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ABSTRACT 

 
We propose a deep learning based method for classification 
of commonly occurring pathologies in chest X-ray images. 
The vast number of publicly available chest X-ray images 
provides the data necessary for successfully employing deep 
learning methodologies to reduce the misdiagnosis of 
thoracic diseases. We applied our method to the classification 
of two example pathologies, pulmonary nodules and 
cardiomegaly, and we compared the performance of our 
method to three existing methods. The results show an 
improvement in AUC for detection of nodules and 
cardiomegaly compared to the existing methods.  
 

Index Terms — chest X-ray, deep learning, 
classification, pulmonary nodule, cardiomegaly. 
 

1. INTRODUCTION 
 
In recent years, due to the abundance of chest X-ray (CXR) 
images, deep learning (DL) has gained wide popularity in the 
analysis of radiographic images and is anticipated to help 
radiologists in the context of disease detection and 
management [1]–[3]. Valley fever (coccidioidomycosis) is a 
fungal infection that has been endemic in the southwestern 
areas of the United States for hundreds of years [4]. Valley 
fever causes pneumonia-like symptoms and may be 
disseminated leading to other systemic infections that may 
manifest in meningitis, leading to cognitive impairment, 
paralysis or death [5]. Valley fever may also manifest as 
pulmonary nodules which may be mistaken for lung 
cancer.  In the past decade, the infection incidents of this 
disease have skyrocketed, reaching 22 500 cases in 2011, up 
from 2265 in 1998 [6], [7]. Furthermore, the difficulty in 
monitoring and diagnosing valley fever has led to 
misdiagnoses; thus, the statistics may not fully characterize 
the magnitude of this disease [8]. Following the detection of 
a pulmonary nodule, depending on the size, diagnostic 
differentiation methods available are limited and primarily 
involve sequential imaging with CXR, CT, PET-CT or 
invasive tissue sampling. An automated method can provide 
a second opinion and thus mitigate the problem of 
misdiagnosis. Furthermore, the existence of a fully automated 
method can help with diagnosis in less developed regions that 
don’t have access to an experienced physician.   
X-rays are one of the most commonly used and publicly 
available radiological modalities. Recently, multiple groups 

have collected a vast number of CXR images, creating large 
datasets available to machine learning researchers. CheXpert 
[9] consists of 224 316 chest radiographs of 65 240 patients, 
labeled for the presence of the 14 most prevalent diseases in 
clinical reports as shown in Fig. 1. PadChest [10] consists of 
160 000 chest radiographs obtained from 67 000 patients at 
San Juan Hospital (Spain) from 2009 to 2017. Finally, the 
NIH chest X-ray dataset consists of 100 000 chest 
radiographs. 

 
Figure 1: CheXpert dataset disease classification. The two 

pathologies we studied are colored in red. 

Wang [11] uses a unified weakly supervised multi-label 
image classification and disease localization framework to 
detect the commonly occurring thoracic diseases. Irvin [9] 
experimented with various existing deep architectures and 
approaches to treating the uncertainty in the manual labels to 
classify the 12 commonly occurring pathologies in their chest 
X-ray dataset. Various studies have explored the applicability 
of analyzing such datasets using deep learning to help with 
radiological imaging diagnosis. For example, multiple 
studies have used machine learning for automated diagnosis 
of tuberculosis from radiographic images [12]–[15].  

Taylor [16] used deep learning to detect pneumothorax in 
CXR images, reporting the receiver operating characteristic 
(ROC) area under the curve (AUC) as 0.94–0.96. Yao [17] 
used long short-term memory (LSTM) to leverage 
interdependencies among target labels in CXR images. Zech 
[18] investigated the generalizability of deep learning based 
models on images collected at different sites (hospitals) to 
detect pneumonia and reported an AUC of 0.93-0.94 when 
the model was trained on images obtained from the same site, 
and a significantly lower AUC of 0.75-0.89 when trained on 
images from other sites. 



Pulmonary nodules are spots smaller than 3 cm [19] that 
appear in medical chest images. Pulmonary nodules usually 
cause no symptoms and are discovered when a patient has 
gone through a CXR or CT scan for another matter. The 
presence of a nodule may indicate abscess, tuberculosis, 
pneumonia, or coccidioidomycosis (valley fever) [20]. In this 
study, we have developed a deep learning based method for 
the detection of pulmonary nodules (referred to as lesions in 
the CheXpert [5] dataset) to help with the diagnosis of 
thoracic diseases such as valley fever. Even though Irvin [9] 
uses a similar architecture to ours, what distinguishes our 
work from theirs is the use of a weighted loss function to 
account for the huge class imbalance in the CheXpert dataset 
for pulmonary nodules. Further, Irvin [9] only reports AUC 
for five pathologies not including pulmonary nodules, which 
could be due to this class imbalance. In order to compare the 
performance of our proposed method against Irvin’s, we 
tested our method on another pathology, cardiomegaly, 
which was randomly selected from the five pathologies that 
Irvin analyzed to investigate the effect of using our weighted 
loss function against their reported AUC. 
 

2. METHODS 
After exploring different architectures, we chose to use a 
dense convolutional network (DenseNet) architecture [21] 
for the main body of the proposed method. DenseNet 
connects the output of each layer of the network to all its 
subsequent layers, so that each layer of the network receives 
the outputs of all preceding layers as inputs. This has helped 
mitigate the problem of vanishing gradient and substantially 
reduced the amount of memory required for training very 
large datasets. In order to improve the convergence rate, all 
network parameters were initialized with parameters of a 
similar network trained on the ImageNet dataset [22]. Finally, 
in order to adapt this architecture to our problem, the last fully 

connected layer was removed, and each feature map in the 
previous layer (1024 feature maps of size 10×10) is averaged 
and concatenated using global average pooling to create a 
feature vector of size 1024. Finally, another dense layer (with 
a size of 2×1) followed by a 1×1 convolution with a softmax 
activation function is used to map these feature vectors into 
the desired classes, where the output of the network will be 
two probability maps showing the likelihood of the input 
image belonging to each class (positive or negative). The 
final architecture is shown in Fig. 2. 
All input images are normalized to have zero mean and unit 
standard deviation. Due to the significant class imbalance, a 
weighted loss function is used, where each class’s weight is 
computed as 
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where 𝑁% and 𝑁' are the number of positive and negative 
cases in the training dataset. 
A weighted binary cross-entropy [29] is used as the loss 
function: 
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456
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where 𝐶 = 2 is the number of classes (positive/presence and 
negative/absence of the pathology), 𝑝, =	exp(𝑦?,)/
∑ exp(𝑦?B)456
B78  is the probability of the input image belonging 

to class 𝑖 after applying the softmax function to the network’s 
final score 𝑦?,	, 𝑤, represents the weight for class 𝑖, and 𝑞, is 
the ground truth for class 𝑖. 

Both networks (for pulmonary nodules and cardiomegaly) are 
trained using the Adam optimizer [23] with 15 epochs and a 
batch size of 20. The learning rate is set to 0.0001 throughout 
the training. In order to avoid overfitting and preserve the best 

Figure 2: Proposed framework – Densenet121 [21] plus global average pooling and softmax layers. 



sets of parameters, the weights for the epoch with least 
validation loss are used as the final network parameters. The 
final network output’s probability maps are converted to 
binary values using the threshold that corresponds to the 
highest average F1 score on the validation set across each 
pathology. The network is implemented in Python and Keras 
[24] with a TensorFlow backend using an NVIDIA P100 
GPU with 16 GB GDDR5 RAM. The required training times 
for the lung nodule (lesion) and cardiomegaly networks were 
7 and 19 hours, respectively. The number of trainable and 
non-trainable parameters in both networks were 6 955 906, 
and 83 648, respectively.  
The CheXpert dataset consisting of 224 316 chest 
radiographs of 65 240 patients is used in this study. All labels 
are extracted by applying a universal dependency parser [28] 
to the clinical reports corresponding to each patient. Each 
report is split and tokenized into sentences using NLTK [25]. 
Each sentence is parsed using the BLLIP parser [26].  The 
universal dependency graph of each sentence is computed 
using Stanford CoreNLP [27]. Finally, the extracted 
keywords are matched against the manually extracted 
keywords by experienced radiologists. 

All front-view images of cases with lesions are extracted 
from the CheXpert dataset, resulting in 1270 and 9189 cases 
with positive and negative labels, respectively. Due to the 
very few cases of patients with lesions in the validation folder 
of the CheXpert dataset (1 case out of 200), the provided 
training folder is randomly divided into training (64%), 
validation (16%) and testing (20%). Further, to reduce the 
amount of required memory, all input images are 
downsampled to 320 × 320. The distribution of training, 
validation and testing data is shown in Table 1.  
 

Table 1: NUMBER OF CASES FOR EACH PATHOLOGY  
Training + 
Validation 

Testing 
 

Pos Neg Pos Neg 
Pulmonary nodule 935 7430 335 1756 
Cardiomegaly 8552 21941 2564 5059 

 
In order to validate the performance of the proposed method 
against the results of Irvin [9], one other pathology that is 
reported in their work was extracted and used to train a 
separate network. For this purpose, cardiomegaly was 
selected, resulting in 11 116, and 27 000 cases with positive 
and negative labels, respectively. 
The code is publicly available at 
https://github.com/artinmajdi/chest_xray. 
 

3. EXPERIMENTAL RESULTS 
Fig. 3 shows two cases of patients with a pulmonary nodule 
and cardiomegaly. The location of each abnormality is 
overlaid onto the respective CXR image. As described in 
Sect. 2, the original images are heavily downsampled which 
makes the diagnosis of small nodules nearly impossible for a 

human expert. Even though the nodule image shown in Fig. 3 
is reduced from 2828 × 2320 to 320 × 320, the proposed 
method is able to correctly classify the lung nodule. However, 
the proposed method will likely fail to detect nodules with 
sizes smaller than 10 × 10 voxels in the original image due to 
downsampling.  

Table 2 shows the AUC per pathology for the proposed 
method and three existing methods. In order to be consistent, 
the value shown for Irvin [9] is taken from the case with 
“ignoring the uncertain labels” as reported in their work. We 
can see an increase in AUC in the proposed method with 
comparison to the existing methods for both pathologies. 
 

Table 2: AUC FOR LUNG NODULE AND CARDIOMEGALY  
Proposed Irvin [9] Wang[11] Yao [17] 

Pulmonary nodule 0.73 - 0.67 0.72 
Cardiomegaly 0.92 0.83 0.80 0.90 
 

Pulmonary nodule Cardiomegaly 

  
Figure 3: Examples of a pulmonary nodule (lung lesion) 
and cardiomegaly. The area encompassing the 
abnormalities is shown in red overlay. 

 
Fig. 4 shows the ROC curves for each pathology and each 
label (presence or absence of that pathology). The ROC curve 
is measured by varying the discrimination threshold that is 
used to binarize the output probability maps. We can see a 
high (0.92) AUC for cardiomegaly and a moderate (0.73) 
AUC for pulmonary nodule classification. The lower AUC in 
the latter is likely due to the vast class imbalance (only 12.7% 
of the extracted dataset consisted of positive labels) and 
complexity of detecting cases with nodules (due to difficulty 
in detecting nodules in the vicinity of certain structures such 
as bone, and also the small size of nodules). 
 
 
 
 
 
 
 
 
 
 
 



 
 

 Pulmonary nodule (AUC=0.73) Cardiomegaly (AUC=0.92) 

  

Figure 4: ROC curves of proposed algorithm for two 
pathologies (nodule (lesion) and cardiomegaly).  
 
 

4.  CONCLUSION 
We have proposed a deep learning network for classification 
of pulmonary nodules and cardiomegaly. Based on ROC 
analysis, the proposed approach has successfully 
outperformed the existing methods. Specifically, the 
proposed network had a high AUC (0.91) for cardiomegaly 
classification, and a moderate AUC (0.73) for nodule 
classification. 
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