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Abstract

Accurate estimation of the apparent diffusion coefficient (ADC) of lesions in diffusion-weighted

magnetic resonance imaging (DWMRI) is important to predict and monitor anti-cancer therapy

response. The task of ADC estimation of lesions is complicated due to noise in the image,

different variances in signal strengths at different b values and other random phenomena. In

organs that have visceral motion, due to motion across scans, estimating the ADC becomes even

more complex. To get rid of inaccuracies due to motion, only a single ADC value of the lesion is

estimated, conventionally using a linear-regression (LR) approach. The LR approach is based on

an inaccurate noise model and also suffers from other deficiencies. In this paper, we propose an

easy-to-implement and computationally-fast maximum-likelihood (ML) method to estimate the

ADC value of heterogeneous lesions in visceral organs. The proposed method takes into account

the Rician distribution of noise in DWMRI. In the process, we also derive the statistical model for

the measured mean signal intensity in DWMRI. We show using Monte-Carlo simulations that that

the proposed method is more accurate than the LR method.

Index Terms

ADC estimation; Maximum-likelihood method; Mean of Rician distributed random variables

I. Introduction

Diffusion is the thermally-induced behavior of molecules moving in a microscopic random

pattern in a fluid. Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to

this motion. The motion is quantified by means of an apparent diffusion coefficient (ADC)

[1], [2]. Since cellular structures generally restrict water mobility, a change in the lesion

anatomy in response to therapy results in a change in the ADC value of the lesion. In

previous studies, the ADC value has been shown to be a positive indicator to tumor response

to therapy, both pre-clinically and clinically [3]–[5]. However, for DWMRI to function as an

imaging biomarker, it is critical to estimate the ADC accurately and precisely. To estimate

the ADC, the lesion is scanned at multiple magnetic-gradient values (b values). From the

scanned images, the signal intensity of the lesion pixels is determined, and using these

intensity values, the ADC is computed. The task of ADC estimation is difficult due to the

corruption of the diffusion-weighted (DW) images by noise, different variances in signal

intensities at different b values [1], [6] and contamination due to flow artifacts and ghosting.
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In a visceral organ such as the liver, pancreas, or spleen, due to motion issues, this task

becomes even more complicated.

There has been considerable research on ADC estimation in DW images. The suggested

methods have targeted the problem of computing the ADC of the lesion on a pixel-by-pixel

basis. This results in the computation of an “ADC map” of the lesion. The least-squares (LS)

method has been one of the most popular methods for this task [7], [8], due to its speed and

ease of implementation. However, the LS method can be biased, since it does not account

accurately for the Rician distribution of noise in DW images [9], [10]. To overcome this

issue, more rigorous schemes have been proposed. Sijbers et al. [11] have developed a

maximum likelihood (ML) method for parameter estimation when the measurement data are

Rician-distributed. Walker-Samuel et al. [10] have applied this method to compute the ADC

of heterogeneous solid tumors in the brain. Bammer et. al. [12] have proposed a similar ML

technique and also a modified LS method for ADC estimation. Kristoffersen et al. [13] have

suggested another ML scheme for ADC estimation from averaged magnitude images.

While the suggested methods are very useful to compute an accurate ADC map of the

lesion, they require that the images acquired at the different b values be perfectly registered

with each other. In visceral organs, there might be movement of the organ across the

different b value scans. Due to this movement, there is the possibility of mis-registration of

the images at the different b values. Consequently, computing the ADC map on a pixel-by-

pixel basis is potentially error-prone [5]. Thus, instead of computing an ADC map of the

lesion, the mean signal intensity of the lesion, a parameter invariant to lesion movement, is

determined at the different b values. Using the mean signal intensity, a single ADC value for

the lesion is computed [5], [6], [14]–[17]. To compute this single ADC value, a linear-

regression (LR) technique is currently used [5], [15], [16]. However, the LR technique is

based on an incorrect noise model as we show later in the paper, and leads to inaccurate

ADC computation.

In this paper, we investigate the problem of designing an accurate estimator to compute a

single ADC value for a lesion in a visceral organ. Previously we had presented some

strategies to estimate this single ADC value for homogeneous lesions using a ML approach

[6], [18]. In this research, we further extend our work, proposing a significantly-improved

ML approach that incorporates a more accurate model of the noise in the measured data and

accounts for the heterogeneity in the lesions. In the process, we also develop a statistical

model for the measured mean signal intensity in DWMRI.

II. Theory

A. Problem Formulation

Let N be the number of b values at which the lesion is imaged. Let bi denote the b value for

the ith scan, for i = 1, 2, …, N. For the jth lesion pixel at the ith b value, let sij and mij denote

the true signal magnitude and the noisy measured signal magnitude, respectively.

As we discussed earlier, computing an ADC map using the scans at the different b values is

potentially error-prone for visceral organs. To circumvent this issue, the mean signal
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intensity of the lesion at the different b values is instead computed [5], [6], [15], [16]. Let us

denote the true mean signal intensity of the lesion at b value bi by s̅i. For a particular lesion,

the single ADC value a is required to satisfy the mono-exponential diffusion model,

(1)

where K is another unknown parameter.

Let us denote the measured mean signal intensity at b value bi by m̄i. Therefore,

 where J is the total number of lesion pixels in the image. Let us denote the

vector of measured mean signal intensities at the different b values, M̄ = {m̄i, i = 1, …, N}.

Our objective is to estimate the ADC value a, and the parameter K, accurately and precisely,

given M̄.

B. Linear-Regression Approach

A common approach to get this single ADC value a is a linear-regression (LR) approach [5],

[15], [16]. Let ni denote the noise in the measured mean signal intensity at b value bi. Thus,

we can write

(2)

using Eq. (1). In the LR approach, we take the logarithm of both sides of the above equation:

(3)

Using the least-squares-minimization technique, a and K are estimated. The issue with the

method is that, since it is a least-squares technique, it is optimal when log(ni) is normally

distributed [19], which is not true in this scenario. Another issue with the LR method is that

in DWMRI, at different b values, the variance of the measured signal is different [1], [6].

The LR method does not take this into account.

C. Maximum-Likelihood Approach

The basic objective of the ML approach is to obtain those values of {a, K} that maximize

the probability of occurrence of M̄. Therefore, the ML approach requires an accurate and

rigorous formulation of the probability model of M̄. We consider the general case of a

heterogeneous lesion and investigate the characteristics of the MR noise corrupting the

acquired image. The MR images are corrupted by Rician noise [9]. Therefore, at b value bi,

for the jth lesion pixel, the probability model for the measured signal intensity mij is given by

(4)

where σr is the Rician noise variance. We know that m̄i is the sum of N Rician-distributed

random variables, {mij, j = 1, …, J}. Under the assumptions that the noise is independent

and identically distributed (i.i.d.) across all the lesion pixels, the signal-to-noise ratio (SNR)
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of each lesion pixel, i.e. sij/σr, is greater than 2.64 [9], [10] and the heterogeneity in the

lesion is not very high, we can derive that pr(m ̄i) is normally distributed, and given by

(5)

where  is the sample variance of the lesion pixel intensities. The assumptions stated above

were empirically validated on our dataset of lesion images.

The noise terms in the measurements at the different b values are independent of each other.

Thus, we can write the complete probability model for M̄ as

(6)

where Σ = {σi, i = 1, …, N}. Using Eq. (1), we substitute s̅i to be K exp(−abi) in the above

equation. Our objective is to compute the values of {a, K} that maximize the probability of

M̄ given by Eq. (6). For computational efficiency, the logarithm of the probability is instead

maximized. Upon simplifying, we determine that the ML estimates of {a, K} should

minimize the log-likelihood function,

(7)

III. Methods

A. In-Vivo Imaging and Implementation of the Algorithm

In the study at the Arizona Cancer Center, DWMRI is being used to monitor the therapeutic

response in breast cancer patients with metastases to the liver [14]. Conventional T1 and T2-

weighted imaging is performed at 1.5T, along with DW single-shot echo-planar imaging

(DW-SSEPI) using b values of 0, 150, 300 and 450 s/mm2. From the in-vivo study, we

obtain a set of DW images for each lesion.

To determine the ADC of the lesion, the only inputs that our ML approach requires are M̄

and Σ. These quantities are obtained from the lesion images [20] and input to a quasi-

Newton optimization technique [21] in MATLAB software to determine the values for a and

K for which the maximum of the log-likelihood function (Eq. (7)) is obtained. We constrain

this optimization to search only between reasonable values of the parameters. For the ADC

value, we keep the initial guess of the ADC estimate as 2.0 × 10−3 mm2/s and the search

space as between 0.1 to 5.0 × 10−3 mm2/s, to cover the range of values typically measured

in-vivo [10]. The whole optimization task takes almost negligible time to run, and we thus

have an easy-to-implement and computationally fast ADC estimator.
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We cannot validate our algorithm using real data, since the true ADC value of the lesion is

not known. Therefore, we instead perform Monte Carlo (MC) simulations to verify the

accuracy of our algorithm. The dataset of lesion images obtained from in-vivo imaging is

used in the MC study to determine the various parameters for lesion simulation.

B. Lesion Simulation and Experimental Setup

We simulate the DW data using Eq. 4 for b values of 0, 150, 300 and 450 s/mm2, as in the

in-vivo study. Both homogeneous and heterogeneous lesions are simulated. While

simulating the lesion, we can vary the ADC value, the SNR, and the lesion size. We vary all

these parameters based on the empirical values that we obtain from the dataset of real DW

lesion images.

In every experiment, for a given ADC value, size and SNR of the lesion, we generate 100

instances of the lesion with different noise realizations. To quantify the performance of the

ML and LR methods, we compute the ensemble mean square error (EMSE) between the true

and estimated ADC values. The ESME is a common measure to quantify the performance of

an estimation technique [19], and is defined as

(8)

where E{…} denotes the expected value of the quantity within the brackets and a and â

denote the true and estimated ADC values, respectively. The expectation is over all noise

and lesion-variations in the particular experiment.

IV. Experiments and Results

A. Homogeneous Lesion

The set of experiments on homogeneous lesions were performed to study the performance of

the ML and LR algorithms as the ADC value, the SNR and the size of the lesion were

varied. In the first experiment, the ADC of the homogeneous lesion was varied between 0.1

× 10−3mm2/s and 5 × 10−3mm2/s [10]. The results of this experiment are shown in Fig. 1a.

We observe that the ML approach is more accurate than the LR approach over the whole

spectrum of possible ADC values of the lesion.

In the second experiment, the SNR of the lesion was varied, to study how the method

performs as the standard deviation of the Rician noise in the DW images changes. The

results of our experiment are shown in Fig. 1b. We observe that the ML approach is more

accurate than the LR approach even when the SNR is low. This is an especially useful result,

in light of the observation that typically DW images are low SNR images.

In the third experiment with homogeneous lesions, the width of the lesion was varied to

account for different possible lesion sizes. The results of this experiment are shown in Fig.

1c. Again, the ML approach is more accurate than the LR approach over all lesion sizes.

The results of these three experiment are summarized in the first three rows of Table I. As

the results show, the ML approach has the minimum EMSE for the three experiments.
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B. Heterogeneous Lesion

In the heterogeneous lesion model, the ADC values for the different pixels over the whole

lesion are sampled from a normal distribution. The inspiration for this model is from the

observation that in many studies [22], the histogram of ADC values of heterogeneous

lesions typically form a Gaussian distribution.

In the first experiment, we varied the mean of the normal distribution of the ADC in the

lesion from 1 × 10−3 mm2/s to 3 × 10−3 mm2/s. The standard deviation of the normal

distribution was kept as 1 × 10−3 mm2/s. The second and third experiments were the same as

the experiments for the homogeneous lesions in Sec. IV-A, except for the lesion being

heterogeneous. The ADC of the different pixels were sampled from a normal distribution

with mean 1.5 × 10−3 mm2/s and a standard deviation of 1 × 10−3 mm2/s. The results of

these experiments are as summarized in the last three rows of Table I. We observe that the

ML approach is more accurate than the LR approach for all the experiments.

V. Discussion and Conclusions

In visceral organs, a single ADC value of the lesion is computed. Currently an LR-based

scheme is used for this purpose, but it suffers from various deficiencies. To solve this issue,

in this paper, we have suggested a ML method that is based on the correct noise model in

DWMRI, accounts for the heterogeneity in the lesion and also does not suffer from the other

deficiencies of the LR method. In the process, we have derived the statistics of the mean

signal intensity measurements in DWMRI. We have derived and implemented the ML

method to estimate the ADC value of liver lesions. Also, we have performed a detailed MC

study to compare the performance of the ML and LR methods for both homogeneous and

heterogeneous lesions with different possible ADC values, SNRs and sizes. For the test

cases, we have observed that the ML method is more accurate than the LR method.

The proposed ML algorithm is easy to implement and computationally fast. Often, slow

computational speed and difficulty of implementation are significant impediments towards

the practical use of an algorithm. Our ML method, while being accurate, takes almost the

same execution time as the LR method. The ML approach is also convenient to use and does

not require significant user interface. Segmenting the lesion using any semi-automated

segmentation algorithm [20], [23] is sufficient to obtain all the required input data for the

ML approach. The method does not require the user to mark a background region to obtain

the Rician noise variance, as is required by some other methods [10], [12].

To summarize, we have derived, implemented and tested an ML approach to estimate the

ADC value of lesions in visceral organs. The method is more accurate than the conventional

LR approach, convenient to use, easy to implement and computationally fast. We are

currently testing the performance of the ML approach with other heterogeneous lesion

models.
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Fig. 1.
Comparing the accuracy of the ML approach with the LR approach for homogeneous

lesions, as the (a) ADC (b) SNR and (c) size of the lesion is varied.

Jha and Rodríguez Page 8

Proc IEEE Southwest Symp Image Anal Interpret. Author manuscript; available in PMC 2014 September 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Jha and Rodríguez Page 9

TABLE I

EMSE for the ML and LR estimation methods. The ADC is expressed in mm2/103s.

Type of lesion Parameter varied ML LR

Homogeneous

ADC 3.98 21.02

SNR 4.36 8.68

Size 3.48 5.26

Heterogeneous

ADC 11.20 22.60

SNR 13.71 23.75

Size 16.76 23.24
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