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Abstract—Many novel spatio-temporal applications deal with direction of & deviate beyond a given threshold an update is
moving objects. In such environments, a database typically main- performed.
tains the initial position and the moving function for each object. Previous work has concentrated on range queries (“find

Instead of updating the database whenever an object position . - . . . N
changes (which is not manageable), updates are issued wheneveWhICh objects will be in area A, 10 minutes from now") [22],

the moving function deviates beyond a given threshold. For [11], [2], [17], [5], [16], [13] and nearest neighbor queries
simplicity, we assume that objects move with linear trajectories. (“find the 10 objects that will be nearest to a given location,
Maintaining the moving functions in a database introduces novel 5 minutes from now”) [10], [26], [19], [20]. All these tech-
problems. For example, the database can answer queries abo“tniques provide exact answers. Nevertheless, there are many

object positions in the future: “find all objects that will be in S . . - .
area A, 10 minutes from now”. In this paper we present a applications whereselectivity estimation and approximate

thorough performance evaluation of techniques for estimating aggregate computationare pr9ferap|e to exact answers. For
the selectivity of such queries. We consider various existing example: “estimate how many vehicles will be within 2 miles

estimators that can be stored in main memory and are updated from the intersection of highways 110 and 1405, 5 minutes
dynamically. Furthermore, we propose two new approaches, a from pow”, In addition to being useful in query optimization

technique that uses histograms and a secondary index based h . . tant wh . . b
estimator. We run a diverse set of experiments to identify the such queries are important when privacy is a concemn (by

strengths and weaknesses of every approach, using a wide varietyfinding “how many” instead of “who”).
of datasets. Problem Definition: Consider a dynamic collection of

objects following linear trajectories. Given a regidhand a
time interval AT = [qts, qte] (tnow < qts < gte), We want to
I. INTRODUCTION estimate the number of objects thetl pass throughz during

Various recent applications involve moving-object databas€s! (tnow IS the current time). In this paper we concentrate
(cars moving on a highway system, customers of a celluldp OPiects moving in 1- or 2-dimensional spaces.
network, surveillance applications, etc.) To avoid high update Figure 1 shows three objects moving on a line segment
rates such databases typically maintain functional descriptidigdimensional space). The vertical axis corresponds to the
of the object movements, issuing updates only when paraHﬁ'—e s_egm_ent, while the h_orlzontal_ axis corresponds to time.
eters of these functions change (velocity, direction, etc.) i€ time instant and starting location of every object are also
such a scenario the database can also answer queries afjgaicted. Objects is shown to issue an update at time The

the future positions of the objects, based on the movemefii@ded area corresponds to the range qae#y (g, g x
functions stored when the query is issued. lgts, gte]. Only two objects ¢; ando_2) qualify for the answer.
The most common functional representation is a linear " are aware of only two previous works that address se-

trajectory [11], [2], [17], [5], [16], [13], [4], [12], [21], [18], lectivity estimation queries in a spatio-temporal environment.

[24], [25]. This assumption is based on simplicity, since line&f"9inally, [4] proposed a novel histogram-based technique.

functions are easy to store and update, and practicality, becali88t Work focused mostly on the 1-dimensional case and

even complex object movements can be approximated W@ﬁde a strong uniformity assumption. Later, [21] extended the

by a sequence of adjacent line segments (using least sqd’é’\%k to the multi-dimensional case and dropped the uniformity

regression, line simplification and other fitting techniques). Agssumption. . . . .
object moving on a line segment can be modeled as a poinfn [4] the authors start with the simple 1-dimensional case

moving with constanvelocity 7, starting attime ¢, from a \Where objects move on a line segmet i, Xm..] and
specific location ao. The position of the object at timeis: &€ modeled as points following linear trajectories. It is also
@ = |5](t — to) + ao for t > to. Whenever the magnitude Orassumed that the object velocities are distributed uniformly

in the range[V,,in, Vinaz]- Given a query@ the selectivity

This work was partially supported by NSF grants 11S-9907477, ElAS computed as a funCt.ion ofts, qtea_ qxy, qTh, ij’m _
9983445, 11S-0220148 and Career Award 0133825. Xomazr Vinin @and V... Since the location of the objects is
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Fig. 1. An example of 1-dimensional object movements. Fig. 2. Evolution of a bucket with end-point velocities.
y A bucket and reassign it to a new bucket. The problem with

this approach is that while the original Minskew histogram
assumes uniform distribution of objects within buckets, as
updates occur and objects move around, this uniformity can
Yot -~ be easily lost. One solution would be to rebuild the histogram
every so often but this leads to increased computational cost
since a complete database scan is required. To address this
problem the authors propose instead to maintain the histogram
over a (small) random sample of the objects and to rebuild it
every time instant. The sample is maintained in main memory
using a backing algorithm as described in [7].

- The technique is extended to handle points moving on a 2-
X X dimensional plane by building a 2-dimensional histogram and
projecting buckets, objects and queries on both dimensions.
Fig. 3. A false positive. The 2-dimensional selectivity is computed as the product of

the individual 1-dimensional results on every projection.

In addition to the strong assumption of uniform object
not typically uniform the authors propose building a spatiakelocities this technique over-estimates the selectivity in the
histogram (like Minskew [1]) that partitions the 1-dimensiona®-dimensional case. Projecting the data and the queries on
segment into consecutive ranges (buckets). The histograach dimension introduces false positives since objects that
algorithm is modified to calculate the minimum and maximurimtersect with the query projections on both dimensions do
velocities of all objects contained in each range. Each buckeit necessarily cross the original query (a false positive is
is thus characterized by three quantities: i. the bucket range ¢bown in figure 3).
bOUnding I’egion for the 2-dimensional Case), ii. the number OfThe technique recenﬂy proposed in [21] drops the Ve|0city
ObjeCtS |n|t|a”y contained in this range, and iii. the minimunmniformity assumption and does not use projections in the 2-
and maximum velocities of these objects. dimensional case thus avoiding over-estimation. Consider an

This is equivalent to partitioning the space into timeebject moving on a plane. Let's assume that the object is
evolving buckets by assigning velocities to the end-points efirrently at positior{x, y), moving with velocity(v,, v, ). The
each bucket. For example, in figure 2 buck®t = [z;,z,] authors propose building a 4-dimensional histogram using 4-
(on the vertical axis) has a right end-poinf that moves dimensional point§z, y,v,,v,) projected at timg = 0. The
with velocity V;,.;, and a left end-point:;, that moves with resulting buckets have a spatial MBR and a velocity MBR
velocity V;,.... The bucket’s extent at timgt, can be easily (V-MBR). Each bucket contains all objects that fall inside its
calculated. By assuming uniformity of object locations angpatial MBR with velocities bounded by the V-MBR. Since
velocities insideB, we can compute the contribution of thisthe velocities of the objects are included in the histogram
bucket to the query). The sum of the contributions from all construction process the resulting buckets will contain objects
buckets is the total selectivity of the query. that are uniformly distributed inside both the MBR and the

Initially, objects are assigned to buckets by using theiMBR. Hence, there is no need for the velocity uniformity
locations at time = 0. Since objects issue regular updates thessumption. Furthermore, the authors use the spatial and
histogram needs to be adjusted accordingly. An object updatdocity MBRs to derive analytical formulas for computing
is given as a tuplex O,q, (v,a), (v,a’) >, where (v',a’) the contributions of both MBRs to the selectivity of a range
are the new parameters of the object moving function. Usimgiery. They also propose creating the histogram on the whole
this information we can remove the object from its originalataset (not a sample) and rebuilding it less often in order to




offset the cost of a full database scan. While this approack
is more complex to implement it has another advantage asqith
is more general and applies also for moving queries (wha& ~ol
the spatial range of the query moves during the query time '
interval).

Both [4], [21] as well as our proposed histogram technique
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use the Minskew [1] algorithm for creating histograms. The | Q
2-dimensional Minskew algorithm partitions the universe into i
a user specifiechumber ofdisjoint rectangular buckets (the } | \=/
algorithm can be extended for any number of dimensions). | ‘
Every bucket is characterized by its spatial extent and the Vmin | Vimax

number of objects that fall in it. The goal is to partition the o ) ) )
space such that the distribution of objects inside each bucke} 2. 1ende duery tnsfornaton n he e space, Since sectorcs
uniform. Minskew starts with a very fine uniform grid of cellsin Q in the dual space.

(the number of cells must be much larger than the total number

of requested buckets) and calculates the spatial density of each

cell (i.e., the number of objects contained in a cell). TheA. Histogram Estimators Using the Duality Transform

it combines a number of cells into a bucket by minimizing The duality transform was used in [11] and recently in [6]
the statistical variance (spatial-skewgf the spatial densities for indexing moving objects. Th@rimal space-timerepre-

of the cells. Initially all cells belong to a single bucket thagentation (figure 1) is equivalent to itisial velocity-intercept
covers the entire universe. Then, the split (in any dimensiofpresentation (figure 4). In this transform:

that will result in two buckets with minimunglobal spatial- « An object trajectoryr = vt + a (a line) is transformed
skew is performed. This procedure continues recursively. The jnio a point (v, ). Coordinatea is the position where
algorithm stops when the required number of buckets has ihe trajectory intersects the vertical axis= 0 in the
been reached. Since this algorithm is exhaustive (for every original space ana is the object velocity (this is called
partitioning iteration all possible splits for all buckets have ¢ Hough-X transformation in [9]).

to be evaluated) and its performance depends heavily on thg A range queryQ : [gay, gzn] X [gts, gt.] is transformed
initial grid granularity, there are heuristics that produce near o a linear constraint. Objec, a) will pass though
optimal buckets much faster. if and only if:

The contributions of this paper are: )
. .o . |f’U>0: V;ningvgvmam/\
« We propose two new spatio-temporal selectivity estima- a+ qtev > gz \a + qtsv < qan

tion techniques, one based on histograms and another| it , . _y <4< ~Viin N @
using a secondary index structure. The first approach uses S o

a duality transform of the spatio-temporal space, while

the second can be used either on the dual or the origir@ﬂr a detailed analysis of this equation please refer to [6]).
space. An advantage of this approach is that lines (which are

« We present a thorough comparison of all known spati&-bjeCtS _difficult to _index [9]_) are tran_sformed to points (which
temporal selectivity estimation techniques as well &&n be indexed with a variety of Point Access Methods). The
a straightforward sampling approach. We test agai,.gl{flculty of course is that the rectapgular.query of figure 1 is
various datasets using uniform, skewed and other objdtg@nsformed to the shaded trapezoid of figure 4.
distributions inspired from practical examples. Based on OUr proposed histogram technique works as follows:
this experimental comparison we draw conclusions aboutl) Convert the object trajectories to Hough-X space.

the practicality of the various techniques. 2) Partition the Hough-X space into buckets using a
2-dimensional spatial histogram like Minskew. Each

bucket contains the following information:

a+qgtsv > qry N a+ gtev < qzp,

II. NEW SPATIO-TEMPORAL SELECTIVITY ESTIMATORS a) An X-MBR [v;, vp] X [ar, ap].
b) The number of pointsV that fall inside the X-
We propose two techniques: The first one is based on MBR.

histograms and the duality transform presented in [11]. The3) Update the histogram as objects issue updates.
second assumes that a secondary index exists on the moving) Rebuild the histogram after the number of updates
objects. Similarly with [21], the histogram approach builds exceeds a given threshold.
an estimator using the whole dataset and is rebuilt frequently.The selectivity of quen® is the sum of the contributions
The index estimator is also built on the whole dataset butfiom all histogram buckets. Since Minskew tries to maintain a
is dynamically updated. uniform distribution within each bucke®, the contribution of

B is proportional to the area of its intersection wighand the

*The variance V. of N numbers f1,...,fn is equal to v — humber of objectsV contained inB. The intersection of)

£ SN (fi — )%, wheref is the average of1, ..., fx. (represented by equation (1)) aBd(which is a rectangle), can



ever the number of updates exceeds a threshold). Similarly
to our technique, the selectivity estimation formula in [21]
does not have a closed form solution. A complex algorithm
based on the trapezoid rule was proposed to compute the
selectivity. The monte-carlo approach used here for computing
4-dimensional volume intersections is as efficient (in run-time
and accuracy as the experimental section shows) and much
simpler to implement than the combined trapezoid rule needed
for the MBR and the V-MBR of [21].

The update cost of our technique (as well as that of [21]) is
expected to be higher than the technique proposed in [4] for
three reasons. First, for the 2-dimensional case our technique
Fig. 5. Example of computing the contribution of bucketto queryQ . ;ses a 4-dimensional histogram which has higher rebuilding
cost when compared to the 2-dimensional histogram of [4]

(the 4-dimensional grid is much larger than the 2-dimensional
be computed efficiently using any polygon clipping techniqugig). Second, performing a full database scan is more ex-
[23], [15] '?‘4” example is shown in figure 5. The selectivitysansjve when compared to maintaining a sample in memory.
is Sp = N=;79°%, where Areagnp = W and  Finally, a monte-carlo computation needs to be performed for
Areap = (v, —vi)(an — ar). every intersecting bucket in order to calculate the selectivity

Every time an object issues an update the histogram is @-a given query. Nevertheless (and as it will be apparent
justed accordingly. Suppose an updat®;q, (v,a), (v',a’) > from the experimental evaluation), we argue that the estimation
occurs. We locate the bucket with X-MBR that contains poiRfccuracy of our technique improves dramatically due to better
(v,a) and decrement its counter by one. We find the nemistogram quality which justifies a slightly increased update
bucket with X-MBR that contains poirft’,a’) and increment cost for the 2-dimensional movements. Moreover, we were
its counter by one. When using the Hough-X space to cregfBle to reduce the update cost by rebuilding the histogram
the histograms the velocity range is bounded By, Vinaz]-  less often (hence reducing the database scans to a minimum)
On the other hand, the intercept range is unbounded. SiRgghout sacrificing much of the estimator accuracy.
intercept calculation is relative to time= 0 and the current Note that for 1-dimensional movements the 1-dimensional
time advances indefinitely, the range of intercepts alwa}’ﬁstogram of [4] needs a very large grid size in order to
increases. Thus, the new poifit’, a’) might fall outside of produce good estimates. In that case the 2-dimensional his-
the intercept range that was used to construct the histograByram construction of our technique becomes much faster.
In that case either the appropriate boundary bucket hasggrthermore, the 2-dimensional Hough-X formulas have a
be enlarged to contain the new point or the update can Bgsed form solution (i.e., the monte-carlo computation is not
ignored since the histogram will eventually be rebuilt. In oUeeded) thus the query cost is reduced also.
implementation we chose to ignore such updates given thajn [11] the authors use another space transformation called
the histogram was rebuilt every 10 time instants. With th'ﬁough_y [9]. Instead of using a velocity-intercept space the
approach, though, fast moving objects that tend to have larg@§ygh-y transformation uses the reciprocal of the velocity
(negative or positive) intercepts will fall outside the histograry — % and the intercept divided by the velocity= =¢. The
range more often thus, the technique becomes biased towa{ggantage of this transformation is that the query is repre-
slower moving objects. For most applications very fast movingsnted by a simpler linear constraint such that the intersections
objects (relative to the rest of the dataset, that is) are rareggmyeen the query and the buckets can be computed analyti-
practice. We should mention here that the approach in [2d3|ly (thus removing the need for the monte-carlo integration).
suffers from the same problem. The drawback however is that the resulting distribution of the

This technique extends to 2-dimensional movements ino@jects on the Hough-Y universe becomes highly skewed even
straightforward way. A linear trajectory in the 2-dimensiongbr data that is non-skewed on the primal space. The main
space becomes a 4-dimensional paint, vy, a;,ay) in the reason behind this is that the division by the object velocity
Hough-X space. A 4-dimensional histogram has to be cogistorts the dual space representation. We implemented the
structed and the transformed queries can be represented Wibposed technique using this dual transformation also. Indeed
an extended linear constraint. The linear constraint is ess@fe estimator accuracy deteriorated substantially. In the rest we
tially the intersection of 4-dimensional hyperplanes. In the dugiscuss the Hough-X dual transform only.

Hough-X space the intersecting volume of the query with a
4-dimensional bucket has no closed form solution. Hence, it )
has to be computed using monte-carlo integration [14].  B- Index Based Estimator

We should list here the similarities and differences with [21] This approach assumes that a disk-based access method
(the techniques were developed independently). Both teéb-available for indexing the moving objects. Various such
nigues drop the velocity uniformity assumption and built a 4ndexing techniques have been proposed in the recent literature
dimensional histogram on the whole dataset and not a sampld], [2], [5], [6], [13], [17], [16]. Typically, an index is main-
Both approaches rebuild the histogram less frequently (whdained for answering exact range and nearest neighbor queries.




Assuming that such an index exists we built a dynamically — r-ee
updated selectivity estimator. The combination of the existing
index with the proposed estimator provides a unified solution
for a variety of queries (range, nearest neighbor as well ag

/ \ e }
selectivity estimation). ééé é é é é éé ééé é é é é

Other advantages of this approach are:

« The estimator is built on the whole dataset and not on a  simer G| 1] =
sample leading to better accuracy.
» The estimator does not have to be rebuilt. Only relevanly. 6. The index based estimator.
entries are affected during updates and thus it adapts
accordingly.
« The size and accuracy can be tuned on-line. The size of the estimator is proportional to the total number
For ease of exposition the following discussion assumes tif4teaf nodesVy, in the secondary index which in turn depends
an R-tree [8] is indexing the complete database in Hough9( the total number of data entrie¥, and the average
space. Other spatio-temporal indices (like the TPR-tree [LAnOuUt of the indexf.., (No = £2). For example, in a
which indexes objects in the primal space) can also be usgdimensional R-tree withVp = 10¢ data objects, a page
in a straight-forward manner since the implementation detafiize of 2 Kbytes, where every entry is 20 bytes long (4 floats
of our technique are not affected by index updating policie$or the MBR and 1 integer for the id), the node fanduts
The estimator is created as an in-memory hash table tA&0 entries per node. Given that the average R-tree utilization
contains a number of entries. Every enffycorresponds to a per node is typically around 70%, the average fanout would

specific leaf node (data page)of the R-tree. Each entry hasbe f.., = 70. Hence, there ar&/;, = - = 14286 leaf nodes
the following properties: and the estimator will contain at Ieast as many entries. Given
1) An E-MBR, which is the MBR ofL. today’s large main memoriel, is still small when compared

2) A hash key, equal td’s unique node identifier. to Np, the total number of moving objects.

3) The number of objectd’ contained in the E-MBR (i.e.,
the number of objects contained Ir). I1l. EXPERIMENTAL RESULTS

Any entry can be further split in-memory (without affecting Al experiments were run on an Intel Pentium(R) 4, 1.60Ghz
the persistent structure) yielding multiple entries per leaf €py with 1Gb of main memory. We run several experiments

needed (that share a common hash key). As discussed int{ling the proposed techniques for 1-dimensional and 2-
experimental section such splits result in increased estimaginensional environments.

size but also increased accuracy since the E-MBRs become
more fine-grained, partitioning space into smaller regions.
Various splitting algorithms may be used for such in-memoty- 2-dimensional Movements
splits. For simplicity we use the R*-tree splitting heuristic [3]. Dataset and Query Description.We generated four dif-
Figure 6 depicts an R-tree (leaf nodes are plotted witbrent datasets of moving objects containing 1 million objects
rounded corners). The estimator entries are shown at #wch. The spatial universe was set to 500 by 500 miles. Object
bottom. The hash table contains one entry per leaf and evesgjocities were randomly generated using skewed and uniform
entry holds the number of data contained in the associawidtributions between 10 miles per hour and 110 mph. All
leaf. In addition, entryf is split into two sub-entries, both simulations were run for 200 time instants (every time instant
indexed by the same hash key. corresponding to 1 minute). At least 1% of the objects issued
The cost of updating the hash table is insignificant. Then update each time instant.
estimator is modified along with the index. More specifically, Each dataset is described by the initial distribution of the
whenever a leaf node of the tree is updated (and thus loadrdving objects. For the first dataset (denoted as UNIFORM)
into main memory) the corresponding entry in the hash tabddjects were initially distributed using a uniform distribution
is accessed and adjusted as necessary. Since the entriesndf then they were allowed to move randomly inside the
the estimator correspond to the actual partitioning of the datmiverse. In the second dataset objects started with a uniform
imposed by the secondary index, we expect the quality of thestribution but then each object randomly selected one of
estimated results to be related to the quality of the spattakee destinations with a specified probability. The three des-
index. tinations “attracted” the objects (the ATTRACTOR dataset. A
For answering a selectivity query the hash table entries amgapshot after 80 time instants is shown in figure 7(a)). In the
scanned sequentially (if the hash table size is consideratile¢d dataset objects were positioned initially using a skewed
the buckets can instead be organized as an in-memory spatiatribution and then moved randomly (a SKEWED dataset
index). The contribution of entry' to queryQ is proportional shown in figure 7(b) after 20 time instants). Finally, the last
to the intersecting area of its E-MBR with and the number of dataset represents a network of freeways and surface streets
objects N. Query selectivity can be computed similarly with(different towns connected by freeways) where every road is
the histogram technique. Extending the approach for mulé-collection of connected line segments. The objects followed
dimensional environments is straightforward. random paths on this network (a snapshot of the ROAD dataset



(a) Attractor (b) Skewed (c) Road

Fig. 7. Datasets

QUTEA:YL;TS using up to 3000 buckets, while HC gave better results for up

to 1000 buckets.
?ﬁ:e sls SlL L5S L5L Another important parameter for the sampling based tech-
Space| 1% | 3% | 1% | 3% nigues (S and HC) is the sampling factor. We experimented

with up to 1% samples. As expected, for HC the computational
cost of the histogram is not affected at all from the sample
size since the core of the histogram construction algorithm
is shown in figure 7(c)). Within each dataset we varied objedepends only on the number of buckets and the grid size. The
velocities using uniform or skewed distributions. results on the other hand become more accurate as the sample
We also created four different sets of queries with allecomes larger. For simplicity all graphs refer to 1% samples.
combinations of small and large sizes of time intervals and We tried a number of R-tree estimators with varying number
spatial extents (see table I). Small size corresponds to a tigfehash table sizes. It became apparent that the bigger the
interval with length 1 time instant and a 5 miles range in thestimator size (the more fine-grained the entries of the hash
spatial domain. Large size corresponds to 5 time instants aa#lle) the better the accuracy of the results. For the rest of this
15 miles range. We generated 2 queries from each type &ction the R-tree based estimators have approximately 10000
every time instant giving a total of 1600 queries per simulatiogntries.
For all techniques based on random samples we run everyzomparisons. Figure 8 plots the sizes of all estimators.
experiment multiple times and averaged the final results. The R-tree estimator has the largest size followed by HC
Performance Optimizations. We present comparison re-and S. The smaller sizes are used by HX and HT. The best
sults for the following techniques: Random sampling (denotedmpromise between computational cost and accuracy for
in the rest by S), the spatio-temporal selectivity estimatiavery technique is achieved for different sizes. For HC and S,
technique of [4] (HC), the spatio-temporal selectivity estimaince the sample needs to be updated in memory, the sample
tion technique of [21] (HT), histogram on Hough-X (HX)size dominates the total size of the estimator (the number of
and the R-tree based estimator on Hough-X (R-tree). Sinigackets is much smaller in comparison). The size of the R-
all techniques provide approximate answers we calculated thee estimator is large since the secondary index needs more
relative error of each technique as a ratio over the exact answhkan 10000 leaf entries in order to store 1 million objects
The relative error is the ratidE%A', where £ and A are thus making the estimator at least as large. The rest of the
the exact and approximate answers, respectively. Queries vighhniques are more space efficient because only the histogram
exact answer equal to zero were ignored. buckets are kept in memory. While an interesting comparison
We present the “optimized” performance for every agParameter the estimator size was not a real implementation
proach. We first varied different parameters to fine-tune eag@ncern since even the larger estimator required only 234
technique. We tested the histogram techniques (HC, HT alklytes of main memory.
HX) with varying number of buckets and grid sizes. Both pa- Figure 9 plots the normalized rebuilding cost for all tech-
rameters affected the computation cost and the accuracy of thgues and the SKEWED dataset (similar behavior was ob-
histogram results. We observed that a very small or very largerved for the rest of the datasets). For HX and HT the update
number of buckets or grid size has a negative effect on thest is a full database scan plus the histogram construction
estimations. We noticed that a very large grid size increases tlee (in our experiments the histogram was rebuilt every 10
computational cost substantially without providing noticeabkime instants). For HC we create the histogram from the
improvement in accuracy. We tested using up to 5000 bucketsred sample every time instant as described in [4]. S has
since for larger numbers of buckets the building cost of thrainimal update cost since the backing algorithm of [7] is not
histogram became too expensive to be considered as a viatgenputationally expensive. The R-tree estimator update cost is
solution. For our experiments HX and HT worked better whethe time needed to adjust and split the entries of the in memory



hash table. It is faster (about four times) than HC sindiifferent. S yielded less than 14% error for all query types
updating occurs on-line. HX and HT have the highest updadad it was better than HC in all cases, which gave 26% error
cost for 2-dimensional movements due to the 4-dimensiorfal SS queries and less than 13% for all other types. For this
histogram and the database scan overhead. dataset we generated random query sets with one constraint:
Figure 10 shows the query cost for all estimators. For tt@@ueries should contain at least one line segment. Since objects
R-tree, HT and HX the cost is a sequential scan of the bucket® highly constrained on the 2-dimensional plane (following
plus the time to compute the complex integrations involvedpecific line segments), a small sample is enough to represent
HC does not have the monte-carlo integration overhead.tt&® distribution of the dataset accurately (a smaller active
performs one iteration per query over the sample and singgace means better sample quality). On the other hand, the
the sample size is very small the cost per query is minimagchniques that use a 4-dimensional space lose this property
R-tree is 10 times more expensive than HX and HT. Thghe space is sparse). HX, HT and R-tree gave more than 19%
more buckets that intersect with a query the more integratioasor for all query types.
need to be performed. The R-tree estimator contains twice aslearly, no technique is best for all datasets. For uniform
many buckets compared to the other techniques, which mayject distributionsHX and HT should be the choice. For
also overlap each other (this does not happen with bucksekewed distributionso techniqueyave satisfactory results thus
produced with the Minskew algorithm). Hence, the montédt remains an interesting open problem. Datasets with skewed
carlo computations increase proportionally. object distributions occur very often. For example, imagine the
Figures 11 to 15 plot the relative error for various datasetsaffic patterns after a big event like tf8uper Bowl Objects
Figure 11 shows the results for the UNIFORM dataset usitignd to disperse from a stadium in a non-uniform manner
uniform velocities. This dataset is similar to the datasets ustadlowing freeways to several different directions (imagine the
in the performance analysis of [4], [21]. HX and HT performedtadium being at the lower left corner of the universe in figure
very well giving from 1% to 5% errors depending on the query(b) and cars leaving toward the north and east). High degrees
types. The R-tree estimator followed (with up to 10% errorpf skewness seem to affect the histogram and the R-tree
S did not work well, yielding more than 60% error in somechemes. For the ROAD dataset results were surprising. The
cases. HC worked better than sampling but still gave as mugimplest techniquetandom sampling actually worked very
as 40% error for LS queries. It is apparent that these techniqueall, yielding reasonable errors and should thus be considered
(HC and S) are affected substantially from the quality of thas the best alternative.
sample. The standard deviation of our measurements for HC
was 4.3% (SL queries) and for S up to 15.1% (SS querie8). 1-dimensional Movements
The large sparsely populated space and the small samplingVe also examined all estimators for 1-dimensional move-
factor are responsible for the bad sample quality. ments. This is useful for applications involving straight-line
Next, we examined the UNIFORM dataset with skeweskegments (e.g., a busy highway). Our 1-dimensional synthetic
velocities (figure 12). We observed a similar behaviour, excegtvironment consists of one highway represented as a line
that the performance of HC deteriorates substantially whesgment extending from 0 to 1000 miles. We randomly placed
skewed velocities are used. This is because the velocii§ entrances/exits on this highway. The simulations run for
uniformity assumption does not hold. The other techniqu&90 time units, each time unit corresponding to 1 minute.
remain unaffected. Due to lack of space in the rest we depint the beginning, 400,000 vehicles are randomly placed on
only datasets with skewed velocities. the highway. This corresponds to an average of 400 vehicles
For the ATTRACTOR dataset with skewed velocities (figurper mile. Every vehicle moves toward a specific exit with a
13) all techniques gave more than 10% errors for all quegpnstant velocity. When a vehicle reaches its exit it is removed
types. HX and HT again perform similarly, yielding betweerfrom the highway and a new vehicle appears through a random
10% and 15% error. The rest of the techniques performedtrance. Thus, the number of vehicles per time instant is kept
poorly, giving more than 22% errors for all cases. For HC argbnstant. Every time instant at least 1% of the objects issue
S the standard deviation of the measurements was up to 2.8f6update. We tested both with uniform and skewed velocity
and 7.1% respectively, for some query types. Interestinglyistributions. Velocities were chosen between 10 mph and 110
the R-tree estimator is affected by the ATTRACTOR datanph. For the skewed distribution we split the vehicles into two
We attributed this behavior to the difficulty of the originalgroups, one for speeds between 10 and 55 mph and the other
index to maintain a good partitioning as the data become twetween 55 and 110 mph. The first group corresponds to slow
concentrated to the three destinations. moving vehicles in traffic with a few exceptions. The second
Similar conclusions are drawn for the SKEWED datasefroup corresponds to normal highway conditions with a few
(figure 14). The results deteriorate further since the data &geeding vehicles.
skewed in the initial distribution. For SS queries S gave 21% Figure 17 shows the results for skewed velocity distribution.
standard deviation and HC 34%. This means that sampliRgr simplicity, HT is not included in the graph as its perfor-
cannot be used for such datasets. The R-tree estimator atsmmce was equivalent to HX. All techniques worked quite well
performed poorly since the initial partitioning of the index wa#or 1-dimensional movements, with HX and R-tree being the
probably of low quality. HX and HT did not perform well for best. It is interesting to note that S is slightly better than HC
LS queries, giving more than 30% error. for the 1-dimensional case, making the histogram construction
Surprisingly, for the ROAD dataset (figure 15) results wereverhead obsolete in that case.
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Memory requirements are the same as for the 2-dimensiofial G. Kollios, D. Gunopulos, and V. Tsotras. Nearest Neighbor Queries
experiments. S and HC require much more space than HX in a Mobile Environment.In Proc. of the Spatio-Temporal Database
because they keep the sample in memory. R-tree is as Iafg_
since the resulting tree has many data pages. In terms o
computational cost (figure 16) S is again the fastest technique

10 seconds, HX in 600 seconds and HC in 2000 seconds. R-
tree is very fast in the 1-dimensional case since no monté3l
carlo integration is needed in the 2-dimensional Hough-X

space (intersections can be computed with polygon clipping).
HX is slow because of the histogram construction time artf]
the database scans. Finally, HC is very slow because theyk;
dimensional histogram needs a very large grid size (3000 cel[ls)

to produce competitive results.

(16]

To conclude, if an index is present the index based estimajpy;
gives the best performance/query cost trade-off. S is also a
good choice since it is very efficient and easy to implement

when an index is not present. Finally, HX gives very accura&e

18]

results for an added computational cost which, of course, could

be reduced by rebuilding the histogram less often.

(19]

20
IV. CONCLUSIONS [20]

We conducted a thorough performance evaluation of spat[%l]
temporal selectivity estimation techniques. We considered vaiy
ious existing estimators that can be stored in main memory and
are dynamically updated as objects are moving. Furthermoe]

we proposed two techniques, a simple histogram approach gigl
an index-based estimator. We run a diverse set of experiments
on 1- and 2-dimensional environments using various syntheti

£

datasets. Clearly, no technique is best for all types of datasets.
For 1-dimensional movements the index-based estimator is
the most robust technique. For 2-dimensional and uniformigf!
distributed data histograms give the best results. For a freeway
network a simple random sample gives the best answers. For
highly skewed environments the techniques did not provide
good estimates. Finding a better alternative is left as an open
problem for future work.
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