

Multiple Overlapping Classifications: Issues and Solutions

Cédric Raguenaud, Jessie Kennedy
School of Computing

Napier University
10 Colinton Road, Edinburgh, EH10 5DT
{c.raguenaud, j.kennedy}@napier.ac.uk

Abstract

This paper discusses issues and solutions for
supporting multiple overlapping classifications in
database systems. These classifications are commonly
found in science, although they are often ignored in
computing applications for scientific data, and
inappropriate solutions adopted as their replacement.
Known database models and classification techniques
offer some degree of support for multiple overlapping
classifications, but do not fully support the basic features
we have identified as necessary: trees/graphs,
traceability, semantics of classifications, independence of
classification and data, and identity of classifications.

The approach to the problem adopted by the
Prometheus project, based on an extended object-oriented
database model and the independence of classification
schemes from classified data, is presented and discussed.

1. Introduction

Classification is a widespread concept that helps

categorise, and therefore simplify data or objects in order
to facilitate their understanding and manipulation.
Through representing the relationships between classified
things, classifications may provide new insights into the
things being classified, e.g. discovering that two groups
thought to be independent are in fact related in some way
or deducing from relationships between groups that they
have similar properties. They also allow automatic
reasoning, e.g. propagation of attributes in computing
models [32] [15] or support user interactions, e.g.
simplification of searches.

Examples of familiar classifications include library
catalogues where books are placed into categories (e.g.
genre) in order to ease access and simplify their
management. Medical classification mechanisms, such as
the International Classification of Diseases (ICD), which
catalogues and relates diseases in order to make
prevention, diagnosis, and cure possible. Classification of

living organisms as found in for example plant and animal
taxonomy and virology.

In order to model and support classifications, we need
to understand how they work. Two aspects of
classifications can be distinguished: the way objects are
grouped into classes of equivalence, and the way classes
of equivalence relate to each other and form hierarchies.

Classes of equivalence
In classifications, collections of objects are gathered

and classes of equivalence are created within the
collection (Figure 1 a-d) via an equivalence function. The
equivalence function results in objects being instances of
their class(es) and not of others.

Figure 1: Creation of classes of equivalence

The equivalence function that partitions an application

domain dictates how the set of objects to be classified will
be clustered. The application of that function may result in
the creation of distinct groupings without overlap. This is
the case when the equivalence function offers exclusive
partitioning. For example, eye colour offers an exclusively
partitioning function: people normally have only one eye
colour. Applying this equ ivalence function to a group of
objects will result in several distinct sets as shown in
Figure 1-b where each set represents a class of

a b

c d

equivalence containing people with a particular eye
colour.

In other cases, the partitioning function doesn’t
provide a clean clustering and objects may belong to
several classes of equivalence. For example, the attribute
genre of a library classification may have values “fiction”,
“crime”, “drama”, and “historical ”. This equivalence
function may lead to non-exclusive partitioning of the
domain because its values are not exclusive. For example,
a novel may be of genre “crime” and “historical” at the
same time as shown in Figure 1-c. Therefore a book may
belong to more than one category simultaneously. It may
be argued that this shows a bad choice of equivalence
function, but the fact is that these classifications do exist,
are seen to be useful and therefore cannot be ignored.

The complexity of the equivalence function may als o
lead to non-exclusive partitioning of the domain. When
the equivalence function is composite, i.e. it is made of
several equivalence functions applied simultaneously (the
classification is said to be polythetic, it is monothetic
when only one function is used), objects to which the
function is applied may fulfil the requirements of several
classes simultaneously. For example, a book partitioning
that takes into account the genre, the period, and the place
of origin of the author of books will lead to a partitioning
where a book may appear in, say, XXth century writing,
crime, and Scottish writing (Figure 1-d).

Class hierarchies
In addition to gathering objects, classes of equivalence

can be related to each other via the classification scheme.
The mechanism underlying all classification schemes is
membership. Indeed, all classification hierarchies imply
that lower level classes are members of higher classes.
They also imply that objects that are instances of lower
classes of equivalence are also, through transivity of the
classification function, instances of higher classes of
equivalence (Figure 2).

Figure 2: Two views of a classification hierarchy

We can identify at least three main kinds of

classification semantics (the classification function):
subsumption classifications (is -a), decomposition
classifications (part-of), and similarity classifications.

Is-a classifications are based on the concept of
specialisation/generalisation. Classes of equivalence are
organised into a directed acyclic graph (DAG) where their

semantics are specialised in a top down fashion. An
example of an is -a classification is the concept of object
class hierarchy in computing, where objects are grouped
into classes according to their structure and classes
arranged into a specialisation/generalisation hierarchy
based on e.g. attribute and structure. Another example is
library information management, where the classification
scheme may be based on genre. Books are placed into
categories as shown in Figure 3. The
generalisation/specialisation hierarchy places most
specific classes at the bottom and more general ones at the
top.

Figure 3: Is-a classification

Part -of classifications are based on the concept of

decomposition of objects into smaller objects. Each object
is related to its parent (whole) via a part-of relationship.
These classifications form an abstract to concrete
classification where higher concepts are transitively made
of lower concepts. The semantics of part-of relationships
have been extensively studied and include functional
relationships, topological relationships, and homeomeric
relationships [29]. An example of part-of classification is
the International Classification of Diseases (ICD), where
one classification is based on topology, i.e. it decomposes
the human body into sub-parts in order to describe the
illnesses that may affect each of them (Figure 4).

Similarity classifications, as other classifications, are
based on the concept of membership. The classification
function clusters classes of equivalence by similarity.
They are related to is -a classifications, that also group
classes by similarity (attribute structure) but do not imply
the subsumption rules is -a classifications exhibit. An
example of similarity classification is plant taxonomy
where taxonomists create classifications based on
similarity of specimens or taxa1 (the classes of
equivalence) according to phenotypic descriptions. Figure
5 shows an extract from a taxonomic classification built
on similarity. The classification shows that “Caucalideae”
and “Coriandreae” are similar in some respect and
therefore belong to the same higher group,
“Multiiudatae”.

1 Group of specimens or other taxa

Genre

Fiction Non-fiction

Crime Historical Biography

Is-a

a b

Figure 4: part-of classification

Figure 5: similarity classification

Other classification semantics are possible, as long as

the classification function is transitive and a partitioning
function for the domain is available.

Plant taxonomy
Plant classification is called a taxonomy because

classes appear only once and in one place in each
individual classification. Figure 3 shows a non-taxonomic
classification because the class “historical” appears both
in classes “Fiction” and “Non-fiction”.

Plant taxonomy classifications exhibit additional
peculiar properties. Plant taxonomy can be called a
population-based classification mechanism. Theoretically
[18], taxonomic classifications consist of one-level
classifications where specimens are put into piles (classes)
according to their characteristics. The classes (taxa) are in
addition objects in their own right that are published when
a name is assigned to them by application of nomenclature
rules [18].

However, for practical reasons, i.e. it is hard to handle
thousands or more specimens at once, these one-level
classifications are merged into n-level classifications
where elements of each level are instances of elements of
the next higher level, i.e. taxa are made members of
higher taxa. Specimens are members of all higher taxa by
transitivity of the inclusion relationship.

This leads to classes that are both classes of
equivalence that gather objects that fulfil certain
requirements (e.g. they look similar), and act as surrogate
objects for the objects they recursively contain, therefore
are in turn classified.

Multiple classifications
In some application domains, revision of

classifications is regular or common. For example, the
ICD is revised by the World Health Organization every 10
years approximately and updated every year for minor

changes. Each revision creates a new classification of
diseases that replaces older ones, and each new version
shows the history of classes (e.g. two new classes may
correspond to a single class in an older version of the
ICD).

In plant taxonomy, revisions are common as they are
made when new data, new techniques, or new opinions
appear and may lead to a different understanding of the
world (e.g. DNA sequencing in the last few years). Unlike
for the ICD, new revisions do not replace older ones
therefore all classifications ever published are valid. These
classifications also form the basis of new classifications
through revision. This leads to a large number of
classifications (hierarchies of taxa) of the same specimens
or taxa as overlapping groups of specimens (i.e. groups
sharing specimens). Figure 6 shows an example of
multiple classification in plant taxonomy. The first
classification (top), Berchtold & Presl 1820, is highlighted
and all the classes that appear in that classification are
highlighted in two subsequent classifications, Koch 1824
and De Candolle 1830. It is apparent that groups are
moved around and are classified differently over time.

Figure 6: Multiple classifications

As we have seen, classifications are not always the

straightforward unambiguous tree structures shown in
Figure 2. We have seen that the objects that are classified
may appear in many classes of equivalence when the
partition function allows it. We have also seen that classes
of equivalence can be related in several ways (one of
which is is -a) and may appear in several higher classes
(non-taxonomic classifications). We have also seen that
some application domains generate several classifications
overlapping in terms of classified objects and classes (e.g.
plant taxonomy, ICD).

Because of the complexity of dealing with these
multiple overlapping classifications, they are generally
ignored in both biology (e.g. in plant taxonomy where
consensus classifications are forced upon taxonomists

Eye

Eyelid Cornea

Lid margin Lower eyelid Pterygium

Part -of

Apiaceae

Multiiugatae Pauciiugatae

Caucalideae Coriandreae Ammieae

Similarity

[36]) and computing (e.g. where classifications are
declared suitable for biological classifications [28] when
they only handle single classifications).

This paper first discusses the issues associated with
supporting multiple overlapping classifications such as
those found in plant taxonomy [36]. Then the ability of the
major existing families of database models to handle
multiple overlapping classifications is discussed. Our
approach (Prometheus) to dealing with the issues is
presented in section 4, and we conclude in section 5. A
full survey and specification of Prometheus can be found
in [37].

2. Issues

There are several issues associated with the handling

of multiple overlapping classifications, which were
identified during work on the Prometheus project [35].
Although raised in the context of plant taxonomy they
apply to classification schemes in general. The first issue
is the handling of single classifications, which includes the
semantic of the classification mechanism, traceability of
decisions and independence of things from their
classification. The second is dealing with multiple
overlapping classifications including identity of individual
classifications and their interconnection.

In order to support multiple overlapping
classifications, single classifications must be handled in a
fashion that allows the recording of all the information
necessary to describe the classification. Classifications in
which the things can belong to only one category are tree
structured, whereas those where the things appear in
several categories are graph based. In addition the
semantics of the classification relationships vary amongst
classifications: is-a classifications, (e.g. classification of
object-oriented programming language classes or library
catalogues); similarity classifications (e.g. plant
taxonomy); part-of (e.g. component-part classifications);
other types of classifications, where the relationships
between classes can be anything, e.g. a path that described
costs of medical procedures [7], or ontologies. Therefore
the selection of the appropriate classification
representation for a given domain is important and the
implementation of the chosen representation is not trivial,
as will be seen in section 3. As a consequence of
classification, traceability becomes fundamental.
Traceability allows the explanation, in the data, of the
motivation for a particular classification. For example, a
plant taxonomist should be able to explain why a
particular taxon has been placed in another. The ICD
assigns unique numbers to diseases and operations based
on their path in the classification (each branch of the
classification carries a number). If classes appear in
several placed in classifications, it is not sensible to make
that unique number part of the class definition (one class

may have several numbers depending on the path used to
reach it).

The handling of multiple overlapping classifications
requires mechanisms that are not necessary when only
single classifications are supported. Firstly we need to be
able to identify each classification within the system. If
the multiple overlapping classifications result from the
repeated classification of the same things then overlaps
occur in the classifications and it is necessary to be able to
identify those overlaps.

An important feature of classification is that things
should be independent from their classification. In the real
world anything can be classified, not only things deemed
classifiable. It would make no sense to design things so
that they can be classified and need to maintain
information about their classifications. Moreover, mixing
the description of things with their ability to be classified
would increase their complexity and reduce reuse and
maintainability. This situation is exacerbated when things
are multiply classified. It is therefore important that the
objects that are classified do not participate directly in the
classification process. This makes the management of
basic data and the activity of classifying independent
processes.

In summary, the requirements of a computer system to
support multiple overlapping classifications are:

- support for trees/graphs
- support for semantic relationships
- support for traceability
- identification of distinct overlapping

classifications
- orthogonality of classification and data

3. Supporting classifications with

existing technology

There are many ways classifications could be handled

in the main families of database models, however from the
previous section it is clear that there are several
requirements of the database to handle the range of
classifications described above. In summary, for the
simplest scenario of a single classification with no specific
semantics, no overlap in categories nor traceability, they
need to be able to represent and manipulate basic trees.
For the more complex scenario of mu ltiple overlapping
classifications with specific semantics where traceability
is required, they will require to represent and manipulate
graphs with differing types of relationship with attributes
to record their raison d'être.

This section examines the ability of relational, object-
oriented, graph-based, and extended object-oriented
models to support these requirements and discusses some
specific techniques2.

2 Full details can be found in [37].

3.1. Representing single classifications

3.1.1. Trees and Graphs

The way classifications (trees or graphs) can be

handled depends greatly on the structure of the database
model. Relational models in general do not represent
classifications easily, as they were originally designed for
the manipulation of simple, flat data [10]. Extensions to
the original relational model (extended model, in Third
Manifesto [13]; object-relational models, e.g. Postgres
[44], Oracle [30]) offer additional features such as
extensible types or nesting that can be of use to describe
more complex information. These models could handle
graphs as relations, however these relations would have to
play both the roles of nodes and edges in graphs, therefore
their manipulation would need to be handled by user
applications. Figure 7 shows a relation “Person” that could
be related to its parents via the relation “Parents” playing
the role of a relationship in a genealogy classification.

Figure 7: relation as relationship

Nested models could represent graphs via nesting, but

this representation would still be simplistic as more
complex graphs, e.g. weighted graphs, could not be
captured. Finally, as all these options are too simple to
accurately represent trees/graphs, they lead to complex
processes/manipulations and possibly integrity constraint
problems. These complex processes would have a
negative impact on the efficiency of the overall system.

Object-oriented databases can support the definition of
directed graphs (cyclic or not) using objects and
references. However, only the simplest graphs (e.g. not
weighted graphs) can be represented, as edges show only
the existence of a link between two nodes (as a reference),
without any additional information, which would be
necessary for e.g. weighted graphs. An alternative
approach would be the representation of graph edges by
normal objects that user applications would recognise as
edges. Figure 8 shows a class diagram where a class is
used as relat ionship (with weight) to relate books to their
class (category).

Figure 8: object as relationship

This has the advantage of providing a means to capture
complex graphs such as weighted graphs. However, this
would be limited in the sense that edge objects would not
be recognised as relationships or references by the
database system. Therefore, the insertion of an additional
level of indirection would make user applications more
complex and may lead to integrity proble ms (updating an
object edge is more complicated than updating a
reference). In addition, writing queries would be made
harder by the additional level of indirection and the
necessity to select these edge objects explicitly if they are
required in the query result. Another approach could be to
use the classification offered by some object-oriented
models: classification of types by distinguishing types
from classes [27] [22] [20]. However, changes to the
classes may lead to important class reorganisation
problems such as schema evolution (e.g. [4] [12]). They
would also lead to very large schemas that could become
unmanageable (a schema for a plant taxonomy flora
would contain hundreds of thousands of classes).

In graph-based models, everything is represented by
sets of nodes and edges that represent interaction between
nodes. These models inherently support the description of
trees/graphs, with various degrees of information: node-
based models (e.g. TSIMMIS [9], Lore [25] , GOOD [17])
have a weak representation of edges, and edge-based
models (BDS95 [8]) limit the possibility to distinguish
objects and interactions between objects. Models that
support both kinds of features extensively (PROGRES
[43], Telos [26], ConceptBase [21], [47], [46], Gram [3]),
and in particular those that support nesting (Hyperlog
[33], [49]), provide more freedom to choose the
representation of information. By explicitly modelling
nodes and edges of a graph, they allow the representation
of any kind of graph, including weighted graphs or cyclic
graphs.

Extended object-oriented models can represent graph
structures as they are based on object-oriented models
with first-class relationships. Their degree of support for
graph structures varies: some support the definition of
explicit but simple graphs (e.g. SORAC [16]); others
support the definition of more complex graphs such as
weighted graphs (e.g. GraphDB [19], ADAM [15],
Albano [2]). In all cases, these graphs explicitly represent
both nodes (objects for GraphDB and SORAC, or unary
collections for OMS and Albano) and edges (specific
relationship objects for GraphDB and SORAC, or
binary/n-ary collections for OMS and Albano).

3.1.2. Semantics

Semantics of classifications is also an issue that is not

handled well by most models. Relational models propose
relations as the basic entity. These relations do not
represent is-a, similarity, or part-of relationships in a
system understandable manner, therefore relational

Person
key

Parents
child parent

key key

Book Class Relationship

weight

models would be unable to capture these kinds of
classifications naturally. All classifications in a relational
database would be generic classifications, which can lead
to problems interpreting their semantics (once again
captured by user applications).

Object-oriented models could only model two kinds of
classifications: is-a (inheritance) and another generic kind
of classification (reference). Is-a and generic
classifications may not be appropriate to all classification
schemes (e.g. part-of classifications as in the ICD), and no
other specific kind of classification (e.g. part-of) may be
defined.

Graph-based models generally only support one kind
of relationship between nodes. Only a few support
relationship classes and is -a classifications (e.g. Hyperlog
[33]). If relationships are sub-classed, then it is possible to
create classifications that are of the required type. The
limitation of graph-based models is that they do not
interpret the semantics of relationships. Therefore it is
possible to describe generic classifications, but the system
would not be able to interpret their meaning. For example
is -a edges may be created in models that support the
extension of edge types, but they would only be called “is -
a” edges and inheritance rules would not be enforced.

By defining different kinds of relationships and using
them to capture classifications, extended object-oriented
models make it possible to define classifications that are
not is-a or part-of classifications. This can be done by
creating new kinds of relationships, with their semantics
(e.g. as constraints or rules), and linking objects together.
However, for the models that do not support semantic
relationships, similarity and part-of classifications are
impossible.

3.1.3. Traceability

Traceability offers the ability to record the motivation

behind the building of classifications. Depending on the
approach chosen for representing classifcations,
traceability may be supported by relational models. For
example, if relations are used to represent edges (instead
of nodes), then these edges can contain information that
can capture classification motivation, therefore
traceability. If nesting is used, then no traceability
information can be recorded.

Traceability is an unresolved issue in object-oriented
and graph-based models. Indeed, if it is decided that
traceability should be part of edges/relationships, only
models that allow the definition of edges/relationships
with weights may provide a solution. However, as the
previous section explains, this approach is not practical
with object-oriented models (where references cannot
contain values, and normal objects used as relationships
introduce problems) and graph-based models offer
relationships of a too simple kind to handle attributes.

Some of the extended object-oriented models support
attributes on relationships (Albano, GraphDB, ADAM),
others allow the combinations of relationships as
relationships (attributes) of relationships (e.g. OMS),
therefore these classification relationships could also
record the motivations for classifications as attributes of
relationships forming a graph.

3.2. Representing multiple overlapping

classifications

Identity is the main issue associated with multiple

overlapping classifications. Indeed, the fact that several
classifications may share elements means that it is
important to be able to make a distinction between all the
classifications involved. One feature offered by most
relational systems, views [11], may be of interest as they
would allow the filtering of relations according to specific
criteria in order to present a partial view of the
information to the user, e.g. a single or several
classifications at a time. The idea is seductive but practical
problems arise: the definition of views may be very
complex, as a single classification contains a high number
of different concepts (e.g. composite entities). The
selection of all these concepts would require an inordinate
number of queries (at least one for each table of interes t),
which would not only be hard to express (new relations
may need to be created), but would be extremely
expensive to compute.

In object-oriented databases, view mechanisms allow
the definition of different appearances for objects and
classes [42] [38] [6] [41]. The view mechanism can
maintain a global schema [38] [5] [23] that contains all
classifications, and extracts individual classifications to
present them to the user. Figure 9 shows a mechanism by
which views (top plane) are extracted from a global
schema (bottom plane). Views are more flexible than
schema-based approaches, as they can be created with the
query language [14] or a view definition language [40],
and some view mechanisms allow reorganisation and
possibly automatic class integration in existing schemas
and views [39]. However, the cost of creating and
modifying views, even if they are materialised [24], may
be too high to allow dynamic classifications. For example
conflicts must be detected and resolved, and mistakes
(especially in taxonomic work) might not allow this.

Figure 9: view as filtering mechanism

Global schema

View

Views may also offer a way to express alternative
classifications over graph-based models. View
mechanisms have been proposed in the context of graph-
based databases [49] [48] and semistructured databases
[45] [1]. Graph views are essentially filtering mechanisms
where sets of nodes and edges are selected. These
proposals are all limited to specific aspects of graph
databases: [49] only extracts views as sets of objects; [48]
does not deal with updates and deletions; [45] only works
with join-free queries and insert statements. Only [1]
proposes a generic view mechanism that takes into
account the specificity of graphs, and supports all
operations. This view mechanism may allow the
extraction of sub graphs from a general graph as
classifications extracted from an overlapping larger
classification.

Extended object-oriented models do not intrinsically
support interconnected classifications. They only support
the definition of unspecialised graphs. Additional
mechanisms, at the model and/or at the query language
level, would need to be developed in order to support
multiple overlapping classifications. Unlike object-
oriented and many graph-based models, no view
mechanism is available for these approaches. In many
cases, they are built from scratch in order to support
uncommon features (e.g. GraphDB, SORAC, Albano) or
are built on top of existing database systems that do not
support views (e.g. ADAM). As a consequence, the
representation of multiple overlapping classifications as
views of a single larger classification is impossible.

4. Classification in context

The previous section has shown why existing

technology fails to support multiple overlapping
classifications and satisfy all the issues associated with
their proper handling. Even mechanisms described in the
literature for biological classifications (e.g. the
Materialization relationship [31] and power types [28])
are too limited to support multiple overlapping
classifications: they either work at class level
(materialisation), which generate important classification
reorganisation problems due to schema evolution, or do
not support multiple overlapping classifications
(materialisation, power types).

A new mechanism has been devised in the Prometheus
project, which is described in this section. First, the
technique for representing classifications is explained.
This mechanism allows the representation of all types of
classifications from single to multiple overlapping
classifications. Then it is shown how the representation of
multiple overlapping classifications does not impair the
ability of the system to retain single points of views.

4.1. Relationships as classifiers

As the previous section explained, the model that
offers the best support for classification representation is
the extended object-oriented model. It combines the high
level approach of object-oriented models with the
decomposition, low level approach offered by graph-
based models. This allows extended object-oriented
models to capture some forms of classification. However,
the previous section has also shown that this model fails to
capture multiple overlapping classifications properly. The
approach that has been taken for the Prometheus project is
the use of such a model combined with additional
mechanisms. We use relationships with the equivalent of
weights (as in weighted graphs) to describe classifications.

Figure 10: Multiple overlapping classification
example

Relationships effectively act as classifiers (or the

classifying mechanism). The action of creating such a
relationship between two objects implies that these objects
are classified. Furthermore, these relationships are the
only objects in the system that are aware of the
classifications and they contain all the necessary
information to distinguish them from each other. They
therefore support the independence of classifications and
data. Figure 10 shows how the use of relationships as
classifiers allows the description of multiple overlapping
classifications. Each of these classifications represents a
specific opinion, i.e. the context in which the specimens
are classified. Figure 10 shows three distinct
classifications: a dashed line classification, a thin line
classification, and a thick line classification. In taxonomy,
these distinct classifications would have been published
by distinct authors and the publication information would
replace the type of arrow in this example. The leaf nodes
in these classifications could be for example books or
plant specimens. The other nodes can be book subjects or
taxa that are used to classify the leaf nodes.

4.2. Traceability

Traceability is handled by the relationships that act as

classifiers. Traceability information is part of the
classification in formation, therefore this is the right place
to hold it. As relationships can have weights (captured by

a b c d e f g

5 4 3

2 1

attributes), possibly also as part of the context (e.g. if
following paths that only contain certain values is of
interest), some of their attributes may be used to record
decisions. For example, the edge between nodes 4 and b
Figure 10 may have been created because 4 and b exhibit
a specific property. This decision can be captured by an
attribute of that relationship (with something as simple as
free text if necessary, or more complex object structures).

4.3. Semantics

Semantics are provided by the fact that all

relationships can participate in the classification
description and that the model offers extension of
relationships by su b-classing and description of behaviour
and constraints. If part-of classifications are to be
described, then aggregation relationships can be used and
their semantics interpreted by the system. If other kinds of
classifications are to be represented (e.g. similarity), new
relationships, with specific semantics, can be created and
used.

4.4. Multiple overlapping classifications

It can be seen in Figure 10 that the different

classifications have elements in common: node 3 appears
in the thin line classification and in the dashed line
classification; node 4 appears in all three classifications.
On the contrary, node 5 only appears in the thick line
classification. Likewise, the leaf nodes can appear in one
classification (node a), in two classifications (node b), or
in all three (node e).

As Figure 10 shows, identity of distinct classifications
can be handled through the type of the relationships that
are used to describe them. Sub-classing of relationships
(as first-class objects) allows for example the creation of
specific relationships for each classification to be
represented. It is also possible to manage this identity
using attributes of relationships: specific values may
represent each classification. In any case, distinct
classifications are clearly identified and this distinction
does not impair querying, as querying attributes and using
types is inherent in object-oriented query languages.

4.5. Classifying in context

This new approach allows the generic classification of

entities by context. By "context", one can understand
"anything that uniquely identifies a view". In plant
taxonomy, this can be a taxonomist, a publication, or a
combination of both. For example, one taxonomist's view
on the world is a context and in that context a set of
specimens is classified in a certain way. Concurrently,
another taxonomist's view of the world represents another
context where the same specimens (or any other set of
specimens) are classified differently. The overall graph

that is stored in the database represents a view of
taxonomy out of context, or within all contexts
concurrently. This view, although it is the most complete
because it contains all existing information, does not suit
some classification work (e.g. taxonomy work), as users
tend to work in one particular context or in relation to a
limited set of contexts for comparison purposes. By
representing classification information on the hierarchies
that constitute that graph, Prometheus captures single
contexts that can be extracted as necessary.

Because the distinct hierarchies created in different
contexts overlap (in terms of categories and classified
concepts), the representation of all contexts in a single
graph makes possible the comparison of classifications
defined in different contexts and provides the ability to
switch between contexts in order to gain knowledge.
Indeed, by following relationships with specific values
(e.g. publication information), it is possible to follow a
path of a specific graph. But by switching between these
values, it is possible to compare and navigate within and
amongst classifications. For example in Figure 10, it is
possible to compare nodes 3 and 4 and thereby to realise
that they have some leaf nodes in common. This can give
new insight into the data (e.g. in plant taxonomy when
two groups partially contain the same specimens, they are
partial synonyms). It is also possible to contrast the
different meanings of node 4 according to the different
classifications: it contains nodes d and e in the thin line
classification, nodes e, f, and g in the dashed line
classification, and nodes b, c, and e in the thick line
classification.

5. Conclusion

This paper has presented the concept of classification

as ranging from single taxonomy to multiple overlapping
classifications, appearing in many areas of science. The
latter case represents the multiple overlapping
classification of objects or classes in separate but
overlapping classifications. The features identified as
necessary for handling these classifications include
trees/graphs, traceability, semantics of classifications,
independence of classification and data, and identity of
classifications.

Common database models have been investigated for
their support of multiple overlapping classification
regarding the requirements expressed, and we have
concluded that none offers full supports for the features
outlined, but many provide a part of a satisfying solution.
A new method of capturing multiple overlapping
classifications has therefore been devised where context,
i.e. what identifies one classification from another, plays a
central role. The approach uses an extended object-
oriented model to capture classification information and
links, so that classes and classified objects can be related

by classification information but stay independent from
classifications.

The technique presented here has been implemented
and tested in a plant taxonomy database system, and has
been shown to be effective in handling multiple
classifications and their associated processes. However
this approach is applicable to all domains where contexts
or multifaceted objects exist. For example, context is
important for ontologies, as pointed out by Priss [34], and
is often ignored. An approach such as that proposed here
could be applied to ontology systems in order to introduce
the concept of context.

6. References

[1] S. Abiteboul, J. M. Hugh, M. Rys, V. Vassalos, and J.
Wiener, "Incremental maintenance for materialized
views over semistructured data," presented at
VLDB'98, Proceedings of 24rd International
Conference on Very Large Data Bases, New York
City, New York, USA, 1998.

[2] A. Albano, G. Ghelli, and R. Orsini, "A Relationship
Mechanism for a Strongly Typ ed Object-Oriented
Database Programming Language," presented at
Proceedings of the seventeenth international
conference on very large data bases, Barcelona, Spain,
1991.

[3] B. Amann and M. Scholl, "Gram: A Graph Data
Model and Query Language," INRIA, Le Chesnay,
France Verso report number 046 (ECHT), 1992.

[4] J. Banerjee, H. Chou, J. Garza, W. Kim, D. Woelk,
and N. Ballou, "Data model issues for object-oriented
applications," ACM Transactions on Office
Information Systems, vol. 5, pp. pp 3-26, 1987.

[5] Z. Bellahsene, "View Mechanism for Schema
Evolution in Object-Oriented DBMS," presented at
14th British National Conferenc on Databases,
BNCOD 14, Edinburgh, Scotland, 1996.

[6] Z. Bellahsene, "Updating Virtual Complex Objects,"
presented at OOIS'97, 1997 International Conference
on Object Oriented Information Systems, Brisbane,
Australia, 1997.

[7] G. C. Bowker and S. L. Star, Sorting things out,
classification and its consequences: Massachusetts
Institute of Technology, 1999.

[8] P. Buneman, S. Davidson, and D. Suciu,
"Programming Constructs for Unstructured Data,"
presented at DBPL-5 Proceedings of the Workshop on
Database Programming Languages, Gubbio, Umbria,
Italy, 1995.

[9] S. Chawathe, H. Garcia-Molina, J. Hammer, K.
Ireland, Y. Papakonstantinou, J. U llman, and J.
Widom, "The TSIMMIS Project: Integration of
Heterogeneous Information Sources," presented at
Proceedings of IPSJ Conference, Tokyo, Japan, 1994.

[10] E. F. Codd, "A Relational Model of Data for Large
Shared Data Banks," Communications of the ACM
(CACM), vol. 13, pp. 377-387, 1970.

[11] S. J. Connan and G. A. M. Otten, SQL - The Standard
Handbook : McGraw-Hill, 1992.

[12] V. Crestana-Taube and E. A. Rundensteiner, "Schema
Removal Issues for Transparent Schema Evolution,"
presented at Sixth International Workshop on Research
Issues on Data Engineering, Interoperability of Non
traditional Database Systems, RIDE'96, IEEE, New
Orleans, Louisiana, 1996.

[13] H. Darwen and C. J. Date, "The Third Manifesto,"
SIGMOD Record 24, vol. 24, pp. 39-49, 1995.

[14] S. Deßloch, T. Härder, F.-J. Leick, N. M. Mattos, C.
Laasch, C. Rich, M. Scholl, and H.-J. Schek,
"COCOON and FRISYS - a comparison -," in
Objektbanken für Experten, Informatik Aktuell, T. H.
R. Bayer, P.C. Lockemann, Ed.: Springer, 1992, pp. pp
179-196.

[15] O. Díaz and P. M. D. Gray, "Semantic-rich User-
defined Relationship as a Main Constructor in Object
Oriented Database," presented at Object-Oriented
Databases: Analysis, Design & Construction (DS-4),
Proceedings of the IFIP TC2/WG 2.6 Working
Conference on Object-Oriented Databases: Analysis,
Design & Construction, Windermere, UK, 1990.

[16] M. Doherty, J. Peckham, and V. F. Wolfe,
"Implementing Relationships and Constraints in an
Object-Oriented Database Using a Monitor Construct,"
in Rules in Database Systems, M. H. W. Norman
Paton, Ed. Edinburgh: Springer-Verlag, 1993, pp. 347-
363.

[17] M. Gemis, J. Paredaens, I. Thyssens, and J. V. d.
Bussche, "GOOD, A graph-Oriented Database
System," Proceedings of SIGMOD, SIGMOD Record,
vol. 22, pp. 505--510, 1993.

[18] W. Greuter, F. R. Barrie, H. M. Burdet, W. G.
Chaloner, V. Demoulin, D. L. Hawksworth, P. M.
Jørgensen, D. H. Nicolson, P. C. Silva, P. Trehane, and
J. McNe, International code of botanical nomenclature
(Tokyo Code), vol. 131: Koeltz Scientific Books, 1994.

[19] R. H. Güting, "GraphDB: Modeling and Querying
Graphs in Databases," presented at Proc 20th Int.
Conf. on Very Large Databases, Santiago, Chile, 1994.

[20] N. Hori, M. Yoshikawa, and S. Uemura, "ASKA: An
Object-Oriented Data Model with Multiple Hierarchies
and Multiple Object-Perspectives," presented at 6th
Int. Conf. and Workshop on Database and Expert
Systems Applications (DEXA'95) - Workshop
Proceedings, London, UK, 1995.

[21] M. Jarke, R. Gallersdörfer, M. A. Jeusfeld, M. Staudt,
and S. Eherer, "ConceptBase - a deductive object base
for meta data management.," Journal of Intelligent
Information Systems. Special Issue on Advances in
Deductive Object-Oriented Databases, vol. 4, pp. 167-
192, 1995.

[22] J. Joseph, S. Thatte, C. Thompson, and D. Wells,
"Object-Oriented Databases: Design and
Implementation," Proceedings of the IEEE, vol. 79,
pp. 42-64, 1991.

[23] W. Kim and W. Kelley, "On View Support in Object-
Oriented Database Systems," in Modern database
systems: The Object Model, Interoperability, and
Beyond, W. Kim, Ed. New York: Addison-Wesley
Publishing Company, 1995, pp. 108-129.

[24] H. A. Kuno and E. A. Rundensteiner, "Materialized
Object-Oriented Views in MultiView," presented at

Fifth International Workshop on Research Issues on
Data Engineering: Distributed Object Management
(RIDE-DOM'95), IEEE, 1995, Taipei, Taiwan, Taipei,
Taiwan, 1995.

[25] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom, "Lore: A Database Management System for
Semistructured Data," SIGMOD Record, vol. 26, pp.
54-66, 1997.

[26] J. Mylopoulos, A. Borgida, M. Jarke, and M.
Koubarakis, "Telos: Representing Knowledge About
Information Systems," ACM Transactions on
Information Systems, vol. 8, pp. 325-362, 1990.

[27] M. C. Norrie, "Distinguishing Typing and
Classification in Object Data Models," in Information
Modelling and Knowledge Bases VI, vol. VI, Chapter
25, H. Kangassalo, H. Jaakola, S. Oshuga, and B.
Wangler, Eds.: IOS, 1995.

[28] J. Odell, "Power types," Journal of Object-Oriented
Programming, vol. 7, pp. 8-12, 1994.

[29] J. Odell, "Six different kinds of composition," Journal
of Object-Oriented Programming, vol. 6, pp. 10-15,
1994.

[30] Oracle, "Oracle, http:///www.oracle.com," 2001.
[31] A. Pirotte, E. Zimányi, D. Massart, and T. Yakusheva,

"Materialization: a powerfull and ubiquitous
abstraction pattern," presented at Very Lage Data
Bases (VLDB'94), Santiago, Chile, 1994.

[32] M. K. a. A. Pirotte, "An aggregation model and its
C++ implementation," presented at 4th Int. Conf. on
Object-Oriented Information Systems, OOIS'97,
Brisbane, Australia, 1997.

[33] A. Poulovassilis and S. Hild, "Hyperlog: a graph-based
system for database browsing, querying and update,"
To appear in IEEE Knowledge and Data Engineering,
1998.

[34] U. Priss, "Ontologies and Context," presented at 12th
Midwest Artificial Intelligence and Cognitive Science
Conference, Miami University, Oxford, OH, USA,
2001.

[35] Prometheus, "Prometheus project web page," 1998.
[36] M. R. Pullan, M. F. Watson, J. B. Kennedy, C.

Raguenaud, and R. Hyam, "The Prometheus
Taxonomic Model: a practical approach to
representing multiple taxonomies," Taxon, vol. 49, pp.
55-75, 2000.

[37] C. Raguenaud, "Managing complex taxonomic data in
an object-oriented database," in School of Computing.
Edinburgh: Napier University, 2002.

[38] E. A. Rundensteiner, "MultiView: A Methodology for
Supporting Multiple View in Object-Oriented
Databases," presented at 18th International Conference
on Very Large Data Bases, Vancouver, Canada, 1992.

[39] E. A. Rundensteiner, "A Classification Algorithm For
Supporting Object-Oriented Views," presented at
Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM'94),
Gaithersburg, Maryland, 1994.

[40] E. A. Rundensteiner and L. Bic, "Automatic View
Schema Generation in Object-Oriented Databases,"
Department of Information and Computer Science,
University of California, Irvine 92-15, 01/92 1992.

[41] C. S. d. Santos, S. Abiteboul, and C. Delobel, "Virtual
Schemas and Bases," presented at Advances in
Database Technology - EDBT'94. 4th International
Conference on Extending Database Technology,
Cambridge, United Kingdom, 1994.

[42] M. E. S. a. H.-J. Schek, "Supporting Views in Object-
Oriented Databases," IEEE Database Engineering
Bulletin, Special Issue on Foundations of Object-
Oriented Database Systems, vol. 14, pp. 43-47, 1991.

[43] A. Schürr, A. J. Winter, and A. Zündorf, "PROGRES:
Language and Environment," in Handbook on Graph
Grammars: Applications, vol. 2, G. Rozenberg, Ed.,
Singapur: World Scientific ed, 1998.

[44] M. Stonebraker, A. Jhingran, J. Goh, and S.
Potamianos, "On rules, procedures, caching and views
in database systems," presented at ACM SIGMOD
International Conference on Management of Data,
Atlantic City, NJ, USA, 1990.

[45] D. Suciu, "Query Decomposition and View
Maintenance for Query Languages for Unstructured
Data," presented at VLDB'96, Proceedings of 22th
International Conference on Very Large Data Bases,
Mumbai (Bombay), India, 1996.

[46] F. W. Tompa, "A data model for flexible hypertext
database systems," ACM Transactions on Information
Systems, vol. 7, pp. 85-100, 1989.

[47] C. Watters and M. A. Shepherd, "A Transient
Hypergraph-Based Model for Data Access," ACM
Transactions on Information Systems, vol. 8, pp. 77-
102, 1990.

[48] P. T. Wood, "Graph Views and Recursive Query
Languages," presented at BNCOD 8, University of
York, UK, 1990.

[49] Y. Zhuge and H. Garcia-Molina, "Graph Structured
Views and Their Incremental Maintenance," presented
at Proceedings of the Fourteenth International
Conference on Data Engineering, Orlando, Florida,
USA, 1998.

