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Abstract

The use of materialized views in a data warehouse instal

lation is a common tool to speed up mostly aggregation que

ries. The problems coming along with materialized aggre

gate views have triggered a huge variety of proposals, such

as picking the optimal set of aggregation combinations,

transparently rewriting user queries to take advantage of

the summary data, or synchronizing pre computed sum

mary data as soon as the base data changes. This paper

focusses on the problem of view selection in the context of

distributed data warehouse architectures. While much

research was done with regard to the view selection problem

in the central case, we are not aware to any other work dis

cussing the problem of view selection in distributed data

warehouse systems. The paper proposes an extension of the

concept of an aggregation lattice to capture the distributed

semantics. Moreover, we extend a greedy based selection

algorithm based on an adequate cost model for the distrib

uted case. Within a performance study, we finally compare

our findings with the approach of applying a selection algo

rithm locally to each node in a distributed warehouse envi

ronment.

1. Introduction

Data warehouse systems are a well-known concept

which provide an integrated and consolidated basis for per-

forming organization-wide analyses that mainly support the

decision making process. While research has provided a

huge set of technologies for the efficient operation of cen-

tralized data warehouse systems, the architectural style of

huge data warehouse installations has shifted from a cen-

tralized to a decentralized federated or distributed structure.

There are various reasons for this shift: organizational units

may have started data warehouse projects long before the

overall enterprise discovered the idea of an integrated and

historic database; long running systems behaving similarly

to a data warehouse have incorporated into an organization-

wide warehouse infrastructure without changing the run-

ning systems; operating a single warehouse system is sim-

ply not feasible due to technical and/or administrative

restrictions. With this background, well-studied problems

with well-known solutions in the centralized context are

suddenly experiencing rejuvenation in a de-centralized

world. Obviously, not every solution is easily and directly

transferable from the centralized to the distributed situation.

In this paper, we are targeting one of the most studied prob-

lems in the centralized data warehouse architecture: select-

ing the optimal set of materialized aggregate views to speed

up incoming queries constrained by an additional storage

overhead and/or maintenance costs to keep the aggregate

views synchronized with the base data. In a distributed data

warehouse architecture, multiple nodes are connected to

each other and may freely share data or issue aggregation

queries against other nodes participating in a distributed

scenario. The problem of selecting the optimal aggregate

view combination for materialization is now additionally

constrained by storage capacities per node, maximum glo-

bal maintenance costs, and a query mix per node. Further-

more, the distributed selection algorithm is able to consider

replicates of data warehouse information, i.e. data of a spe-

cific granularity may be stored multiple times on different

nodes to save communication costs and speed up local que-

ries.

After reviewing and classifying prior work in the context

of the view selection problem, section 3 proposes an

extended aggregation lattice and section 4 formally intro-

duces the cost model used within the distributed data ware-

house scenario. Finally, section 5 presents the distributed

view selection algorithm based on the extended aggregation

lattice with support of storage, maintenance, communica-

tion, and computation costs. Section 6 gives a performance

analysis comparing our distributed selection algorithm with

a centralized solution. The paper closes with a summary in

section 7.

2. Related Work

Solutions to the well-studied problem of view selection

can be classified into several categories. The first huge cat-

egory of static selection algorithms is based on a set of user
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queries and a space or time constraint returning a set of

materialization candidates. The first subclass of selection

algorithms is constrained by a maximum storage overhead.

For example [10], extended by [7] additionally considering

indices, provides a simple greedy-based selection algorithm

based on the maximum benefit per unit space (BPUS). The

work of [4] improves this approach by reducing the size of

the aggregation lattice using diverse heuristics. [15] pro-

poses a selection process by ordering views with regard to

their size. Under certain limitations, all selection algorithms

provide a solution of at least (63 x)% of the optimal solution

with x as the ratio of the largest materialization candidate to

the overall storage capacity. 

The second subclass focusses on the constraint by maxi

mum maintenance costs to keep the materialized aggregate

views synchronized with the base data. This problem is

much harder to solve, because the relative benefit function

considering the maintenance costs exhibits non-monotonic

properties. [8] provides a greedy algorithm delivering

robust solutions even in the context of the non-monotonic

behavior. A third subset of view selection algorithms finally

operates on multiple view processing plans and applies the

idea of multiple query optimization ([14]). The main idea

consists in building a reasonably good overall query plan

for a given query scenario, where the single nodes reflect

either a selection, a join, or an aggregation operator ([16]).

The second main category of dynamic selection algorithms

applies the idea of caching the result of user queries to speed

up similar queries of other users ([5], [13], [11]). After suc-

cessfully testing a query result for admission to the cache, a

replacement strategy has to find the set of temporarily

cached objects to be released from the cache in favor of the

new result set.

After thoroughly examinig related work, we may con-

clude that none of the prior work is addressing the problem

of view selection in a distributed environment, where data

and queries may freely be shipped from one node to another.

To the best of our knowledge, the work presented in this

paper is the first to discuss the distributed case, which we

think is the next major step needed to successfully operate

an enterprise-wide data warehouse scenario.

3. Problem Space of the Distributed View

Selection Process

Before coming up with a selection process to pick an

optimal set of materialized views to speed up user queries,

we describe the derivability problem, i.e. the question

which query can be computed by a set of (distributed) views

by extending the concept of an aggregation lattice to cover

the distributed case.

3.1. Basic Prerequisites

The derivability theory includes the question how and

under which prerequisites a query q can be answered using

an equivalent materialized view. Thus, an incoming query

and a materialized view are characterized in the same way.

Although the concepts of an extended aggregation lattice

introduced below may be seamlessly extended to view

restrictions, we omit the implication problem of selection

predicates for the sake of simplicity. Furthermore, all mea-

sures of the queries are supposed to be computable from the

views, so that even this perspective can be neglected (see

[12] for details). These assumptions entail that a view is

essentially characterized by the granularity G described by

the grouping attributes G1,...,Gn.

Definition 1: View

A view v = (G)N is characterized by its granularity G with

orthogonal grouping attributes G = {G1,..,Gn}, i,j

1 i,j n, i j: Gi Gj with being the functional

dependency and the warehouse node N where the view is

located.

The views of different granularity form a partial ordering

denoting which view can be calculated based on which

other view.

Definition 2: Derivability

A view v2 with granularity  located at  is directly

derivable from a view v1 with granularity  located at

(v2 « v1) if:

• A communication edge exists between the two ware-

house nodes and  where the views are located.

• The granularity of v1 is finer than that of v2:

with being the partial order between classification lev-

els (i.e. grouping attributes) which is induced by the

functional dependencies between the grouping

attributes.

All possible views of a data warehouse, i.e. all combina-

tions of grouping attributes ([6]), can be organized accord-

ing to their derivability relationship. The result forms a

directed acyclic graph for which [10] coined the term

»aggregation lattice«. Within this graph, a node represents a

single grouping combination (i.e. aggregation granularity).

An edge represents the direct derivability relationship. For

a detailed reasoning about derivability, see e.g. [9], [3].

3.2. Distributed Aggregation Lattice

The concept of an aggregation lattice has to be extended

to capture the distributed case with n data warehouse nodes.

Therefore, in addition to the edges representing aggregation

dependencies, further edges are introduced to denote the

communication channels within the distributed scenario,

G
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e.g. between lattice nodes of the same granularity at differ-

ent warehouse nodes. The derivation relationship between a

view  and a dependant view  on a different ware-

house node may be omitted as it can be expressed by a com-

bination of other derivation relationships (transitive clo-

sure).

Unfortunately, cycles occur in the resulting lattice with

communication edges between nodes of the same granular-

ity on different warehouse nodes . In our

approach, they are extended to bipartite subgraphs as illus-

trated in figure 1 in order to eliminate cycles in the sub-

graphs. The lattice assumes a network of three warehouse

nodes. To keep the scenario as small as possible, only a tiny

part of the full lattice is given in its full complexity. The

remaining dependencies are just indicated by dashed lines.

The main idea to apply the well-known notion of an aggre-

gation lattice to the distributed case is to artificially split

each node  into two nodes  and . Applying this

split to every node yields a subgraph which is fully con-

nected and represents the communication network between

nodes of the same granularity. As can be seen in figure 1,

this separation of communication and aggregation relation-

ships results in a lattice which again may serve as a solid

foundation for the view selection process. 

The decision on which node to allocate the base table can

be included into the algorithm as presented in the following.

A new imaginary base node has to be introduced in the lat-

tice as seen in figure 2. This node, in the running example

(P,S,T) , serves as a data provider holding the complete data

and distributing it to the base tables conceptually located at

the different warehouse nodes. The communication costs

Ccomm( ,Ni) between the newly introduced node and the

warehouse nodes are set at infinity. This enforces an alloca-

tion or replication, respectively, of the base data at the opti-

mal node(s) by the view selection algorithm. In the same

way, a new top node is introduced to close the lattice with a

single node. This node will never be queried and has there-

fore no influence on the decision algorithm.

Before defining the distributed lattice formally, the defi-

nition of derivability has to be extended by two different

node types s and t:

• The node type of v1 is an s-node and that of v2 a t-node

(type(v1) = s type(v2) = t).

Definition 3: Distributed Aggregation Lattice

Let G = Gs Gt with Gs,Gt 2D denote the set of all

granularity combinations, once annotated as s-node and

once as t-node, with the orthogonal dimensions D = {d1,

..., dn}. G together with the partial order « defines a lattice

L(G,«).

This definition based on the partially ordered set may be

equivalently expressed by the algebra L(G, , ) with  as

the coarsest common predecessor and  as the finest com-

mon descendant. The edges of the lattice are tagged with

costs (see section 4). Edges between lattice nodes of differ-
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ent granularity are denoted with computation costs for

aggregating the data; edges between an s-node and a t-node,

i.e. nodes of same granularity, show the communication

costs for transferring data from one warehouse node to

another. The above lattice assumes a fully connected com-

munication network (clique), i.e. every warehouse node

may query views from any other warehouse node with

given communication costs. Obviously, variations of this

assumption are possible. First, a communication network

has to be considered in which not all nodes are connected to

each other, but can exchange data by way of a third node

(e.g. coordinator network). A communication graph like

this can easily be extended to a fully connected one by

building the transitive closure (figure 3a). If each node can

directly communicate with only a few other nodes (sparse

network), this may be reflected by the lattice. In the commu-

nication part between views of the same granularity, edges

exist only between lattice nodes  and  if an edge

exists in the communication network (figure 3b).

4 Cost Model

The selection of a set of materialized views must be

based on a criterion such as the benefit gained by the mate-

rialization of a view. This section focusses on a cost model

for the distributed view selection problem. Given a set of

queries representing the characteristic user query behavior,

a set of materialized views has to be found to reduce execu-

tion costs for the queries. The cardinalities of the material-

ized views on each node have to satisfy an additional size

restriction.

A query q Q is always computed from the materialized

view producing the minimal cost, so that the effort answer-

ing query q amounts to  with

C(q,v) as the costs to evaluate q from the view v. This query

cost is composed of actual evaluation costs to answer query

q from view v denoted by Ceval(q,v) and the communication

costs if the query is stated at a different warehouse node

than the view is located given by Ccomm(q,v). In our frame-

work we consider a linear cost model and assume that both

cost functions are dependent on the cardinality of the view

|v| and the size of the query result |q|. Both cost factors are

weighted by an additional factor w comprising the ratio of

computation and communication costs so that the overall

cost function yields to: C(q, M) = Ceval(q,M) + w  Ccomm(q,

M) = |v| + w  |q|

This assumption wrt the cost model is justified because

|v|-many tuples have to be read to compute q and |q|-many

tuples have to be transferred from the computing node to the

shipping node. A complete user query behavior is repre-

sented by a query set Q together with the query frequencies

fi expressing how often query qi is stated. Thus, the overall

query costs accumulate to: 

Since the complexity of the view selection problem to

compute the optimal solution is NP-hard ([9]), approxima-

tions mainly based on a greedy approach are used to get a

suitable solution. The greedy algorithms use a benefit func-

tion in order to decide which view to select in each step.

Based on the cost model, the benefit B of an additionally

materialized view or set of views V = {v1,...,vk} can be

expressed by the reduction of the total query costs if these

views are materialized in addition to an already given set of

materialized views M. A necessary prerequisite to deliver a

reasonably good solution using a greedy based algorithm is

the property of monotonicity with regard to the benefit

function. As shown in [8], a greedy approach just consider-

ing a single view per iteration may deliver in an arbitrary

bad solution, if the monotonicity property is not satisfied. In

general, a benefit function B is monotonic with respect to

the disjunctive sets of views V1,...,Vm if the following holds:

4.1. A Monotonic Cost Model

The benefit BS is normalized per unit of space consump-

tion. Otherwise, a single big view would be preferred

instead of several smaller views with the same total size,

each of those having a smaller benefit than the big view, but

gaining a higher benefit in total.

v
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Fig. 3: Alternative Communication Networks
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This benefit definition satisfies the inequation of the

monotonicity property stated above. Furthermore, the size

of a set of materialized views |M| rises completely mono-

tonically with the number of element views. 

4.2. A Non-Monotonic Cost Model

If the limiting quantity is not the size of the views as

mentioned in the definition of the distributed view selection

problem but the time slot to update the views or the band-

width of the communication network between the ware-

house nodes, this has to be reflected in the benefit function.

However, as soon as the benefit function considers update

(BU) or communication costs (BC) instead of space con-

sumption as the limiting factor, the resulting benefit func-

tion is no longer monotonic. An example for the benefit per

unit update costs and the benefit per unit communication

costs is shown below.

The reason for the non-monotonicity of the benefit func-

tion normalized by update costs is that updating several

views individually derived from the base view may cause

higher costs than a gradual update of the views. Instead of

updating from the base view, a view can be derived from

one that has been updated before, which will lower the

costs. A detailed example for the non-monotonic behavior

of the benefit per unit update costs can be found in [8].

5. Distributed View Selection Algorithms

In this section, the distributed view selection algorithm

based on the distributed aggregation lattice will be stated.

An example comparing our distributed approach with the

standard greedy algorithm applied to each node locally

closes this section. First of all, the distributed view selection

problem may be stated formally:

Definition 4: Distributed View Selection Problem

Let Q = {q1,..,qn} be a set of queries with access frequen-

cies {f1,..,fn} and let SNi be a supplied amount of space for

materialized views per warehouse node. A solution to the

view selection problem is a set of views M = {v1,..,vm}

with j |vjNi| SNi so that the total costs to answer all

queries C(Q,M) = i fi C(qi,M) are minimal.

The benefit function per unit space used in this paper is

monotonic as it relates just to the size of evaluated views.

Using a monotonic benefit function, [10], [9], and [8] show

that a greedy-based algorithm provides a solution of at least

(63-x)% of the optimal solution with x as the ratio of the

largest materialization candidate to the overall storage

capacity. Therefore, it is of tremendous importance to deal

with a monotonic benefit function if a lower bound of the

quality of the approximate solution has to be satisfied. The

lower bound of (63-x)% of the optimal solution of the

greedy approach holds if a single limit for the amount of

space for materialized views is given. In the distributed

environment an individual space limit for each warehouse

node has to be stated and therefore the lower bound cannot

be guaranteed. The n-dimensional space constraint for n

warehouse nodes implies a multiple knapsack problem so

that the bound of (63-x)% of the optimal solution drops.

5.1. Distributed Node Set Greedy

The distributed node set greedy algorithm shown in

figure 4 may be seen as an seamless extension to the single

node greedy algorithm. One major difference is the under-

lying distributed aggregation lattice introduced in section 3.

The algorithm uses the benefit per unit storage space in the

case of materialization as a local decision criterion for the

selection of a view and is sketched in the following. 

The algorithm takes a distributed aggregation lattice and

storage limit per warehouse node as input. The set of views

to be materialized is initialized with the base table. As long

as storage capacity is left ( Si > 0), the view with the high-

est benefit relating to the current materialization configura-

tion is chosen and added to the current set of views to be

materialized. Therefore, all nodes of the lattice which are

not yet chosen for materialization ( v {L M}) are taken

into account. For each of these lattice nodes, the benefit in

case of materialization is calculated (B({v}, M)), which

results from the sum of cost savings for the computation of

all descendant nodes. The node with the highest benefit

(vopt) after one complete iteration is added to set of materi-

alization candidates. Moreover, to solve ties when evaluat-

ing lattice nodes of the same granularity at different ware-

house nodes with identical benefit values (V), a strategy to

pick the one at the network node which has the highest stor-

age space left (max(Si)) is applied. This approximation of

the included allocation knapsack problem does not guaran-

tee an optimalization assurance in favor of computation per-

formance, as otherwise the independence of the greedy iter-

ations is violated. When allocating a view at a warehouse

node, future decisions should be taken into account to get

BS v1 vk M
C Q M C Q M v1 vk–

M v1 vk M–
-------------------------------------------------------------------------------------=

BU v1 vk M =

C Q M C Q M v1 vk–

U Q M v1 vk U Q M–
-------------------------------------------------------------------------------------

BC u1 uk M =

C Q M C Q M v1 vk–

1 C+ comm Q M v1 vk Ccomm Q M–
----------------------------------------------------------------------------------------------------------------------
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the solution at optimal cost. As the major characteristic of a

greedy approach are the isolated decisions in each step of

the algorithm, the global optimum must be given up and this

selection mechanism has to be introduced as a further heu-

ristic. 

The complexity of the single node greedy selection algo-

rithm is O(m k2) with m as the number of views to be chosen

for materialization and k as the number nodes of the aggre-

gation lattice. Given a distributed view selection problem

with n warehouse nodes, a multiple usage of the standard

approach - one for each node locally - exhibits a complexity

of O(n m k2). The distributed view selection algorithm

described in this paper yields to O(m (n k)2) as it is compa-

rable to the standard approach with n k lattice nodes. The

distributed approach has the same polynomial class of com-

plexity like the local greedy one. A reduction of the lattice

can be done analogous to [4] if a representative set of que-

ries is given. 

To improve the above-stated simple greedy algorithm

which considers the next iteration solely based on the cur-

rent configuration, it can be extended to a greedy which

looks one step ahead. In each iteration i, all materialization

combinations of the ith and (i+1)th view are considered.

The view combination with the highest benefit is chosen. In

the next step, the (i+1)th and (i+2)th views are chosen for

materialization. The complexity rises to O(m (n k)3), but

potentially wrong decisions done within two subsequent

steps are omitted.

A different approach is the exhaustive search in subsets

of size q. All possible subsets with q elements are built and

the according benefit in case of materialization is computed.

The subset with the highest benefit is used as the starting

point for a standard greedy algorithm, which searches the

rest of the views until the storage restrictions are reached.

Further extensions, like minimization of the unused stor-

age space due to clipping by including the amount of wasted

space into the objective function, are conceivable. How-

ever, these are also approximation approaches for which no

bound with regard to the quality of the solution can be

given. On the positive side, the probability to select a very

bad solution is dramatlically reduced.

5.2. Example of the Local versus Distributed View 

Selection

This section illustrates the single node and node set

greedy algorithm with a simple example. The scenario

reflects a distributed warehouse architecture with three

nodes N1, N2 and N3. Computation and communication

costs are assumed to be equally weighted (w = 1). The

query set Q is supposed to be equally distributed on all lat-

tice nodes. The standard lattice forms the base of the selec-

tion algorithm for the first run. The distributed aggregation

lattice (figure 1) is used for the node set greedy algorithm.

The query frequencies fi for all queries qi Q are set to 1.

Each node has a storage space limit for materialized views

of SNi = 120. The base table (P,S,T) is initially just materi-

alized at node N.

The first iteration of the standard greedy algorithm at

each warehouse node selects the top node ( ) because it has

the highest benefit per unit space (BPUS), as can be seen in

figure 5. In the second iteration, node (T) is the most bene-

ficial. In the third iteration finally, node (S) is added to the

selected views to be materialized. The sum of the cardinal-

ities of views selected by now is 63. As the storage limit is

120 units, no further view can be materialized, because the

next smallest view exhibits a size of 100 storage space units.

As a result, these three nodes are selected on each of the

three warehouse nodes. The total query costs C(Q,M) with

M = {()N1,()N2,()N3,(T)N1,(T)N2,(T)N3,(S)N1,(S)N2,(S)N3}

amount to 112295 units. This value is composed of

5 6000+50+12+1 = 30063 units for node N1 and

6000 w+3161 w+1192 w+600 w+100 w+5 6000+50+12+

1 = 41116 units for N2 and N3. Nodes N2 and N3 have addi-

tional communication costs for transferring data from the

bottom view at N1.

Input: L // distributed lattice with all granularity combinations

S  (S1,...,Sn) // maximum amount of storage space for 

// materialized views per node

Output: M // set of views to be materialized

Begin

// initialize with lattice node with finest granularity (base table)

M :  { v0 }

While (  Si > 0)

vopt :  vopt,i :  1 i n B({vopt}, M) :  0

// search view v with maximal benefit per unit space

Foreach (v {L-M}) // all not yet materialized lattice nodes

// compute cost savings for each desendant node

Foreach (q {descendants(v)})

B({v}, M) :  B({v}, M) + (C(q, M) - C(q, M {v}))

End Foreach

// check whether it is new optimal node

If (B({v}, M) > B({vopt}, M))

V :  {v’ | gran(v)  gran(v’) B({v}, M)  B({v’}, M)}

vopt :  v

End If

End Foreach

// add optimal view to result set if enough space is left, 

// if necessary choose network node

If ((max (Si | i {node(v’), v’  V}) - SIZE({vopt})) > 0)

M :  M  {(vopt)i | i {node(v’),  v’ V, max(Si)}}

Si :  Si - SIZE({vopt})

Else

Si :  0, 1  i n

End If

End While

Return(M)

End

Fig. 4: Distributed Node Set Greedy Algorithm
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The comparative scenario is based on the single distrib-

uted lattice (figure 6) for all three warehouse nodes. The

first iteration determines the top node with the highest ben-

efit per unit space. If several nodes with the same benefit

arise, the one at the warehouse node with most free space

for materialized views is selected. Here, view ( )N1 is cho-

sen. In the second iteration, the top nodes of N2 and N3 are

not selected, because now they can easily be retrieved from

node N1 and their benefit is just the costs for the saved net-

work transfer. The algorithm takes four iterations until the

space constraint of 120 units per node is reached. The total

query costs C(Q,M) with M = {()N1,(T)N2,(S)N3,(P)N1}

amounts to 94721 units. This means a cost reduction of

17574 ( 15,6 %) units compared to the single node greedy

approach. The used storage space with

1+12+50+100 = 163 units is even smaller than

(1+12+50) 3 = 189 units in the first case. In bigger scenar-

ios where the dedicated query is set bigger, the savings of

query costs are higher.

abs. benefit BPUS

(P,S) 11356 3,59

(P,T) 19232 16,13

(S,T) 21600 36

(P) 11800 118

(S) 11900 238

(T) 11976 998

( ) 5999 5999

(P,S,T)

(P,S) (P,T) (S,T)

(P) (S) (T)

( )

6000

3161 1192

100

600

50 12

1

Fig. 5: View Selection with Single Node Greedy Algorithm
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1st iteration 2nd iteration 3rd iteration

1st iteration benefit BPUS

(P,S,T)N2/N3 11116 1,85

(P,S)N1/N2/N3 34068 10,78

(P,T)N1/N2/N3 57696 48,40

(S,T)N1/N2/N3 64800 108

(P)N1/N2/N3 35400 354

(S)N1/N2/N3 35700 714

(T)N1/N2/N3 35928 2994

( )N1/N2/N3 17997 17997

Fig. 6: View Selection with Node Set Greedy Algorithm
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s
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s
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t
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t
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t
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P N3

t

(P,T)N2(P,T)N1 (P,T)N3

(P,S,T)N2(P,S,T)N1 (P,S,T)N3

4th iteration

2nd iteration benefit BPUS

(P,S,T)N2/N3 11115 1,85

(P,S)N1/N2/N3 25551 8,08

(P,T)N1/N2/N3 43272 36,30

(S,T)N1/N2/N3 48600 81

(P)N1/N2/N3 17700 177

(S)N1/N2/N3 17850 357

(T)N1/N2/N3 17964 1497

( )N2/N3 1 1

3rd iteration benefit BPUS

(P,S,T)N2/N3 11103 1,85

(P,S)N1/N2/N3 25551 8,08

(P,T)N1/N2/N3 28848 24,20

(S,T)N1/N2/N3 32400 54

(P)N1/N2/N3 17700 177

(S)N1/N2/N3 17850 357

(T)N1/N3 12 1

( )N2/N3 1 1

4th iteration benefit BPUS

(P,S,T)N2/N3 11053 1,84

(P,S)N1/N2/N3 17034 5,39

(P,T)N1/N2/N3 28848 24,20

(S,T)N1/N2/N3 16200 27

(P)N1/N2/N3 17700 177

(S)N1/N2 50 1

(T)N1/N3 12 1

( )N2/N3 1 1
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6. Performance Studies

To illustrate the advantage of our distributed node set

greedy algorithm with regard to the view selection problem,

it will be compared with the single node greedy algorithm

applied locally to each warehouse node in a more complex

scenario. The scenario comprises of a schema with three

dimensions with four and two times five aggregation levels

per dimension. The query load for the first set of runs is

equally distributed, i.e. every possible grouping combina-

tion is queried once. The second query set consists of ten

randomly generated queries per warehouse node with query

frequencies between 10 and 30.

Figure 7 a) compares the distributed with the single node

set greedy algorithm for different numbers of warehouse

nodes in the network. The performance gain increases with

the number of network nodes, as the full potential can only

be tapped with more complex systems. If a view doesn’t

have to be stored locally, but can instead be queried from a

remote node, there is more storage space left on the local

node to materialize further views, which of course contrib-

ute to a higher total benefit. In the above tests, a weighting

factor w = 1 is assumed, so that computation and communi-

cation exhibits equal weights. Figure 7 b) shows the result

of our distributed node set greedy algorithm compared to

the conservative greedy approach with a variation in the

weighting factors. We can easily see that, the higher the

communication costs compared to computation costs are,

the smaller is the benefit of the distributed approach in com-

parison to applying the algorithms locally to each ware-

house node. The support for the queries by the materialized

views in the distributed case is more efficient when a

smaller set of queries (second query set) is given as more

queries can be answered by some preaggregate located

somewhere in the system (figure 7 c).

As illustrated in figure 7 d) the advantage of the distrib-

uted node set greedy decreases with larger space constraints

for materialized views, i.e. more views can be materialized

per warehouse node. The abscissa shows different amounts

of storage for aggregates. The fact table is assumed to have

1000 storage units. With a large amount of memory, the

same complete set of materialized views per node can be

stored in the non-distributed case. Thus, all required data is

stored locally and no network access is necessary. With

small amounts of storage for materialized views in a range

of 50-100% of the fact table size, there is a good advantage

Fig. 7: Cost Reduction of the Distributed versus the Local Algorithm 
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of the distributed approach compared to the local one. At a

storage size of 2000 units the graph bends sharply, due to

the possibility to store further big fine granular views which

support many queries on the warehouse nodes. Thus, the

distributed approach, by answering queries remotely, can-

not show to advantage.

7. Summary

This paper discusses the problem of picking the optimal

set of views for materialization in a distributed data ware-

house environment. A single node and node-set greedy

algorithms based on an extended aggregation lattice to ade-

quately reflect the communication costs are compared. The

performance test illustrates the different distributed greedy

algorithms with the centralized solution locally applied to

each node. The study shows that our proposed approach

yields results significantly better than the greedy-based

solution directly applied locally to each node. The approach

also seamlessly delivers a replication schema by returning

views that should be multiply materialized. Future work

will examine the possibility of load balancing by introduc-

ing CPU constraints and a normalization by computation

costs, or constraining network transmission in the benefit

function as well as a more fine granular view selection by a

partitioning of the lattice nodes ([2]). The objective function

used is the total query costs for the complete distributed

warehouse system. Different optimization goals could be

the response time per single query or an optimal load bal-

ancing.

A more sophisticated approach addressing load balanc-

ing will also distinguish between storage and calculation.

This means that the node where a query is stated, the node

where a materialized view is located and the node where the

query is computed can be three different nodes. Computa-

tion may even be split for a distributed query execution. The

partitioning approach introduced in [2] allows to consider

query hot spots. Combined with the approach described in

this paper, it is possible to support the distributed query load

and find a partitioning scheme at optimal cost.

In conclusion, we believe that the area of distributed data

warehousing is the next major step in building huge data

warehouse systems. Proposed solutions for the centralized

scenario should be adequately adapted to this context. In

providing a view selection algorithm for the distributed case

we have opened that door for many more interesting

research opportunities in this area.
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