
E�cient Techniques for Range Search Queries on

Earth Science Data

�Preliminary Report�

Qingmin Shi and Joseph F� JaJa
Institute for Advanced Computer Studies�

Department of Electrical and Computer Engineering�
University of Maryland� College Park� MD ������ USA

fqshi�joseph	umiacs�umd�edug

February ��� ����

Abstract

We consider the problem of organizing large scale earth science raster data to ef�
�ciently handle queries for identifying regions whose parameters fall within certain
range values speci�ed by the queries� This problem seems to be critical to enabling
basic data mining tasks such as determining associations between physical phenomena
and spatial factors� detecting changes and trends� and content based retrieval� We
assume that the input is too large to �t in internal memory and hence focus on data
structures and algorithms that minimize the I�O bounds� A new data structure� called
a Tree�of�Regions �ToR�� is introduced and involves a combination of an R�tree and
e�cient representation of regions� It is shown that such a data structure enables the
handling of range queries in an optimal I�O time� under certain reasonable assump�
tions� Experimental results for a variety of multi�valued earth science data illustrate
the fast execution times of a wide range of queries� as predicted by our theoretical
analysis�

� Introduction

Considerable amounts of spatio�temporal data sets are generated on a daily basis with the
amount of remotely sensed data alone expected to exceed several terabytes per day within the
next few years� The sources of geospatial data are quite diverse and include satellite imagery�
geographical information systems� census data� and environmental assessment and planning�
These data sets o�er unprecedented opportunities for exploring associations between envi�
ronmental phenomena and spatial factors� building environmental models� detecting changes
and �nding interesting spatio�temporal patterns and trends� In spite of a signi�cant progress
in the development of geospatial data mining techniques� the exploration of large amounts of

�



geospatial data by content remains quite di�cult� The NASA supported Earth Science In�
formation Partnership �ESIP	 Federation� that includes all the major data centers for earth
sciences� developed a list of major scenarios for which content�based retrieval techniques will
be critical 
��� Almost all of these scenarios involve the fundamental problem of determining
spatio�temporal regions over which a certain number of parameter values satisfy certain con�
straints� for example the values fall within certain ranges or increase within certain bounds
over a time period� This paper develops e�cient techniques for addressing the core problem
of determining regions within a large scale raster geospatial data set whose parameters val�
ues fall within speci�ed ranges� A forthcoming paper will show how these techniques can be
extended to handle a time series of such data� The techniques developed here have a strong
theoretical foundation and are coupled with an extensive set of experimental results that
illustrate the e�ciency of these techniques�

Brie�y our main contributions are�

� The development of an e�cient representation of raster data sets consisting of a com�
bination of an R�tree built around the parameter values and a decomposition of the
spatial�space into regions described by their boundaries� The overall complexity to
build this structure is dominated by two external sorting steps�

� The querying over arbitrary value ranges of the parameters can be done very e�ciently
in time that is approximately proportional to the time it takes to read the output from
external memory�

� Extensive experimental tests on remotely sensed data con�rmed the e�ciency of our
representation in terms of fast execution times of a wide variety of random queries�

The remainder of this paper is organized as follows� In Section �� we de�ne the problem
and the computational model used for analyzing our algorithms� The related work is dis�
cussed in Section �� while our data organization structure is described in Section �� Sections
� and � present the algorithms for building our structure and handling general queries� The
experimental evaluation of our methods is summarized in Section ��

� Problem De�nition and Computational Model

We assume that we are given a gridG of sizeNx�Ny representing a spatial region decomposed

into N � NxNy cells� A k�tuple �f
�i�j�
� � f

�i�j�
� � � � � � f

�i�j�
k 	 is associated with each cell �i� j	 in G

such that each parameter f �i�j�
l is a certain numerical attribute corresponding to cell �i� j	�

We assume that G is too large to �t in internal memory and the result of a query may or
may not �t in memory� The problem is to develop a representation of this grid in such a
way that the following query can be answered very quickly �in time proportional to reading
the output from external memory	�

Determine all the regions in which the parameters� values fall within speci�ed
ranges� al � fl � bl� for all � � l � k �a query window��

�



A region is de�ned as the maximal set of connected cells where the parameter values
satisfy the constraints in each cell� The output to our query consists of a list of all the cells
in these regions such that all the cells in the same region are assigned the same label� Our
techniques will carry out to more robust de�nitions of regions such as density�base regions
in 
����

Solving the above problem involves e�cient identi�cation of the cells whose parameters
values fall within the speci�ed ranges and fast groupings of cells into connected regions�
The main focus here is on minimizing the query time� In addition� the storage of the new
structure is also important since the size of the raw data is assumed to be large� In general�
we aim to achieve the following three properties�

� The size of the new representation should be comparable to the raw data�

� The construction time of the new representation should be e�cient in the sense that
the input data should only be scanned a few times�

� Queries should be answered very quickly in time proportional to the output size�

To analyze our algorithms� we will use the standard two�level I�O model 
�� de�ned by
the following parameters�

N � the size of the input�

M � the internal memory size� and

B� the size of a disk block�

We assume that B� � M � N � An I�O operation is de�ned as the transfer of one block
of contiguously stored data between disk and internal memory� Hence scanning an input of
size N stored contiguously on a disk takes O�N�B	 I�O operations in this model�

� Related Work

Amajor component of our problem requires the handling of multidimensional range queries of
point data� A large number of external data structures and algorithms have been proposed
to deal with this problem� In contrast to the two�dimensional case where solutions that
provide provable good performance exist �see for example 
��� ��� ��	� most data structures
for high dimensional data are aimed at achieving good practical performance �A recent
survey can be found in 
���	� Among them� the R�tree 
��� has been widely accepted as
an e�cient external tree structure for handling multidimensional data sets� Many dynamic
R�tree variations have appeared in the literature �see for example 
��� �� ��� ��	 and they
di�er mainly in the heuristics used to split or merge nodes when node over�ows or under�ows
occur� More relevant to the work reported here is the static case where the entire data set
is known beforehand� Techniques that deal with this type of data are sometimes called tree�
packing or bulk�loading� Various tree packing techniques aimed at improving node utilization
and minimizing the minimum bounding rectangles �MBRs� of nodes have been introduced�
They either sort data based on some spatial orders and recursively pack them into tree nodes

�



level�by�level from bottom up �such as in 
��� ��� ���	� or recursively partition data using
various heuristics �such as in 
��� ��	� Techniques for e�ciently constructing dynamic R�trees
for static data sets have also been explored� They view the construction of an R�tree for
a static data set as a batched insertion problem and use lazy bu�ering strategy to achieve
optimal I�O complexity 
��� ���

All the above techniques report the individual points that satisfy the range query� For
raster data� one needs to �nd regions for which the attributes fall within the query window�
Very few attempts have been made to address this problem� Most past work revolves around
organizing the data objects hierarchically according to their spatial locations and summariz�
ing their parameter values at di�erent levels� STING 
��� stores statistical information about
the types and parameters of distributions for subsets of data in a hierarchical grid structure�
This information can be used during a query to identify relevant cells that are later clustered
using for example density based methods 
���� Yang et al� 
��� addressed the same problem as
in this paper but for a single parameter� and proposed a two level hierarchical structure that
uses histograms to summarize the distributions of data values� The histograms of the high
level cells are then clustered� The representative histogram summarized from histograms
in the same cluster is used to decide whether that cluster of cells should be checked for a
given query� These previous methods provide approximate answers without any guaranteed
accuracy�

In the following three sections� we will discuss how our proposed data structure is used
to solve this problem�

� Data Structure

The proposed data structure� called the Tree�of�Regions �ToR	 is an extension of the R�tree
structure� although the same technique can be used to extend other tree structures� Each
node of the R�tree de�nes a k�dimensional value range� For each node� we associate a set of
regions such that the cells in each region have attributes that fall within the corresponding
value range� Each leaf node of a ToR corresponds to a unique k�tuple from G and contains
a pointer to the regions whose parameter values are equal to the k�tuple� Each internal
node occupies an entire block and has O�B	 children� It contains a minimum bounding
rectangle �MBR�� which is the tightest bounding rectangle of the union of the minimum
bounding rectangles of its children� For leaf nodes� MBRs reduce to k�tuples� It is clear
that the spatial region induced by the MBR of an internal node is the union of the spatial
regions induced by its children� Figure � shows a ToR with B � � for a data set with two
parameters� The top part of the �gure illustrates the tree structure� Distinct k�tuples and
their corresponding leaf nodes are depicted as dots� Internal nodes are represented by their
MBRs shown as rectangles� The bottom part consists of four spatial regions R�a	� R�b	�
R�c	� and R�d	 that are associated with leaf nodes a� b� c� and internal node d� respectively�

There are two bene�ts of storing regions at higher level nodes� First� during a range query�
if the MBR of a node is covered entirely by the query window� the regions corresponding
to that node can be reported immediately� with no need to explore the descendants of that
node� Second� higher level nodes tend to have larger regions� By pre�storing these larger
regions� we can compute the connected regions much more e�ciently�

�



c
b

R(b)

d

a

an R-tree

MBRs of

regions
associated
with some
R-tree nodes

R(d)
R(c)

R(a)

Figure �� An example of the ToR

These potential bene�ts come at a storage cost as cells are duplicated along the path
from the root to the leaf nodes� A light version of the ToR that associates regions only with
the leaf nodes is another possible choice� However� it turns out that the query performance
of the light ToR is much inferior without introducing any signi�cant space savings� Related
experimental results will be reported in the full paper�

A region associated with a ToR node is represented as a list of non�overlapping horizontal
segments� each consisting of a maximal set of horizontally connected cells� Each segment
is stored as a triple �y� x left� x right	� where x left and x right are the x�coordinates of
its leftmost and rightmost cells and y is its y�coordinate� Segments in the list are sorted
using y as the primary key and x left as the secondary key� Using segments to represent
regions have several bene�ts� First� this representation maintains all boundary information
of a region� Second� the amount of storage required is proportional to the perimeter of the
region� which is much smaller than the area� Third� merging regions reduces to merging
segments� which can be done quite e�ciently as we will show soon� Figure � shows the
merging of two regions represented using segment lists�

merge

Figure �� Merge of two regions represented by segment lists

Our overall data structure consists of three �les� the segment �le� the leaf �le� and the
tree �le� Each �le contains elements of the same size� The segment �le contains the set of
segment lists corresponding to the tree nodes� The list of segments corresponding to the
same node are always stored contiguously on disk� The leaf �le consists of the leaf nodes�
The tree �le is used to store the internal nodes� The reason we separate the leaf nodes from
the internal nodes is that they have di�erent structures� A leaf node does not contain the
array of child pointers as does an internal node� Since we target our solution for very large
data sets� we do not make the assumption that either of the three �les will �t entirely in
memory�

�



� Tree Construction

The construction of a ToR consists of three steps�

�� The creation of the leaf nodes� where each leaf node corresponds to a distinct k�tuple
of attribute values� This step includes the creation of all segments corresponding to
the leaf nodes�

�� The creation of the internal nodes� Exactly how the internal nodes are constructed
depends on the type of R�tree used� In this paper� we will use the packed Hilbert
R�tree 
�����

�� The determination of the segment lists corresponding to the internal nodes�

��� Construction of Leaf Nodes

The objective of the �rst step is to �nd distinct k�tuples and their corresponding segment
lists� These k�tuples form the leaf nodes of the tree structure� We assume that the raw
data consists of a set of records� one for each cell� The record for cell �i� j	 is in the form of

�f
�i�j�
� � f

�i�j�
� � � � � � f

�i�j�
k � j� i	� �Without causing confusion� we will call such record cell as well�	

Reformatting is needed if the raw data are stored in a di�erent format� Finding distinct
k�tuples is achieved by sorting all cells using the key sequence �f�� f�� � � � � fk� j� i	� Since
we are making the assumption that the data set resides on a disk� an external merge sort
algorithm 
��� is used� This sorting guarantees that cells having the same values are stored
contiguously and� furthermore� horizontally adjacent cells that have the same values are also
stored contiguously� This allows us to use a single scan through the sorted cells to create both
the leaf nodes and the associated segment lists� Cells corresponding to the same k�tuple are
merged into horizontal segments which are then stored contiguously in a segment �le� Leaf
nodes are created for distinct k�tuples in the same sorted order and stored in a leaf �le� Each
leaf node contains a k�tuple� an integer indicating the number of segments in the associated
segment list� and a pointer to the beginning of that list in the segment �le� Clearly� this step
involves the external sorting of N cells whose I�O complexity is O�N�B logM�BN�B	�

��� Construction of Internal Nodes

The Hilbert R�tree packing algorithm packs as many children into a parent node as possible
while trying to make sure that children of the same parent are spatially close by using the
Hilbert �space��lling� curve� The tree is constructed from bottom up� N� leaf nodes �at
level �	 are �rst sorted according to their ascending Hilbert values� The �rst B leaf nodes in
the sorted list are removed from the list and grouped under the same parent node at level ��

�There are three reasons for choosing the Hilbert R�tree� First� it is has been widely regarded as very
competitive among all the R�tree variations ����� Second� constructing such a tree structure can be done
very e�ciently� since it involves only one sort of the data set� Third� it has served as a base of performance
comparison for many recently proposed data structures ��	� 
� ��� Note that the Hilbert R�tree can be
replaced by any other static R�tree without a�ecting the remaining tree construction algorithm and the
query algorithm�

�



The next B leaf nodes are again chosen and put under another parent node� This continues
until there are no leaf nodes left� After all internal nodes at level � are created� they are
grouped similarly into nodes at level �� The only di�erence is that� the internal nodes are
no longer sorted based on their Hilbert values� Instead� they are grouped according to the
order in which they are created� Tree nodes thus are created level by level until there is only
one node that becomes the root of the R�tree�

The complexity of this step is dominated by the Hilbert sorting of the leaf nodes� which
requires O�N��B logM�BN��B	 I�O operations� N� normally is much smaller than N �

��� Creation of Internal Segment Lists

The creation of the segment lists for internal nodes is done by recursivelymerging the segment
lists of their children� starting from the leaf level�

Note that the segments in each list have been sorted in increasing order using keys y
and x left� and stored contiguously on the disk� Merging horizontal segments can be done
in a similar way as the merging phase of the external sorting� while combining horizontally
adjacent segments� Segments in a list are always brought into memory in blocks� A bu�er of
size B is allocated for each list� �Note that we have at most B lists per node and B� � M �	
The smallest segment among the �rst segments of all the lists is repeatedly removed and
added to the output segment list until all lists become empty� During this process� whenever
a bu�er is empty� another block of segments in the corresponding list is retrieved from the
disk� The output segments are also bu�ered and added to the segment �le in blocks�

Suppose the total number of segments associated with the leaf nodes is S� then the
creation of the segment lists for the internal nodes just above the leaf nodes requires O�S�B	
I�O operations� As a result� the I�O complexity of the entire process of creating internal
segment lists could be O�S�B logBN��B	� which may seem to be worse than the external
sorting� However� in practice both S and N� are much smaller that N � Furthermore� the
number of segments often decreases rapidly as the tree level gets higher� As a result� this
step is normally dominated by the previous two steps�

� Range Queries

Given a query window w� an allocation node in the ToR is a node whose MBR is covered
entirely by w and whose parent is not an allocation node� Figure � shows the allocation
nodes� depicted as dashed rectangles for internal nodes and gray dots for leaf nodes� for the
dotted window describing a range query�

Answering a range query consists of determining the set of allocation nodes followed by
merging the segment lists of these allocation nodes horizontally� Finally� this list of segments
is merged vertically to create the output regions�

��� Identifying Allocation Nodes

The search for the allocation nodes starts from the root with the set of allocation nodes
initialized as empty� If a node has no intersection with w� then no action is taken� If a

�



query window

Figure �� Allocation nodes

node is fully covered by w� then it is identi�ed as an allocation node and added to the set
of allocation nodes� Otherwise� if the node intersects w� the same procedure is repeated for
each of its children�

Since in practice� many of the cells will share the same values� it is reasonable to assume
that the segment list of each of the leaf nodes contains at least B logB N� cells� Under this
assumption� the total number C of cells in the output regions is at least fB logB N�� where
f is the number of allocation nodes� Therefore� f � C��B logB N�	� Clearly� only allocation
nodes and their ancestors need to be accessed in this step� Since the height of the R�tree is
O�logBN�	� the total number of nodes accessed is O�f logBN�	 � O�C�B	�

��� Merging Segments Horizontally

After the allocation nodes are determined� their associated segments are merged so that
horizontally connected segments are combined into a single segment� A segment list merging
algorithm similar to the one used in the tree construction can be used here� There is one
di�erence� however� Since the number of allocation nodes f could be larger than M�B�
multiple iterations might be needed as follows� In each iteration� every M�B segment lists
are merged into a single list� There will be O�logM�B f	 iterations� Let F be the total number
of segments associated with the allocation nodes� The I�O complexity for each iteration is
O�F�B	� The total complexity for the horizontal merge is then O�F�B logM�B f	� We denote
the list of segments after the horizontal merge as L and its cardinality as T �

��� Merging Segments Vertically

To identify the connected regions� we need to assign a label to each output cell such that
cells from di�erent connected regions have di�erent labels� Using the sorted list L� �nding
connected regions can be done very e�ciently� in fact in O�T�B	 I�O time�

Note that horizontally connected output segments have already been merged in the hor�
izontal merge phase� What remains to be done is to merge the segments vertically to create
regions�

We �rst use O�T�B	 I�O operations to scan L once to partition it into Ty sublists� Ty
being the number of di�erent y�coordinates of these segments� Each sublist contains segments
with the same y�coordinate� This is possible since segments in L have already been sorted
using their y�coordinates as the primary keys�

�



If L �ts in internal memory� then we can apply an internal merging algorithm as follows�
First� a graph H is created� whose vertices correspond to the segments in L� If two segments
are adjacent to each other vertically� their corresponding vertices are connected by an edge
in H� H is represented as a set of adjacency lists� one for each vertex� Second� a connected
components algorithm based on depth��rst search is used to �nd the regions�

Each sublist with y�coordinate y has one sublist above �below	 it if there exists a sublist
with the y�coordinate equal to y � � �y � �	� To construct the adjacency list for the �rst
segment s in a sublist Ls� we scan the sublists above and below until all segments vertically
adjacent to s are found and the �rst such segments are recorded in ss adjacency list� Then
we continue to scan the same two sublists for the next segment in Ls and keep doing so until
the adjacency lists for all the segments in Ls are created� Figures ��a	 and �b	 give a simple
example of a segment list L consisting of �ve segments and its corresponding adjacency list�
Given a segment� its adjacent segments can be found by scanning the corresponding above
and below sublists� starting from the segments recorded in its adjacency list�

(0,2)

(1,0)

(2,1)

(3,0)

(5,2)

(6,1)

(7,2)

(8,0)

(9,2)

(4,0)

�a	 A list of sorted segments

segment above below
� ��� �� �	 NULL �
� ��� �� �	 NULL �
� ��� �� �	 � �
� ��� �� �	 � NULL
� ��� �� �	 NULL NULL

�b	 The corresponding adjacency lists

Figure �� Adjacency lists

If L does not �t in internal memory� we determine the connected regions as follows�
We read as many sublists as the internal memory size allows� starting from the one with
the smallest y value� We call this set of sublists a stripe� The internal merging algorithm
described above is then applied to label all the segments in that stripe� These labeled
segments are then written back to disk� Next� we again read as many sublists as possible�
but starting from the lowest sublist in the last stripe �we call this sublist the lower boundary
of the last stripe and the upper boundary of the current stripe	� Since the segments in that
boundary �the boundary segments	 have already been labeled� their labels are propagated
to other segments connected to them� New labels will be assigned to segments that do not
connect with any of these boundary segments� If� during the labeling process� we �nd out
that two segments from the upper boundary with di�erent labels are actually connected then
the label of one of them is changed� This change is kept in an label�update table �LUT� for
that boundary� LUT is also written to disk after the current stripe is processed� The same

�



process continues as we read the sublists stripe by stripe with two contiguous stripes sharing
a boundary until all segments are labeled�

After the downward labeling process� an upward updating operation is performed as
follows� We repeatedly read a stripe and the LUTs of its upper and lower boundaries�
starting from the stripe that is just above the lowest stripe� For each stripe� we update the
labels of the segments in it using the label changes maintained in the lower LUT� These
changes are also used to update the upper LUT� This process continues until the labels of
the segments in the �rst stripe are updated� Details will appear in the full paper�

Under the reasonable assumption that the size of each of the Ty sublists is less than
O�M	� we can make sure that a stripe and its upper and lower LUTs can be loaded into
memory simultaneously� thus guaranteeing that the operations described above are possible�
It is obvious that both the downward labeling and the upward updating processes require
O�T�B	 I�Os for reading and writing the segments� The additional cost for reading and
writing the LUTs is clearly less than O�T�B	 because each LUT is only accessed O��	 times
and the total size of the LUTs is less than the total size of the boundaries� which is less than
T �

	 Experimental Results

We tested our new approach on a number of raster data sets generated from satellite data�
We describe here two types� a global coarse resolution and a �ne resolution� The �rst type
consists of the standard AVHRR �Advanced Very High Resolution Radiometers	 data prod�
ucts that form a ��degree by ��degree of global coverage generated from �� day composites�
Geophysical parameters contained in the data set include� Normalized Di�erence Vegetation
Index �NDVI	� two re�ectance channels �channels � and �	� three brightness temperature
channels �channels �� �� and �	� and date and hour of observation 
��� NDVI is the ratio of
the contrast between the response of the two re�ectance channels� We used three of these
parameters �NDVI� channel � and channel �	� The total number of cells in each AVHRR
data set is ��K� The second type is the TM �Thematic Mapping	 data 
��� Each TM data
is a �����by����� grid representing a region with �� meter resolution� Each cell has seven
parameters �bands	� of which we used �ve �bands �� �� �� �� and �	 on a ���� � ���� grid�
A total of �� data sets are used in our experiments� �� of them are AVHRR global ��degree
by ��degree data and the remaining �� are the TM data�

The tree construction and query answering algorithms were coded in C� All the experi�
ments were conducted on a Pentium III ���Mz machine with �GB Memory running Linux
������� The page size B was chosen to be ���� bytes�

��� Sample Query Results

Figures � and � give two sample query results� Figure ��a	 is the global ��degree by ��degree
NDVI map� Figure ��b	 shows the areas with high temperature and high NDVI values� which
approximately correspond to the rain forests and the wooded grasslands that mainly locate
in Central America� Central Africa� South Asia� and the east coast of Australia� Di�erent
colors are used to denote di�erent connected regions� Figure ��a	 is band � for part of a TM

��



scene in Columbia� Figure ��b	 shows the query result that largely corresponds to nonforests�
which typically have high values in bands � and ��

�a	 NDVI values� ���day composite �b	 regions where NDVI � ��� and
Jan� ��� ���� channel � brightness temperature

� ����� Kelvin

Figure �� Sample query results �AVHRR	

�a	 Band �� Part of Columbia �Path�Row� ����	 �b	 regions where
Oct ��� ���� band � � �� and band � � ��

Figure �� Sample query results �TM	

��� Query Performance

We will �rst examine the overall query performance and then focus on the main components
of the query algorithm� We will also compare the number of output segments and output
cells to demonstrate the importance of representing regions using segment lists�

For each ToR� we generated query windows of � di�erent sizes ranging from �� to ��� of
the size of the MBR of the root node� For each window size� �� query windows were randomly

��



and uniformly generated within the root MBR� All performance numbers are averaged over
these queries� We will report the experimental results for the TM data� which is much larger
than the AVHRR data�

Figure � shows the overall query execution time as contributed by the three main steps�
We can see that the amount of time it takes to identify the allocation nodes is very small
comparing to the horizontal and vertical segment merge times� The horizontal merge step
takes up most of the execution time� while the vertical merge step was done much faster�
Overall� it can be seen that the queries are handled extremely fast� within � seconds for the
TM data even for queries with large windows� Furthermore� the query time is proportional
to the output size as had been indicated by our earlier analysis�

Figure �� Overall query performance

�a	 execution time �b	 I�O complexity

Figure �� Complexity of Horizontal Merge

Figures ��a	 and �b	 show the comparison of the theoretical bounds and the observed
bounds in terms of execution time and number I�O operations� The X�axis represents the
theoretical complexity F�B logM�B f � where f is the number of allocation nodes and F
is the number of segments associated with them� Since B and M do not change in our
experiments� this theoretical bound di�ers from F log� f by only a constant� Thus� using
the latter will not a�ect the shape of the curves� These two �gures demonstrate that our
experimental results and the theoretical results are quite consistent� The performance of the

��



�a	 execution time �b	 I�O complexity

Figure �� Complexity of Vertical Merge

�a	 AVHRR data �b	 TM data

Figure ��� Number of output segments v�s� number of output cells

vertical segment merge is shown in Figure �� The results are consistent with our theoretical
complexity analysis as well�

Finally� we compare the number of output cells and output segments to demonstrate the
e�ectiveness of the segment representation of output regions� Figure �� shows the average
number of output segments and output cells for both AVHRR and TM data� Note that while
the number of output cells increases quite fast as the size of the query window increases� the
number of output segments increases very slowly in both cases� This has enabled the various
steps in our query answering algorithm to be carried out quite fast�

References


�� Landsat thematic mapper data� http���edc�usgs�gov�glis�hyper�guide�landsat tm�


�� Goddard DAAC NOAA�NASA Path�nder AVHRR Land �PAL	�
http���daac�gsfc�nasa�gov�REFERENCE DOCS�dataset references�pal�
summary�html� �����


�� Content�based search and data mining� http���www�esipfed�net�clusters�content based�
sci scen�html� �����


�� A� Aggarwal and J� S� Vitter� The input�output complexity of sorting and related
problems� Communications of the ACM� ����	����������� Sept� �����

��




�� L� Arge� K� Hinrichs� J� Vahrenhold� and J� S� Vitter� E�cient bulk operations on
dynamic R�trees� In Proceedings of the 	st Workshop on Algorithm Engineering and
Experimentation� pages �������� Baltimore� MD� Jan� �����


�� L� Arge� V� Samoladas� and J� S� Vitter� On two�dimensional indexability and opti�
mal range search indexing� In Proceedings of the Eighteenth ACM SIGACT�SIGMOD�
SIGART Symposium on Principles of Database Systems� pages �������� Philadelphia�
PA� May �����


�� N� Beckmann� H��P� Kriegel� R� Schneider� and B� Seeger� The R �tree� An e�cient
and robust access method for points and rectangles� In H� Garcia�Molina and H� V�
Jagadish� editors� Proceedings of the 	

� ACM SIGMOD International Conference on
Management of Data� pages �������� Atlantic City� NJ� May �����


�� S� Berchtold� C� B!ohm� and H��P� Kriegel� Improving the query performance of high�
dimensional index structures by bulk�load operations� In Proc� �th Int� Conf� Extending
Database Technology� EDBT� pages �������� Mar� �����


�� S� Berchtold� D� A� Keim� and H��P� Kriegel� The X�tree � An index structure for high�
dimensional data� In VLDB�
�� Proceedings of nd International Conference on Very
Large Data Bases� pages ������ Mumbai �Bombay	� India� Sept� �����


��� J� V� den Bercken� B� Seeger� and P� Widmayer� A generic approach to bulk loading
multidimensional index structures� In VLDB�
�� Proceedings of �rd International Con�
ference on Very Large Data Bases� August ��
� 	

�� Athens� Greece� pages ��������
�����


��� M� Ester� H��P� Kriegel� J� Sander� and X� Xu� A density�based algorithm for dis�
covering clusters in large spatial databases with noise� In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining �KDD�
��� pages
�������� Portland� OR� Aug� �����


��� V� Gaede and O� G!unther� Multidimensional access methods� ACM Computing Surveys�
����	��������� �����


��� A� Guttman� R�trees� A dynamic index structure for spatial searching� In Proceedings
of the ACM SIGMOD International Conference on Management of Data� pages ������
Boston� MA� June �����


��� I� Kamel and C� Faloutsos� On packing R�trees� In In Proceedings of the Second In�
ternational Conference on Information and Knowledge Management� pages ��������
�����


��� I� Kamel and C� Faloutsos� Hilbert R�tree� An improved R�tree using fractals� In
Proceedings of the Twentieth International Conference on Very Large Databases� pages
�������� Santiago� Chile� �����

��




��� P� C� Kanellakis� S� Ramaswamy� D� E� Vengro�� and J� S� Vitter� Indexing for data mod�
els with constraints and classes� Journal of Computer and System Science� ����	�����
���� �����


��� S� T� Leutenegger� J� M� Edgington� and M� A� Lopez� STR� A simple and e�cient
algorithm for R�tree packing� In Proceedings of the 	�th International Conference on
Data Engineering �ICDE�
��� pages �������� Apr� �����


��� N� Roussopoulos and D� Leifker� Direct spatial search on pictorial databases using
packed R�trees� In Proceedings of ACM�SIGMOD 	
�� International Conference on
Management of Data� pages ������ Austin� TX� Dec� �����


��� T� K� Sellis� N� Roussopoulos� and C� Faloutsos� The R��tree� A dynamic index for
multi�dimensional objects� In Proceedings of the 	�th Interntational Conference on Very
Large Data Bases� pages �������� Brighton� England� Sept� �����


��� S� Subramanian and S� Ramaswamy� The P�range tree� A new data structure for
range searching in secondary memory� In Proceedings of the ACM�SIAM Symposium on
Discrete Algorithms� pages �������� �����


��� J� S� Vitter� External memory algorithms� In Proceedings of the Seventeenth ACM
Symposium on Principles of Database Systems� pages �������� New York� NY� USA�
June �����


��� W� Wang� J� Yang� and R� Muntz� STING� a statistical information grid approach to
spatial data mining� In Proceedings of the Twenty�Third International Conference on
Very Large Data Bases� pages �������� Athens� Greece� Aug� �����


��� D� A� White and R� Jain� Algorithms and strategies for similarity retrieval� Technical
Report VCL�������� Visual Computing Laboratory� University of California� San Diego�
CA� �����


��� R� Yang� K��S� Yang� M� Kafatos� and X� Wang� Value range queries on earth science
data via histogram clustering� In First International Workshop on Temporal� Spatial�
and Spatio�Temporal Data Mining� pages ������ Lyon� France� Sept� �����

��


