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Abstract

In this paper, we study the effects of compression on
bitmap indexes. The main operations on the bitmaps dur-
ing query processing are bitwise logical operations such
as AND, OR, NOT, etc. Using the general purpose com-
pression schemes, such as gzip, the logical operations on
the compressed bitmaps are much slower than on the un-
compressed bitmaps. Specialized compression schemes,
like the byte-aligned bitmap code (BBC), are usually faster
in performing logical operations than the general purpose
schemes, but in many cases they are still orders of magni-
tude slower than the uncompressed scheme. To make the
compressed bitmap indexes operate more efficiently, we de-
signed a CPU-friendly scheme which we refer to as the
word-aligned hybrid code (WAH). Tests on both synthetic
and real application data show that the new scheme sig-
nificantly outperforms well-known compression schemes at
a modest increase in storage space. Compared to BBC, a
scheme well-known for its operational efficiency, WAH per-
forms logical operations about 12 times faster and uses only
60% more space. Compared to the uncompressed scheme,
in most test cases WAH is faster while still using less space.
We further verified with additional tests that the improve-
ment in logical operation speed translates to similar im-
provement in query processing speed.

1 Introduction

This research was originally motivated by the need to
manage the volume of data produce by a high-energy ex-
periment called STAR1 [23, 24]. In this experiment, in-
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bitmap index
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1 0 1 0 0 0
2 1 0 1 0 0
3 3 0 0 0 1
4 2 0 0 1 0
5 3 0 0 0 1
6 3 0 0 0 1
7 1 0 1 0 0
8 3 0 0 0 1
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Figure 1. A sample bitmap index.

formation about each potentially interesting collision event
is recorded. Tens of millions of such events are collected
each year, amounting to multiple terabytes of raw data.
All raw data go through a preliminary analysis where hun-
dreds of summary attributes are generated for each event.
Further analyses are typically only performed on some of
the events. One important way of selecting the events
is to search for events satisfying some condition on the
summary attributes such as “Energy > 15 GeV and
7 <= NumParticles < 13” [4, 23]. This type of
queries are known as partial range queries. One impor-
tant data management task is to answer these partial range
queries efficiently. Since these summary attributes are usu-
ally read, not modified, the indexing schemes used for
commercial data warehouses should be useful for our task.
Based on experiences in data warehouse applications, we
know the bitmap index is efficient for partial range queries
on relations with many attributes [5, 7, 19, 28]. Since our
datasets have hundreds of attributes, bitmap index is even
more appropriate [23].

Generally, a bitmap index consists of a set of bitmaps and
queries can be answered using bitwise logical operations on
the bitmaps. Figure 1 shows a set of such bitmaps for the
attribute� of a tiny table (�) consisting of only eight tuples
(rows). The attribute � can have one of four values, 0, 1,



2 and 3. There are four bitmaps, each corresponding to one
of the choices. For convenience, we have labeled the four
bit sequences ��� � � � � ��. To process the query “select *
from T where X < 2,” one performs the bitwise log-
ical operation �� OR ��. Since bitwise logical operations
are well supported by computer hardware, bitmap indexes
are very efficient to use [19]. In many data warehouse ap-
plications, bitmap indexes perform better than tree based
schemes [5, 19, 28], such as the variants of B-tree [8] or
R-tree [10]. According to the performance model proposed
by Jürgens and Lenz [13], bitmap indexes are likely to be
even more competitive in the future as disk technology im-
proves. In addition to supporting queries on one single ta-
ble as shown in this paper, researchers have also demon-
strated that bitmap indexes can accelerate complex queries
involving multiple tables [21]. Realizing the value of the
bitmap indexes, most major DBMS vendors have imple-
mented them.

The example shown in Figure 1 is the simplest bitmap
index which we call the basic bitmap index. A bitmap
index is typically generated for each attribute. The ba-
sic bitmap index produces one bitmap for each distinct at-
tribute value and it may perform the logical OR operation on
multiple bitmaps when answering a range query involving
the attribute. For attributes with low cardinality, a bitmap
index is small compared to tree based indexes and pro-
cesses range conditions faster as well. To process the exam-
ple query “Energy > 15 GeV and 7 <= NumPar-
ticles < 13,” a bitmap index on attribute Energy and
a bitmap index on NumParticles are used separately
to generate two bitmaps representing objects satisfying the
conditions on Energy and NumParticles. The final
answer is the result of a bitwise logical AND operation on
these two bitmaps. The whole process can be carried out
efficiently if indexes for Energy and NumParticles in-
volves only a small number of bitmaps. However, in real ap-
plications, especially scientific applications, there are many
bitmaps in a bitmap index because the attribute cardinali-
ties are high. In these cases, the bitmap indexes take a lot of
space and processing range queries using these indexes take
longer than without an index.

Compression is one way to reduce the size of the bitmap
index and improve its effectiveness. To compress a bitmap,
a simple option is to use one of the text compression al-
gorithms, such as LZ77 (used in gzip) [16]. These algo-
rithms are well-studied and effective in reducing file sizes.
However, performing logical operations on the compressed
bitmap are usually significantly slower than on the uncom-
pressed bitmap. To address this performance issue, a num-
ber of special algorithms have been proposed. Johnson and
colleagues have conducted extensive studies on their per-
formances [12, 1]. From their studies, we know that the
logical operations using these specialized schemes are usu-

ally faster than those using gzip. One such specialized al-
gorithm, called the Byte-aligned Bitmap Code (BBC), is
known to be very efficient. It is used in a commercial
database system, ORACLE [2, 3]. However, even with
BBC, in many cases logical operations on the compressed
bitmap still can be orders of magnitudes slower than on the
uncompressed bitmap.

When processing range queries using BBC compressed
bitmap indexes, we observed that more than 90% of the time
is spent on performing logical operations. The I/O time is
only a small part of the total time. To reduce the total query
processing time, we propose a “CPU-friendly” compression
scheme. It improves the speed of logical operations by an
order of magnitude over BBC at a cost of small increase in
space. We call the method the Word-aligned Hybrid (WAH)
compression scheme. This scheme not only supports faster
logical operations but also enables the bitmap index to be
applied to attributes with high cardinalities. Our tests show
that by using WAH compression, we can achieve good per-
formance on scientific datasets where most attributes have
high cardinalities. From their performance studies, Johnson
and colleagues came to the conclusion that one has to dy-
namically switch among different compression schemes in
order to achieve the best performance [1]. We found that
since WAH is significantly faster than earlier compression
schemes, there is no need to switch compression schemes in
a bitmap indexing software. The new compression scheme
not only improves the performance of the bitmap indexes
but also simplifies the indexing software.

Compression reduces the total size of a bitmap index by
reducing the size of each bitmap, another strategy is to re-
duce the number of bitmaps used, for example, by using
binning or more complex encoding schemes. With binning,
multiple values are grouped into a single bin and only the
bins are indexed [14, 23, 26]. This strategy reduces the
number of bitmaps used but it produces precise answers
only if range conditions fall on bin boundaries. In order
to accurately answer an arbitrary query, one has to scan
some of the attribute values after operating on the indexes.
Many researchers have studied the strategy of using differ-
ent encoding schemes [5, 6, 20, 25, 28]. One well-known
scheme is the bit-sliced index, that encodes � distinct val-
ues using ����� bits and creates a bitmap for each binary
digit [20]. This is related to the binary encoding scheme
discussed elsewhere [5, 25, 28]. A drawback of this scheme
is that to answer each query, most of the bitmaps have to
be accessed, and possibly multiple times. There are also
a number of schemes that generate more bitmaps than the
bit-sliced index but access less of them while processing a
query, for examples, the attribute value decomposition [5],
interval encoding [6] and the K-of-N encoding [25]. In all
these schemes, an efficient compression scheme may fur-
ther improve their effectiveness. Additionally, a number of



other common indexing schemes such as the signature file
[9, 11, 15] and the bit transposed files [25] may also benefit
from efficient bitmap compression schemes.

The remainder of this paper is organized as follows. In
Section 2 we review three commonly used compression
schemes and identify their key features. These three were
selected as representatives in our performance comparisons.
Section 3 contains the description of the word-aligned hy-
brid code (WAH). We discuss the timing results of the bit-
wise logical operations in Section 4, and the overall query
processing performance in Section 5. A short summary is
given in Section 6.

2 Review of byte based schemes

In this section, we briefly review three well known
schemes for representing bitmaps and introduce the termi-
nology needed to described our new scheme. These three
schemes are selected as representatives from a number of
schemes studied previously [12, 27].

A straightforward way of representing a bitmap is to use
one bit of computer memory for each bit of the bitmap. We
call this the literal (LIT) bit vector2. This is the uncom-
pressed scheme and logical operations on uncompressed
bitmaps are extremely fast.

The second type of scheme in our comparisons is the
general purpose compression scheme such as gzip [16].
They are highly effective in compressing data files. We use
gzip as the representative because it is usually faster than
others in decompressing the data files.

As mentioned earlier, there are a number of compression
schemes that offer good compression and also allow fast bit-
wise logical operations. One of the best known schemes is
the Byte-aligned Bitmap Code (BBC) [2, 3, 12]. The BBC
scheme performs bitwise logical operations efficiently and
it compresses almost as well as gzip. We use BBC as the
representative for these types of schemes. Our implementa-
tion of the BBC scheme is a version of the two-sided BBC
code [27, Section 3.2]. This version performs as well as the
improved version by Johnson [12]. In both Johnson’s tests
[12] and ours, the time curves for BBC and gzip (marked at
LZ in [12]) cross at about the same position.

Many of the specialized bitmap compression schemes,
including BBC, are based on the basic idea of run-length en-
coding that represents consecutive identical bits (also called
a fill or a gap) by their bit value and their length. The bit
value of a fill is called the fill bit. If the fill bit is zero,
we call the fill a 0-fill, otherwise it is a 1-fill. Compression
schemes generally try to store repeating bit patterns in com-
pact forms. The run-length encoding is among the simplest

2We use the term bit vector to describe the data structure used to repre-
sent the compressed bitmaps.

of these schemes. This simplicity allows logical operations
to be performed efficiently on the compressed bitmaps.

Different run-length encoding schemes commonly dif-
fer in their representations of the fill lengths and the short
fills. A naive run-length code may use a word to repre-
sent all fill lengths. This is ineffective because it uses more
space to represent short fills than in the literal scheme. One
common improvement is to represent the short fills literally.
The second improvement is to use as few bits as possible
to represent the fill length. Given a bit sequence, the BBC
scheme first divides it into bytes and then groups the bytes
into runs. Each BBC run consists of a fill followed by a tail
of literal bytes. Since a BBC fill always contains a number
of whole bytes, it represents the fill length as the number of
bytes rather than the number of bits. In addition, it uses a
multi-byte scheme to represent the fill lengths [2, 12]. This
strategy often uses more bits to represent a fill length than
others such as ExpGol [18]. However it allows for faster
operations [12].

Another property that is crucial to the efficiency of the
BBC scheme is the byte alignment. This property limits a
fill length to be an integer multiple of bytes. More impor-
tantly, it ensures that during any bitwise logical operation a
tail byte is never broken into individual bits. Because work-
ing on individual bits is much less efficient than working
on whole bytes on most CPUs, byte-alignment is crucial to
the operational efficiency of BBC. Removing the alignment
may lead to better compression. For example, the ExpGol
scheme [18] can compress better than BBC partly because
it does not obey the byte alignment. However, bitwise logi-
cal operations on ExpGol bit vectors are often much slower
than on BBC bit vectors [12].

3 Word-aligned hybrid scheme

Most of the known compression schemes are byte based,
that is, they access computer memory one byte at a time.
On modern computers, accessing one byte usually takes as
much time as accessing one word [22]. To take advantage
of this and to minimize the logical operation time, we de-
vised a compression scheme called the word-aligned hy-
brid (WAH) code. The main idea is to simplify the cod-
ing scheme so there are only two types of words in the
compressed data and to design an alignment requirement so
there is no need to extract individual bits or bytes during any
logical operation. We have previously considered a number
of word-based schemes and this is the most efficient one in
our tests [27].

The word-aligned hybrid (WAH) code is similar to BBC
in that it is a hybrid between the run-length encoding and
the literal scheme. Unlike BBC, WAH is much simpler and
it stores compressed data in words rather than in bytes. The
two types of words in WAH are literal words and fill words,



128 bits 1,20*0,3*1,79*0,25*1
31-bit groups 1,20*0,3*1,7*0 62*0 10*0,21*1 4*1
groups in hex 40000380 00000000 00000000 001FFFFF 0000000F
WAH (hex) 40000380 80000002 001FFFFF 0000000F

Figure 2. A WAH bit vector. Each WAH word (last row) represents a multiple of 31 bits from the bit
sequence, except the last word that represents the four leftover bits.

A 40000380 80000002 001FFFFF 0000000F
B C0000002 7C0001E0 3FE00000 00000003
C 40000380 80000003 00000003

Figure 3. A bitwise logical AND operation on WAH compressed bitmaps, C = A AND B.

where a literal word represents bitmap literally and a fill
word represents a fill. Each word in WAH can be interpreted
independently from others. In our implementation, we use
the most significant bit of a word to distinguish between a
literal word (0) and a fill word (1). This choice allows one
to easily distinguish a literal word from a fill word without
explicitly extracting the bit. The lower bits of a literal word
contain the bit values from the bitmap. The second most
significant bit of a fill word is the fill bit and the lower bits
store the fill length. The word-alignment requirement is that
fill lengths must be integer multiples of the number of bits
in a literal word. If a computer word is 32-bit long, a literal
word would represent 31 bits and the fill lengths must be
multiple of 31 bits. If a computer word has 64-bit long,
each literal word would store 63 bits from the bitmap and
each fill would have a multiple of 63 bits.

Figure 2 shows a WAH bit vector representing 128 bits.
In this example, we assume each computer word contains
32 bits. The second line in Figure 2 shows how the bitmap is
divided into 31-bit groups and the third line shows the hex-
adecimal representation of the groups. The last line shows
the values of the WAH words. The first three words are nor-
mal words, two literal words and one fill word. The fill word
80000002 indicates a 0-fill of two-word long (containing
62 consecutive zero bits). Note that the fill word stores the
fill length as two rather than 62. In other word, we repre-
sent the fill length as multiples of the literal word size. The
fourth word is the active word that stores the last few bits
that can not be stored in a normal word, and another word
(not shown) is needed to stores the number of useful bits in
the active word.

The logical operation functions are easy to implement
but are tedious to describe. To save space, we refer the inter-
ested reader to a technical report [27]. Here we only briefly
describe one example, see Figure 3. In this example, the
first operand of the logical operation is the one in Figure 2.

To perform a logical operation, we basically need to match
each group of 31 bits from both operands and generate the
groups for the result using the hardware support to perform
the operations between groups of 31 bits. Each column of
the table is reserved to represent one such group. A literal
word occupies the location for the group and a fill word is
given at the space reserved for the first group it represents.
The first 31-bit group of the result C is the same as that of A
because the corresponding group in B is part of a 1-fill. The
next three groups of C contain only zero bits. The active
words are always treated separated.

The logical operations can be directly performed on the
compressed bitmaps and the time needed by one such op-
eration on two operands is related to the sizes of the com-
pressed bitmaps. Let the compression ratio be the ratio of
size of a compressed bitmap and its uncompressed coun-
terpart. When the average compression ratio of the two
operands are less than 0.5, the logical operation time is ex-
pected to be proportional to the average compression ratio
[27].

Compared against BBC, the logical operations on WAH
compressed bitmaps should be more efficient mainly due to
three reasons.

1. The encoding scheme of WAH is much simpler than
BBC. WAH has only two kinds of words and one test
is sufficient to determine the type of any given word. In
contrast, our implementation of BBC has four different
types of runs, other implementations have even more
[12]. It may take up to three tests in order to decide the
run type of a header byte. After deciding the run type,
many clock cycles may still be needed to fully decode
a run to determine the fill length or the tail value.

2. During the logical operations, WAH always accesses
whole words, while BBC accesses bytes. On most
bitmaps, BBC needs more time to load its data from
the main memory to CPU registers than WAH.



3. BBC can encode shorter fills more compactly than
WAH, however, this comes at a cost. Each time BBC
encounters a short fill, say a fill with less than 8 bytes,
it starts a new run. WAH typically represent such a
short fill literally. It is much faster to operate on a
WAH literal word than on a BBC run.

4 Performance of the logical operations

In this section, we discuss the performance of the log-
ical operations. Ultimately we are interested in enhanc-
ing the speed of query processing. However, because log-
ical operations are the main operations on the bitmaps and
their performances are directly affected by the compression
schemes, we discuss the performances of the logical opera-
tions first.

The WAH compression scheme are compared against the
three schemes reviewed in Section 2. The tests are con-
ducted on three sets of data, a set of random bitmaps, a set
of bitmaps generated from a Markov process and a set of
bitmap indexes on some real application data. Each syn-
thetic bitmap has 100 million bits. The synthetic data are
controlled through two parameters, the bit density and the
clustering factor. In a bitmap, the bit density is the frac-
tion of bits that are one and the clustering factor is the aver-
age length of the 1-fills. The random bitmaps are generated
according to the bit density and the Markov process gen-
erates bitmaps with a specified bit density and clustering
factor. The goal of this test is to examine the performance
of the different compression schemes under various condi-
tions. However to limit the number of test cases, we re-
strict all synthetic bitmaps to have bit density no more than
1/2. Since all compression schemes can compress 0-fills
and 1-fills equally well, the performance on high bit density
bitmaps should be the same as on their complements. When
necessary to distinguish the two type of synthetic bitmaps,
we refer to them as the random bitmaps and the Markov
bitmaps according to how they are generated. The real ap-
plication is a high-energy physics experiment called STAR
[23, 24]. The data used in our tests can be viewed as one re-
lational table consisting of about 2.2 million tuples and 500
attributes. The bitmaps used in this test are bitmap indexes
on a set of 12 most frequently queried attributes.

We have conducted a number of tests on different ma-
chines and found that the relative performances among the
different compression schemes are independent of the spe-
cific machine architecture. This characteristic was also ob-
served in a different performance study [12]. The main rea-
son for this is that most of the clock cycles are consumed by
branching operations such as “if” tests and “loop condition”
tests. These operations only depend on the clock speed. For
this reason, we only report the timing results from a Sun En-
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Figure 4. CPU seconds needed to perform a
bitwise OR operation on two random bitmaps.

terprise 4503 that is based 400 MHz UltraSPARC II CPUs.
Because of space limitations, we only show performance

of the logical OR operations in the following discussions.
On the same machine, a logical AND operation typically
takes slightly less time than a logical OR operation on the
same bit vectors, and a logical XOR operation typically
takes slightly more time. In general, if WAH is X times
faster than BBC in performing a logical OR operation, the
same would also be true for the two other logical operations.

The most likely scenario of using these bit vectors in a
database system is to read a number of them from disks and
then perform bitwise logical operations on them. In most

3Information about the E450 is available at
http://www.sun.com/servers/workgroup/450.



cases, the bit vectors simply need to be read into memory
and stored in the corresponding in-memory data structures.
Only the gzip scheme needs a significant amount of CPU
cycles to decompress the data files into the literal represen-
tation before actually performing the logical operations. In
our tests involving gzip, only the operands of logical oper-
ations are compressed; the results are not. This is to save
time. Had we compressed the result as well, the opera-
tions would take several times longer than those reported
in this paper because the compression process is more time-
consuming [27]. We use the direct method for both BBC
and WAH. In other word, a logical operation directly op-
erates on two compressed operands and produces a com-
pressed result. It is one of the four strategies studied by
Johnson [12]. We have chosen the direct method because it
requires less memory and is often faster than the alternative
methods.

Figure 4 shows the time it takes to perform the bitwise
logical OR operations on the random bitmaps. Each data
point shows the time to perform a logical operation on two
bitmaps with similar bit densities. Figure 4(a) shows the
logical operation time and Figure 4(b) shows the total time
including the time to read the two bitmaps from files. In
most cases, the IO time is a relatively small portion of the
total time for BBC and WAH. Neglecting the IO time does
not significantly change the relative performance between
WAH and BBC. In an actual application, once the bitmaps
are read into memory, they are likely to be used more than
once. The average cost of a logical operation would be close
to what is shown in Figure 4(a). From now on when show-
ing the logical operation time, we will not include the IO
time.

Among the schemes shown, it is clear that WAH uses
much less time than either BBC or gzip. In all test cases,
the gzip scheme uses at least three times more time than the
literal scheme. In almost half of the test cases, BBC takes
more than ten times longer than WAH.

When the bit density is about 1/2, the random bitmaps
are not compressible by WAH. For convenience, we refer
to the bit vectors only literal words as the decompressed bit
vectors. Usually, each logical operation function takes two
compressed bit vectors and generates a compressed result,
but the functions that perform logical operations on decom-
pressed bit vectors always generate decompressed results.
It’s easy to see that the logical operations on decompressed
WAH bit vectors is nearly as fast as on the literal bit vec-
tors. Unless one explicitly decompress a BBC bit vector,
it is very unlikely to have a decompressed BBC bit vector.
Even with bit density of 1/2, a BBC bit vector still contains
a number of short fills. Even if we explicitly decompress the
bit vectors, operations on decompressed BBC bit vectors are
not as efficient as on literal bit vectors. In Figure 4, the line
for WAH falls on top of the one for the literal scheme at bit
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Figure 5. The sizes of the compressed bit vec-
tors. The symbols for the Markov bitmaps are
marked with their clustering factors.

density of 1/2 but the line for BBC only shows a slight dip.

In Figure 4 we see that when bit density is above 0.01,
WAH performs logical operations slower than the literal
scheme. Since on the uncompressed bitmaps WAH can
perform logical operations as well as the literal scheme,
we might store those dense bitmaps without compression
and expect the logical operations to be as fast as in the lit-
eral scheme. However, doing so significantly increases the
space requirement and it does not even guarantee the speed
of logical operation is always the fastest. This leads us to
take a more careful look at the compression effectiveness
and factors that determine the logical operation speed.



Figure 5 shows the sizes of the four types of bit vec-
tors. Each data point in this figure represents the average
size of a number of bitmaps with the same bit density and
clustering factor. As the bit density increases from 0.0001
to 0.5, the bit sequences become less compressible and it
takes more space to represent them. When the bit density is
0.0001, all four compression schemes use less than 1% of
the disk space required by the literal scheme. At a bit den-
sity of 0.5, the test bitmaps become incompressible and the
compression schemes all use slightly more space than the
literal scheme. In most cases, WAH uses more space than
the two byte based schemes, BBC and gzip. For bit density
between 0.001 and 0.01, WAH uses about 2.5 (� ���) times
the space as BBC bit vectors. In fact, in extreme cases,
WAH may use four times as much space as BBC. Fortu-
nately, these cases do not dominate the total space required
by a bitmap index. In a typical bitmap index, the set of
bitmaps contains some that are easy to compress and some
that are hard to compress, and the total size is dominated by
the hard to compress ones. Since most schemes use about
the same amount of space to store these hard to compress
ones, the differences in total sizes are usually much smaller
than the extreme cases. For example, on the set of STAR
data, the bitmap indexes compressed using WAH are about
60% bigger than those compressed using BBC, see Figure 7.
This is a fairly modest increase in space compared to the in-
crease in speed.

To verify that the logical operation time is proportional
to the sizes of the operands, we plotted the timing results
of the two sets of synthetic bitmaps together in Figure 6(a)
and the results on the STAR bitmaps in Figure 6(b). In both
cases, the compression ratio is used as the horizontal axes.
Since in each plot, the bitmaps are of the same length, the
sizes are directly proportional to the compression ratios. In
each plot, a symbol represents the average time of logical
operations on bitmaps with the same size. The dashed and
dotted lines are produced from linear regressions. Most of
the data points near the center of the graphs are close to the
regression lines. Those logical operations involving bit vec-
tors with high compression ratios are nearly constant. For
very small bit vectors, where the logical operation time is
measured to be a few microseconds, the logical operations
time deviates from the linear relation because of the over-
heads such as the timing overhead, function call overhead
and other lower order terms in the complexity expression.
The regression lines for WAH and BBC are about a factor
of ten apart in both plots.

If we sum up the execution time of all logical opera-
tions performed on the STAR bitmaps for each compres-
sion scheme, the total time for BBC is about 12 times that
of WAH. Much of this difference can be attributed to rea-
son 3 discussed in the previous section. There are a number
of bitmaps that can not be compressed by WAH but can
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Figure 6. Logical operation time is almost pro-
portional to compression ratio. The STAR
bitmap indexes are on the 12 most queried
attributes.

be compressed by BBC. When operating on these bitmaps,
WAH is nearly 100 times faster than BBC. On very sparse
bit vectors, WAH is about four to five times faster than BBC.

Compared to the literal scheme, BBC is faster in a frac-
tion of the test cases, however, WAH is faster in more than
60% of the test cases. In the worst case, BBC can be nearly
100 times slower than the literal scheme, but WAH is only 6
times slower. It might be desirable to use the literal scheme
in some cases. To reduce the complexity of the software,
we suggest one to use WAH but only use the literal words.
Regarding whether to store random bitmaps with bit density
greater than 0.01 without compression, we recommend that



the bitmaps be compressed.

5 WAH improves bitmap index effectiveness

Our goal was to develop a compression scheme to reduce
the overall query processing time. To see whether we have
actually achieved this goal, we measure the query process-
ing time of partial range queries on a set of real application
data from STAR. In the previous section, we demonstrated
that WAH can perform logical operations much faster than
BBC, but WAH also uses more space than BBC. Since
query processing involves many operations other than bit-
wise logical operation, e.g., I/O operation, query parsing
and locking, we need to make sure the decrease in logi-
cal operation time is not offset by the increase in I/O time
caused by the increase index size. In addition to test-
ing the performance of our own implementations of com-
pressed and uncompressed bitmap indexes, we also tested
ORACLE’s BBC compressed bitmap index and the projec-
tion scan. The projection scan is a scheme of performing
comparisons on the attribute values where each attribute is
stored separately. It is also know as the projection index
[20].

Our goal is to demonstrate that WAH compression can
improve the performance of the bitmap indexing scheme.
To do this, we perform two sets of tests. The first one
is on some low cardinality attributes and the second is on
some high cardinality attributes. The bitmap index is usu-
ally thought to be efficient for low cardinality attributes. In
this case, we show that the WAH compressed indexes are
not only smaller than the uncompressed ones but are also
more efficient in answering range queries. When the car-
dinalities are high, it is impractical to generate the uncom-
pressed indexes. In this case, we show that the WAH com-
pressed indexes are still of reasonable sizes and can process
range queries faster than the BBC compressed indexes and
the projection index. The high cardinality case are of par-
ticular interests to us because the most frequently queried
attributes of the STAR data have high cardinality.

In our tests, the low cardinality attributes are the 12 at-
tributes with the lowest cardinalities from the STAR data,
and the high cardinality attributes are the 12 attributes
that are most likely to be queried by physicists. All low
cardinality attributes are four-byte integers; the frequently
queried attributes are mostly four-byte integers and floating-
point values except one attribute is eight-byte floating-point
value. The total size for the first set is about 104 MB and
the second one is 113 MB.

Figure 7 shows the total sizes of the bitmap indexes.
Four columns are displayed in each table. Columns
marked ‘ours’ are our own implementation of the com-
pressed bitmap indexes based on WAH and BBC compres-
sion schemes. The columns marked ‘ORACLE’ show the

ours ORACLE
N WAH BBC BBC B-tree
12 low cardinality attributes

312 7 4 7 370
12 most frequently queried attributes

2,673,646 186 117 111 408

Figure 7. Sizes (MB) of the bitmap indexes.
“N” indicates the number of bitmaps in the
bitmap indexes.

sizes of the two kinds of indexes available, the bitmap in-
dex and the B-tree index. The bitmap index is marked
with the compression scheme ‘BBC’. Conceptually, OR-
ACLE’s BBC compressed index is equivalent to our BBC
compressed bitmap index.

In the first data set, there are a total of 312 distinct values,
i.e., there are 312 bitmaps in all bitmap indexes. Without
compression, 312 bitmaps use about 84 MB. All three ver-
sions of the compressed bitmap indexes are less than 10% of
this size and are less than 7% of the data size. In the second
data set, there are nearly 2.7 million distinct values. With-
out compression, the bitmap index size would be more than
720 GB. Both BBC and WAH are very effective in reducing
the sizes of the bitmap indexes because the majority of the
bitmaps are very sparse. For both datasets, the compressed
bitmap indexes are significantly smaller than the B-tree in-
dexes.

Figure 8 shows the average query processing time of
three compressed bitmap indexes. In this figure, the perfor-
mance of ORACLE’s BBC compressed indexes is marked
as ORACLE. The partial range queries are generated by ran-
domly selecting two attributes and constructing a query with
the specified query box size. The query box is defined to
be the ratio of the volume of the hypercube formed by the
ranges and the total volume of the attributes [17]. For exam-
ple, let the values of Energy be in the range of 0 to 30 GeV
and NumParticles in the range of 1 to 15, the query box
size of “Energy > 15 GeV and 7 <= NumParti-
cles < 13” is ����� � ���� � ����. Given a query
box size, the shape of the query box is allowed to vary. For
simplicity, we only use conjunctive queries; that is the con-
ditions on each attribute are joined together using the AND
operator. Typically, as the query box size increases and the
number of attributes increases, it takes more time to process
the query.

Since the projection scan, “p scan” in Figure 8, only ac-
cess the attributes involved in a query, it is quite faster [20].
For example, on our test machine, ORACLE takes about 6.5
seconds to scan a table with 12 attributes while the projec-
tion scan only need 0.56 (� �����	) seconds. Had we ac-
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Figure 8. The average query processing time
of random range queries on the STAR data.
Each query contains range conditions on two
attributes.

tually stored all 500 attributes in the table, ORACLE would
take nearly 5 minutes to perform its scan operation. We
also take full advantage of the fast bitmap data structure to
store the intermediate results. When evaluating conjunctive
queries, the result of the left side can be used as the mask
to limit the amount work needed to evaluate the right side.
This is an efficient strategy since the projection scan time is
always close to 0.56 seconds in Figure 8.

Our tests indicate that the bitmap indexes are efficient
for both low cardinality attributes and high cardinality at-
tributes. On the low cardinality attributes, WAH com-
pressed indexes are not only smaller but are also faster.
In contrast, BBC compressed indexes are slower than the

uncompressed ones. On high cardinality attributes, BBC
compressed indexes require about as much time as the pro-
jection indexes, but WAH compressed indexes are always
faster. The relative differences between WAH compressed
indexes and BBC compressed indexes are larger on high
cardinality attributes than on lower cardinality attributes.
On high cardinality attributes, the average query processing
time using the ORACLE bitmap indexes is nearly 10 times
longer than using the WAH compressed bitmap indexes.

6 Summary

This research was motivated by the need to improve
the query response time of a scientific data management
project. Based on the characteristics of the dataset and
queries, the bitmap indexing strategy is a good choice.
However because most of the commonly queried attributes
have a large number of distinct values, the basic bitmap
index takes too much space and query response time is
too long. This paper describes a compression scheme for
addressing these performance issues. The best existing
bitmap compression schemes are byte-aligned. In this pa-
per, we presented a word-aligned scheme WAH, that is not
only much simpler but is also very CPU-friendly. This en-
sures that the operations on compressed bitmaps can be per-
formed efficiently. Tests on a set of real application data
show that it is 12 times as fast as BBC while using only
60% more space.

Since the total query processing time includes both I/O
time and logical operation time, we need to verify that the
decrease in logical operation time is not offset by the in-
crease in I/O time due to the 60% increase in index size. Our
tests on a set of real application data show that WAH com-
pressed indexes can indeed reduce the overall query pro-
cessing time. Compared to uncompressed indexes, WAH
compressed indexes are not only smaller but also take less
time to answer partial range queries. Compared to the in-
dexes compressed with BBC, the WAH compressed indexes
can be 10 times faster.
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