
The 1st Workshop on Model-Based Verification & Validation

Directed Acyclic Graph Modeling of Security Policies for Firewall Testing

T. Tuglular, Ö. Kaya, and C. A. Müftüoğlu
Department of Computer Engineering,
Izmir Institute of Technology, Turkey

{tugkantuglular/ozgurkaya/ardamuftuoglu@iyte.edu.tr}

F. Belli
Department of Computer Science, Electrical Engineering and Mathematics,

University of Paderborn, Germany
{belli@adt.upb.de}

Abstract

Currently network security of institutions highly
depend on firewalls, which are used to separate
untrusted network from trusted one by enforcing
security policies. Security policies used in firewalls are
ordered set of rules where each rule is represented as
a predicate and an action. This paper proposes
modeling of firewall rules via directed acyclic graphs
(DAG), from which test cases can be automatically
generated for firewall testing. The approach proposed
follows test case generation algorithm developed for
event sequence graphs. Under a local area network
setup with the aid of a specifically developed software
for this purpose, generated test cases are converted to
network test packets, test packets are sent to the
firewall under test (FUT), and sent packets are
compared with passed packets to determine test result.

Keywords: Firewalls, Firewall Policies, Directed
Acyclic Graphs, Event Sequence Graphs, Firewall
Testing, Security Testing.

1. Introduction

Firewalls, which act as the most important defense
mechanism of network security, have to be tested to
validate that they work as specified. The firewall
specification is mainly composed of intended security
policy and allowed network protocols, which are
usually the main focus of an attacker. The intended
security policy consists of firewall rules, which
configure the firewall behavior, and allowed network
protocols. These constitute an important part of

firewall’s internal infrastructure which can be
described as packet capture, decision making on the
packet under consideration, and packet release.
Decision making operation is carried out with respect
to firewall policy and network protocols. The security
policy is external to the firewall like a configuration
file, whereas packet checking with respect to network
protocols is implemented in the firewall software.

Since the firewall policy is considered as a
specification and can be represented by a formal
model, we propose a model-based testing approach for
firewalls. The novelty of this approach is using DAG
model for firewall testing. This paper proposes
modeling of firewall rules and generating test cases
using DAGs. Since event sequence graphs (ESG) are
directed graphs, we applied its test case generation
algorithm to the DAG representation of firewall rules.
Then test packets derived from generated test cases are
sent to the firewall to analyze its behavior.

Next section summarizes related work before
Section 3 outlines background and the test generation
algorithm. The core of the paper, Section 4, presents
our firewall testing approach. Sections 5 and 6 include
implementation details of the approach and a case
study on a firewall. Section 7 concludes the paper and
outlines our research work planned.

2. Related Work

A firewall controls network traffic to and from a
computer, based on a security policy. Although
systematic testing was an omitted area in firewall
studies and relative literature, recent studies on

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSIRI.2009.52

379

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSIRI.2009.52

393

2009 Third IEEE International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-3758-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSIRI.2009.52

393

firewalls began to fill this gap. Recent work about
firewalls mention how firewalls suffer due to design
[1] and configuration problems [2, 3, 4]. Including [1]
some approaches propose using formal languages to
specify firewall rules [5, 6]. In contrast to formal
languages defined, the structural testing approach
stated in [13], does not consider the rule sequence in
firewalls but aims to evaluate firewall by three aspects;
namely consistency, completeness, compactness.

In some cases, firewalls are undertaken by points of
design, implementation, and configuration, other
approaches focus on the analysis of firewalls with
anomaly detection by Ehab Al-Shaer and Hazem
Hamed in [14]. They also offer an algorithm to
discover and detect anomalies. Frantzen, Kerschbaum,
Schultz and Fahmi in [9] proposed that given the large
number of firewall vulnerabilities that have surfaced in
recent years, it is important to develop a
comprehensive framework for understanding both what
firewalls actually do when they receive incoming
traffic and what can go wrong when they process this
traffic. They used dataflow model of firewall internals
to study vulnerabilities in firewalls.

The studies based on data flow testing [7,8,10,11]
have been restricted to testing data dependencies that
exist within a procedure which requires information
about the flow of data including calls and returns
across procedure boundaries. Intra-procedural data
flow tests focus on source code by building and
searching program’s def-use graph and determine the
dependencies or definition use pairs. Although existed
inter-procedural data flow algorithms cannot provide
information about locations of definitions needed for
inter-procedural data flow testing, they help in
determining the def-use information and guiding
selection as well as execution of test cases that meet
requirements [12].

Fulp proposes a DAG approach for representing
firewall rules in [15], which focuses on the precedence
of the rule sequences and reorder rules to improve
performance by decreasing packet delay. Also in [16],
it is proven that by the approach of DAG the linear
sorting of a firewall policy provides an integrity. Our
approach follows formal representation of firewall
rules with DAG and builds on test case generation
algorithm developed for ESG.

3. Background

The firewall policy rules are required to be modeled
by a formal specification tool. To represent legal and
illegal statements better, a graph-based approach is
constituted. In the graph-based representation of a
firewall policy, cycles should be avoided. Otherwise,

anomalies may occur. The directed acyclic graph
representation of firewall rules fulfills these
requirements.

3.1 Directed Acyclic Graphs

DAG is a directed graph with no directed circuits.
For any vertex v, there is no nonempty directed path
that starts and ends on v [19]. The simplest example of
a DAG can be given as a directed tree. The vertices of
an n-vertex acyclic directed graph G can be labeled
with integers from the set {1, 2, ..., n} such that the
presence of the edge (i,j) in G implies that i<j where
the edge (i,j) is directed from vertex i to vertex j [20].

A partial order is formed by the reach ability
relation in a DAG. DAGs are mainly used to model
processes where the flow of information moves in a
consistent direction [19]. In our case, we use DAG to
represent the firewall policy rules as a rule (evaluation)
sequence graph, from which test cases are generated
using test case generation algorithm developed for
event sequence graphs.

3.2 Event Sequence Graphs

The testing process consists of the execution of the
SUT with the produced test inputs and the comparison
of the real outputs with the expected ones. If the
outputs are in compliance with the expected ones, the
test is said to have succeeded, else it fails.

Event sequence graph is an event-based formal
model, where the inputs and events are merged and
assigned to the vertices of an event transition diagram.
The arcs visualize the sequence relation of the events
[17]. An ESG is a simple albeit powerful formalism for
capturing the behavior of interactive systems. The
complete set of interactions is captured in terms of a
set of ESGs, where each ESG represents a possibly
infinite set of event sequences. An event can be a user
stimulus or a system response, punctuating different
stages of the system activity.

As stated in [18], each edge in the ESG is marked as
a legal event pair (EP). A complete event sequence
(CES) represents a walk through the ESG by starting at
the entry node and ending at the exit node of the ESG.
Entry and exit nodes are not events, they represent
entry and exit points of an ESG. Faulty (or illegal)
event pairs (FEP) are introduced as the edges of the
corresponding ESG . Moreover, an EP of the ESG can
be extended to a faulty, or an illegal, event triple
(FETr) by adding a subsequent FEP to this EP. A
faulty event sequence (FES) of the length n consists of
n-1 events that form a legal ES of length n-2 and of
two events at the end that form an FEP.

380394394

As stated in [18], faulty CESs (FCESs) can be
constructed using FEPs. A FEP that starts at the entry
node of the ESG is also a FCES. Furthermore, a FEP is
not executable when it does not start at the entry of the
ESG. Hence, it is extended by adding suitable prefixes
and the resulting sequence becomes a FCES. Each ES
that starts at the entry of the ESG and ends at the first
symbol of the FEP is prefixed to the FEP and the
resulting sequence becomes a FCES.

3.3 Test Case Generation

We use the method described in [18] which uses an

ESG and its complement as input and generates a test
set that is complete with respect to model-based
coverage criterion. There are mainly two objectives for
the test case generation procedure. One is the
generation of CESs and the other one is to generate
FCESs from the complement of ESG that model the
system behavior by considering both the desirable and
undesirable parts. With the input of a FCES, the SUT
is expected to go to a faulty state and raise a related
exception handling mechanism. Hence, CESs are used
to test the correct behavior, where the FCESs are used
to check the exception handling mechanism.

Given an ESG and the corresponding CESG, the
test case generation algorithm generates tests that cover
both all event pairs in ESG and all faulty event pairs of
the CESG. Note that, the sum of the lengths of the
generated CESs and FCESs should be minimal to
avoid long chain of events. The test case generation
algorithm [18] is presented in Figure 1.

Figure 1. Test case generation algorithm [18]

4. Firewall Testing Approach

The firewall testing approach proposed here is
composed of five phases: (1) generating test cases from
firewall policy rules, (2) constructing network test
packets from generated test cases, (3) sending
constructed test packets to FUT, (4) capturing packets
that go through the FUT, and (5) comparing sent and
captured packets to determine the test result. Proposed
firewall testing approach is summarized in Figure 2.

Figure 2. Summary of the approach

The firewall policy parser algorithm explained in

[15] is used to convert rules to a DAG and then each
rule sequence in the DAG is considered as an event
sequence, so that test case generation algorithm for
ESG can be utilized. At the test case generation step,
the algorithm creates a test case for each complete
event (rule) sequence, which are derived from the
DAG.

The test case generation algorithm works as
follows: for each complete event sequence, a test case
is generated from the first rule of that CES and this test
case is modified by the proceeding events (rules) in the
CES until the “deny all” rule, which is always the last
rule for all firewall policies that follows default deny
principle. An example of test case generation is given
in Section 6.

 Once concrete test cases are ready, constructing
network test packets as well as sending and capturing
them require an appropriate network architecture and
some network programming. Our firewall testing tool
explained in Section 5 contains the necessary network
programming code. To be able to analyze and evaluate
the behavior of the firewall under test with respect to
test cases, we use an architecture introduced in [23],
which is illustrated in Figure 3.

Figure 3. Firewall evaluator architecture [23]

The test packets will be released from packet

injection point (PIP), which is the computer that hosts
our firewall testing tool. All the traffic entering and
leaving the firewall will be recorded and collected data
will be analyzed to obtain test outputs, which will be
compared with expected outputs to determine test
result. We expect to see allowed packets at the packet
leaving point but not the denied ones.

381395395

Figure 4. Firewall testing tool graphical user interface screenshot

5. Implementation and Tool Support

For the implementation of our approach, we
developed a firewall testing tool in Java programming
language. The tool reads all rules from a firewall
policy and derives test cases from these rules. Then
using generated test cases test packets are constructed
using JPCAP v0.7 [24] library. Our tool also includes a
sniffer to collect packets that pass the FUT.

The generated packets are stored in a database table
where MYSQL v5.1 [21] is used as the database
management system. The generated packets are sent to
the firewall, where IPTABLES v1.4.1.1 [22] is used
running under Linux operating system. The packets
which pass through the firewall are captured and stored
in another table. Both sent and captured packets are
compared to determine whether the test is passed or
failed. Firewall test results can be seen in the graphical
user interface of our tool illustrated in Figure 4.

6. Case Study

The case study was conducted by using an example
firewall policy displayed in Table 1. The rules are
converted to a DAG and then to an ESG. The ESG
model of the example firewall rules is given in Figure
5. It can be seen in the figure that the node r7 subsumes
r1, r6 subsumes r2, r3, r4 and r5 and r8 subsumes r6, r7.

Test generation begins with an analysis of the rules
and the subsume relation between them. This analysis
leads to the following set of EPs.

(r1, r7), (r2, r6), (r3, r6), (r4, r6), (r5, r6), (r6, r8), (r7, r8)

Table 1. Example firewall rules

In the next step, CESs are generated. As explained
in (Section 3.2), CES is a walk-through obtained by
extending the EPs by appropriate suffixes. The list
below gives the CESs for rules given in Table 1.

(r1, r7, r8), (r2, r6, r8), (r3, r6, r8), (r4, r6, r8), (r5, r6, r8)

Figure 5. ESG model of the firewall policy

showing legal rule sequences

382396396

For each complete event (rule) sequence, a test case
is generated and then converted to a network test
packet. In other words, an individual packet represents
a unique test case. For instance, consider the first CES,
which is the rule sequence (r1, r7, r8) as shown in Table
2. For this complete sequence, a network test packet is
generated with 192.168.2.127 as source IP addresses,
with 53 as source port, with 10.0.0.127 as destination
IP address, and with 53 as destination port. Table 2
shows generated test packets for each complete event
(rule) sequence defined in Table 1 and presents the
state of the packets and respectively the test result. In
this study, we did not consider FEPs, so FCESs and
they are left as future work.

Table 2. Sent and captured packets

7. Conclusion

In this paper, we proposed a solution for model-
based firewall testing and presented a case study to
explain the proposed approach. Using directed acyclic
graphs to model firewall rules and utilizing test case
generation algorithm of event sequence graphs, we are
able to automate firewall testing procedure. This
automation is realized with an implemented tool. As
future work, we would like to extend our case study by
including faulty rule sequences. In the proposed
approach, we utilized only concrete test cases, however
we would like to integrate the concept of abstract test
cases as in [25] to our work. The test case generation
utility of the introduced tool can be improved by
reflecting hacker methodologies.

References

[1]. Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool,
“Firmato: A novel firewall management toolkit”, in Proc. of
IEEE Symp. on Security and Privacy, 1999, pp. 17–31.

[2]. H. Adiseshu, S. Suri, and G. Parulkar, “Detecting and
Resolving Packet Filter Conflicts”, in 19th Annual Joint
Conference of the IEEE Computer and Communications
Societies, 2000, pp. 1203–1212.

[3]. E. S. Al-Shaer and H. H. Hamed, “Discovery of Policy
Anomalies in Distributed Firewalls”, in 23rd IEEE Computer
and Communications Societies Annual Joint Conference,
2004.

[4]. P. Gupta, “Algorithms for Routing Lookups and Packet
Classification”, PhD Thesis, Computer Science Dept.,
Stanford University, 2000.

[5]. High level firewall language, http://www.hlfl.org, 2009.

[6]. Joshua D. Guttman, “Filtering postures: Local
enforcement for global policies”, in Proceedings of IEEE
Symp. on Security and Privacy, 1997, pp. 120-129.

[7]. L.A. Clark, A. Podgurski, D. Richardson, S. Zeil, “A
comparison of data flow path selection criteria”, in
Proceedings 8th International Conference on Software
Engineering, London, UK, 1985, pp. 244-251.

[8]. B. Korel, J. Laski, “A tool for data flow oriented
program testing”, in Proceedings of the Second Conference
on Software Development Tools, Techniques, and
Alternatives, 1985, pp. 34-37.

[9]. M. Frantzen, F. Kerschbaum, E. E. Schultz, and S.
Fahmy, “A Framework for Understanding Vulnerabilities in
Firewalls Using a Dataflow Model of Firewall Internals”, in
Proceedings of Computers Security, 2001, pp. 263-270.

[10]. J. W. Laski, B. Korel. “A data flow oriented program
testing strategy”, IEEE Transactions on Software
Engineering, vol. SE-g, no. 3, 1983, pp. 347- 354.

[11]. S. Rapps, E. J. Weyuker, “Selecting software test data
using data flow information”, IEEE Transactions of Software
Engineering, vol. SE- 11, no. 4, 1985, pp. 367-375.

[12]. M. J. Harrold, M. L. Soffa, "Interprocedural Data Flow
Testing", SIGSOFT Softw. Eng. Notes, vol. 14, no. 8, 1989,
pp. 158-167.

[13]. M. G. Gouda, A. X. Liu, “Firewall design: consistency,
completeness and compactness”, in Proceedings of the 24th
IEEE International Conference on Distributed Computing
Systems (ICDCS-04), 2004, pp. 320-327.

[14]. E. Al-Shaer, H. Hamed, “Discovery of policy anomalies
in distributed firewalls”, in IEEE INFOCOM'04, 2004, pp.
2605-2616.

[15]. E. W. Fulp, “Optimization of Network Firewall Policies
using Directed Acyclical Graphs”, in Proceedings of the
IEEE Internet Management Conference, 2005.

[16]. E. W. Fulp, “Firewall policy models using ordered-sets
and directed acyclical graphs”, Technical Report, Wake
Forest University Computer Science Department, 2004.

[17]. F. Belli, “Finite-State Testing and Analysis of
Graphical User Interfaces”, in Proceedings of the 12th
international Symposium on Software Reliability
Engineering, IEEE Computer Society, Washington, DC,
2001, p. 34.

[18]. F. Belli, N. Nissanke, Ch. J. Budnik, A. Mathur, “Test
Generation Using Event Sequence Graphs”, Technical
Report, University of Paderborn, 2005.

383397397

[19] J. Bang-Jensen, "2.1 Acyclic Digraphs", Digraphs:
Theory, Algorithms and Applications, Springer Monographs
in Mathematics, Springer-Verlag, 2008, pp. 32–34.

[20]. K. Thulasiraman, M. N. S. Swamy, "5.7 Acyclic
Directed Graphs", Graphs: Theory and Algorithms, John
Wiley and Son, 1992, p. 118.

[21]. MySQL, MySQL version 5.1 Community Edition, in
http://dev.mysql.com/downloads/mysql/5.1.html, 2009.

[22]. IPTABLES, IPTABLES version 1.4.1.1, in http://www.
netfilter.org/projects/iptables, 2009.

[23]. T. Tuglular, F. Belli, “Model-Based Mutation Testing
of Firewalls”, Fast Abstracts of TAIC-PART Conference,
United Kingdom, 2008.

[24]. JPCAP, JPCAP – version 0.7, in http://netresearch.
ics.uci.edu/kfujii/jpcap/doc, 2009.

[25]. D. Senn, D. Basin, and G. Caronni, “Firewall
Conformance Testing”, Proc. 17th TestCom, LNCS 3502,
Springer, 2005, pp. 226-241.

384398398

