page size,
k the number of pairs of intersecting polygons, and l
the number of boundary intersections within the same
polygon set.

A polygon is said to be I/O bounded if it occupies
a constant number of disk page. Thus, it takes O(1)
I/Os to access each I/O bounded polygon. Let r and s
be two sets of N I/O bounded polygons. To compute
the spatial join of r and s, we first decompose each
polygon in r and s into trapezoids. This step can be
done in no more than O(N) I/Os. It is easy to see
that the step results in O(N) trapezoids, since poly-
gons in r and s are all I/O bounded. We then apply
the trapezoid join algorithms introduced in Section 5
on the trapezoids. Let k be the number of intersec-
tions between polygons in r and s. It can be shown
that the number of I/Os required in the join step is
O(N logb N + k). The I/O complexity of the join eval-
uation for I/O bounded polygons is summarized in the
following theorem.

Theorem 6.1 Let r and s be two sets of N I/O
bounded polygons, and k the total number of pairs
of polygons from r and s (respectively) that inter-
sect. In the case where there is no boundary inter-
sections of polygons within each of r and s, the join of
r and s can be computed within O(N logb N+k) I/Os.
In the general case, the join can be computed within
O((N + l + k) logb N) I/Os, where l is the number of
boundary intersections within the same polygon set.

7 Conclusions

We developed efficient evaluation algorithms for spatial
joins of trapezoids and showed that they can be applied
to I/O bounded polygons. This is a significant exten-
sion from our earlier algorithms on rectilinear polygons
[30]. There are many interesting problems that remain
open. For example, it is not clear if the trapezoid join
algorithm for the general case can be improved. More
generally, it is interesting to develop I/O efficient join
algorithms for other types of objects, such as polygons
in the general case. It is also very useful to compare
the different approaches to spatial join evaluation. For
instance, trapezoids can also used as approximations
of polygons. It will be interesting to compare differ-
ent approximations on their approximation quality, ef-
fectiveness of filtering (number of false hits), and I/O
performance of their join algorithms.

On the other hand, in addition to intersection,
other join predicates such as distance and direction re-
lated ones are also very useful operations in spatial
databases. By studying joins for different types of ob-
jects, it might be possible to extend the techniques for
joins with other kind of predicates.
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