
Runtime Verification of Domain-Specific Models of
Physical Characteristics in Control Software

Arjan de Roo, Hasan Sözer, Mehmet Akşit

Software Engineering group

Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente, The Netherlands

Email: {roo, sozerh, aksit}@ewi.utwente.nl

Abstract—Control logic of embedded systems is nowadays
largely implemented in software. Such control software imple-
ments, among others, models of physical characteristics, like
heat exchange among system components. Due to evolution of
system properties and increasing complexity, faults can be left
undetected in these models. Therefore, their accuracy must be
verified at runtime.

Traditional runtime verification techniques that are based on
states and/or events in software execution are inadequate in this
case. The behavior suggested by models of physical character-
istics cannot be mapped to behavioral properties of software.
Moreover, implementation in a general-purpose programming
language makes these models hard to locate and verify. This
paper presents a novel approach to explicitly specify models
of physical characteristics using a domain-specific language, to
define monitors for inconsistencies by detecting and exploiting
redundancy in these models, and to realize these monitors using
an aspect-oriented approach. The approach is applied to two
industrial case studies.

I. INTRODUCTION

Many embedded systems today are largely controlled by

software. For example, the control of overall system behavior

in digital document printing systems is mainly performed by

software. The size and complexity of such embedded software

systems is continuously increasing due to the demand for

new functionality, increasing variety in the types of hardware

that need to be controlled and more refined/optimized control.

Despite this trend, the control software must be kept reliable,

even in varying circumstances such as changing context/en-

vironment, changing usage profile and evolution of system

properties.

Fault prevention and removal techniques usually fall short

to ensure the reliability of embedded systems, which are de-

veloped under time-to-market pressure. For example, software

testing is widely used; however, due to time limitations and

the sheer size and complexity, testing software exhaustively

has become prohibitive. Therefore, it is necessary to detect

and cope with residual defects at runtime. As such, runtime

verification has to be adopted in embedded systems as a

complementary approach to increase the reliability.

An important characteristic of embedded control software

is that it includes models of physical characteristics (which

we will abbreviate to physical models in the following), for

example models of the natural relationships between physical

variables. These physical models mainly determine the control

behavior. For example, several calculations have been imple-

mented in the control software of digital printing systems to

estimate the heat exchange among components like the toner
belt and the paper path. The accuracy of such estimations

is crucial for correct and optimal functioning of the system.

However, there can be errors in these estimations due to a

number of reasons, e.g., i) data received from the sensors

can be inaccurate, ii) there can be undiscovered faults in the

implementation, and iii) some implementations can become

obsolete and invalid when the working context or system

properties change (change of hardware, wear and tear of the

hardware). Therefore, such estimations must be verified at

runtime.

Observers and monitors are essential elements for runtime

verification. Traditionally, these are extracted/generated/de-

fined based on specifications of events and states of interest

in software and properties on these events/states that need to

be verified. However, this approach is inadequate for verifying

the physical models implemented in software. The monitors, in

this case, are concerned with how physical characteristics are

represented in software. This is not directly apparent from the

encountered states and events during the software execution.

As such, it is not straightforward to specify monitors in terms

of these concepts. Moreover, computations regarding physical

models are typically implemented in a general-purpose pro-

gramming language and scattered across the implementation

of several software modules, controlling various hardware.

Therefore, it is hard to locate parts of the source code that

are relevant for monitoring.

In this paper, we propose a novel approach, where physical

models in an embedded system are specified with the domain-

specific language SIDOPS+ from the 20-Sim toolset [1], [2].

Such specifications are part of the software and are executed

using an interpreter. An approach to verify these physical

models, taken from control engineering literature on state

observers [3], is to use redundancy in the model (e.g., multiple

relationships for the same physical variable, additional sen-

sors). Specified relationships in the domain-specific language

define a dependency graph, in which redundant paths reveal

the information that can be used to check for consistency.

The same information can be utilized for fault diagnosis.

Monitors are created using the aspect-oriented composition

2011 Fifth International Conference on Secure Software Integration and Reliability Improvement

978-0-7695-4453-3/11 $25.00 © 2011 IEEE

DOI 10.1109/SSIRI.2011.14

41



filters language. We apply our approach on two industrial case

studies for runtime verification of digital document printing

systems.

To summarize, our paper provides the following contribu-

tions:

• The application of a domain-specific language to explic-

itly specify physical models in software for the purpose

of verifying their correctness.

• A method to detect redundancy in the physical models

and utilize this to verify their consistency with physical

reality.

• An aspect-oriented approach to create monitors for ver-

ification and handling of inconsistencies in the physical

models.

The remainder of this paper is organized as follows. Section

II motivates our research, including an industrial case study to

illustrate the problems and challenges addressed by this paper.

Our approach is explained in Section III. Section IV presents

implementation details of our approach. In Section V we apply

our approach to a second industrial case study. Several aspects

of our approach are discussed in Section VI. Related work is

discussed in Section VII. In Section VIII a conclusion is given

and future work is outlined.

II. PROBLEM STATEMENT

In this section we illustrate that physical models are part

of control software, we motivate why such physical models

need to be verified at runtime and we explain a number of

relevant challenges that arise when we want to perform this

verification.

A. Physical Models Implemented in Control Software

This section describes an industrial case study that shows

that physical models are being implemented in control soft-

ware. This case study will also be used as a running example

to explain our approach. Although this case is simplified

for presentational purposes, it is still relevant and sufficient

to illustrate the problem and our solution approach. In fact,

within the context of the Octopus project1 [4], our approach

has been applied in practice. The case focuses on the warm
process subsystem of a printing system, which is responsible

for transferring a toner image to paper.

Figure 1 gives a schematic view of the components in the

printing system responsible for the warm process. The warm

process has two main parts; a paper path for transporting

sheets of paper and a toner belt for transporting toner images.

For correct printing, both the paper as well as the toner

belt should have a certain temperature at the contact point.

Therefore, the warm process contains two heating systems; a

paper heater to heat the paper and a radiator to heat the toner

belt.

1The Octopus project is a joint effort in a consortium of both industrial
and academic partners: Océ-Technologies B.V. (one of the world’s leading
manufacturers of printer and copier systems), the Embedded Systems Institute
and four Dutch universities [4].

Toner
Belt

Paper Path

Paper Heater

Radiator

Contact
Point

Temperature
Sensor

Pph Tph
Prad

Tbelt

Tcontact

v

Fig. 1. Schematic view of the warm process

Software has been implemented to control the heaters to

maintain the required temperatures for correct printing. Figure

2 shows the software structure and the data-flow between the

different modules.

Paper Heater
Controller

Tsp
phPph Tph

Radiator
Controller

TcontactTsp
contact Prad

Print Quality
Model

Tcontact

Tph v

Belt Temperature
Model Prad

Tcontact

Tbeltv

Physical System I/O

Pph Tph Tbeltv Prad

KEY: In-port Out-portData-flowModule

Fig. 2. Schematic overview of the software structure

The Physical System I/O module provides an inter-

face to the following sensors and actuators of the system:

• Tph: Sensor that measures the temperature of the paper

heater.

• Tbelt: Sensor that measures the temperature at the sensor

location on the toner belt.

• v: Sensor that measures the printing speed.

• Pph: Actuator to set the amount of power supplied to the

paper heater.

• Prad: Actuator to set the amount of power supplied to

the radiator.

There are two controller modules in the system. The Paper
Heater Controller controls the paper heater temperature

(Tph) to a certain setpoint (T sp
ph), by regulating the power to

the paper heater (Pph). The setpoint value is configured by

other modules, not shown here.

The Radiator Controller controls the contact point

temperature of the toner belt (Tcontact) to a certain setpoint

value (T sp
contact), by regulating the power to the radiator (Prad).

The control software contains implementations of two phys-

ical models. Firstly, it contains the module Print Quality

42



Model, which implements a physical model of print quality,

based on the temperature and speed variables. The model

contains the following physical relationship:

Tcontact = c1 · v − c2 · Tph + c3 (1)

In which c1, c2 and c3 are constants. The implementation of

this model is used to determine the setpoint value (T sp
contact)

of the Radiator Controller, so that print quality is

ensured.

Secondly, the control software contains the module Belt
Temperature Model, which implements a physical model

of the belt temperature. This model contains the following

physical relationship:

Tcontact = c4 · Prad√
v

+ Tbelt (2)

This model is used to determine the actual Tcontact, as there

is no sensor in the system (due to physical limitations) to

directly measure this temperature.

So, the case clearly illustrated a number of physical models

implemented in control software. In the next section, we will

explain why such models need to be verified.

B. Verifying Physical Relationships

The previous section showed that physical models are

being implemented in control software. Such implemented

physical models, however, might not always be or remain

accurate/correct. There are different reasons for this, e.g.:

1) The underlying assumptions on which the physical mod-

els are based might not be accurate enough. For example,

the physical relationships might not accurately describe

the physical reality.

2) The system might be used in different operational con-

ditions than considered during design. For example, a

printer system can be applied in different environmental

conditions than expected, paper from a different man-

ufacturer (having slightly different physical characteris-

tics) can be used, etc.

3) Physical characteristics might change over time, because

of, for instance, wear and tear of physical components

in the system.

4) Physical characteristics might change because of evo-

lution. For example, changes in the physical hardware

influence the characteristics. If they are not updated ac-

cordingly in the implemented physical models, this can

cause failures. If the physical models are implemented

in a general-purpose programming language and tangled

with core behavior of components, updating them can be

error-prone, because it is hard to locate the affected parts

in the code.

5) The engineer implementing a physical model might

introduce a fault.

Incorrectness in an implemented physical model may lead

to failures in the behavior of the system. In the embedded

software domain it is not possible to test the software in all

possible physical conditions. Therefore, certain faults might

remain undetected. So, we need to verify physical models.

C. Challenges for the Verification of Physical Models

There are two important challenges regarding the verifica-

tion of the physical models in embedded software.

1) Failures Observable in Physical System Behavior: Faults

in implemented physical models lead to observable failures

in the physical behavior of the system, but not necessarily

to observable failures in software behavior. This hinders the

application of common runtime verification techniques that

focus on monitoring software behavior only.

Common runtime verification techniques usually consist of

three parts [5]. First, there is a data and/or event model in

which the software can be described. Second, there is a logic

to specify properties of such models. These are the properties

that have to be valid. Examples of such a logic are regular

expressions and temporal logics. Third, there is a specification

of the actions that need to be performed when the specified

properties are violated.

In embedded control software we want to verify whether the

assumptions made in the software about the physical reality

(i.e., the physical model used in the software) are valid. We

want to verify whether the actions performed in the control

software lead to the correct behavior of the physical machine.

Failures become apparent only in the behavior of the physical

system, e.g., in reduced print quality. The same software state

might in one case be correct, while under other circumstances

it might not be, because it does not necessarily correspond with

physical reality. The same reasoning applies to a sequence of

events. Common runtime verification techniques are insuffi-

cient to do this kind of verification, as their data/event models

only include the software state/actions; the state of the physical

system is not explicit in the software.

2) Physical Models Implicit in Program Code: The phys-

ical models are often expressed in a general-purpose pro-

gramming language, such as C++, and tangled within control

components. This is shown in Listing 1 for the radiator

controller. This code fragment shows code that is executed for

each iteration of the control loop. The control logic is shown

on Line 8. Lines 6 and 7 show the implemented physical

model.

1 double TcontactSP, Tcontact, Prad;
2

3 /* Control loop */{
4 /* Retrieve values of v, Tph, Tbelt from other

modules */
5

6 TcontactSP = c1*v - c2*Tph + c3;
7 Tcontact = c4 * Prad / sqrt(v) + Tbelt;
8 Prad = /* classic control logic using tContact

and tContactSP */;
9

10 /* Send value of pRad to Physical System I/O
module */

11 }

Listing 1. Code fragment of the Radiator Controller

43



This implicit implementation of physical models and tan-

gling with core component code makes the models hard to

identify, analyze and verify.

III. SOLUTION APPROACH

In this section we present a novel approach to make physical

models explicit and to verify their correctness at runtime.

Actor Action SW artifactKEY: Tool

Domain ModelDomain Model

<SIDOPS+>
Physical
ModelDomain ModelDomain Model

<Base Language>
Software
Module

2: E
xecutes

Software 
Engineer

1: W
rites

Base Language Runtime

Domain
Expert

SIDOPS+ Interpreter
Runtime 

Verification
& Diagnosis

2: E
xecutes

3: V
erifies

2: E
xecutes

1: W
rites

1: Defines

1: Writes

Interaction

Semantic concept Existing tool

Fig. 3. Overview of our approach

Figure 3 gives an overview of our approach. Instead of

implicitly implementing physical models in a general-purpose

programming language, in our approach they are separately

specified in the domain-specific language SIDOPS+ from

the 20-Sim toolset. 20-Sim is a widely adopted toolset with

an extensive set of functions generally used for modeling

and simulating physical systems [1]. In this section, we

will first introduce the SIDOPS+ language. Then we will

explain how redundancy is used to verify physical models at

runtime. We introduce the concept of dependency graphs to

identify redundancy in the physical model and to diagnose

detected inconsistencies. This section explains the concepts

of our approach. In Section IV we provide details about the

realization of the SIDOPS+ interpreter and how monitoring

for inconsistencies is performed, using the aspect-oriented

composition filters approach.

A. Introduction to 20-Sim/SIDOPS+

The 20-Sim toolset is used for modeling and simulating

physical systems. Domain experts can model physical systems

in 20-Sim in multiple ways, e.g. using iconic diagrams,

bond graphs and the specification language SIDOPS+. In this

paper we adopt the SIDOPS+ language. Iconic diagrams and

bond graphs can be automatically transformed to SIDOPS+

specifications. As such, a domain expert does not have to use

the SIDOPS+ language directly to apply our approach.

With the SIDOPS+ language it is possible to define math-

ematical physical models, and by using the composition

mechanism of the language, they can be integrated to form

larger models. Listing 2 gives an example specification in

the SIDOPS+ language. This specification contains three

types of definition blocks: constants, variables and

equations. SIDOPS+ provides more language constructs

to model physical processes; since physical modeling is not

the aim of this paper, they are not explained here.

1 constants
2 real c4=2.3;
3 variables
4 real global Tcontact {Temperature, degC};
5 real global Prad=0.0 {Power, W};
6 real global v {PrintSpeed, ppm};
7 real global Tbelt {Temperature, degC};
8 equations
9 Tcontact = c4 * Prad / sqrt(v) + Tbelt

Listing 2. SIDOPS+ example specification

As the name suggests, constants can be defined in the

constants definition block. The example shows the defi-

nition of the constant c4 of type real. SIDOPS+ supports

a number of different types, such as integer, real and

boolean. Constant definitions always have a value assign-

ment. In the example, the value 2.3 is given to c4.

The variables block defines the physical variables.

The example shows the definition of four physical variables:

Tcontact, Prad, v and Tbelt. Variables have a type. They

can also have the modifier global, which means that the

same variable can also be used in other models. In a 20-Sim

simulation this means that if this variable is defined in multiple

submodels, composed into a larger model, they all represent

the same variable.

The example also shows that a variable can have an initial

value assigned. This assignment is optional. It is also possible

to attach the name and unit of the corresponding physical

quantity to the variable, such as the quantity Temperature
and unit degC for the variable Tcontact. The definition of

the quantity name and unit is optional, but can be used to

check whether defined equations are consistent. The quantity

name and unit can also be attached to constant definitions in

the same way.

As the name suggests, equations are defined in the

equations block. Equations are relations between variables.

An equation is composed of two mathematical formulas,

separated by an equality (=) sign. A mathematical formula

can contain variables, constants, operators and predefined

functions. The equation in the example shows how the four

defined variables relate to each other.

Note that the examples in this paper are simplified for

presentational purposes, and as such do not demonstrate the

full power of the domain-specific SIDOPS+ language. For

example, SIDOPS+ also contains constructs to specify integral

44



and differential equations, which are commonly used in physi-

cal modeling. For further detail about the SIDOPS+ language,

we refer to the 20-Sim documentation in [2].

B. Using Redundancy to Verify Correctness

To verify the physical models at runtime, we need to

check whether they correspond with actual physical reality.

The physical models implemented in software are related to

state observers [3] in control engineering. State observers use

mathematical physical models to provide more information

about the system’s state than is available from sensors. They

are kept consistent with the system’s state by calibrating

the model’s state with (redundant) information known from

sensors [3]. We will also utilize redundant information about

the physical reality, so that the physical relationships can be

checked for consistency. This additional information can be:

• Additional sensors that measure the value of variables
that are also calculated with the physical models. This

is a situation that is rare at system deployment, as

the physical models are introduced because there is no

available sensor information. A purpose may be that the

sensor is used for calibration of the model, and only

occasionally gives a reading. The industrial case that we

will introduce in Section V contains such a sensor.

• Redundancy in the physical relationships. If there are

multiple physical relationships that calculate the value of

the same variable, the results can be compared.

In the warm process case, the Belt Temperature
Model can also contain the following equation:

Tbelt = c5 · (Tcontact + c6 · Tph) · √v (3)

This equation determines the temperature at the sensor location

(Tbelt) from other physical variables (Tcontact, Tph and v).

If this equation is added to the model, there is a redundant

way to determine Tbelt; using the sensor and using the

Equation 3. Listing 3 shows the SIDOPS+ specification of

the Belt Temperature Model.

1 ...
2 equations
3 Tcontact = c4 * Prad / sqrt(v) + Tbelt;
4 Tbelt = c5 * (Tcontact + c6 * Tph) * sqrt(v);

Listing 3. SIDOPS+ specification of the belt temperature model

We can use such redundant ways to calculate/determine

the value of a variable to check whether the corresponding

physical model is correct. The physical model is correct if all

the ways to calculate the value of the variable result in the

same value. If not all results are equal, one of the involved

relationships is not correct.

In reality, there will often be a small deviation between

the outcomes, because of small error-margins in the sensors

or formulas, for which the system has been designed to be

robust. Therefore, to do monitoring and checking, such error-

margins should also be taken into account (i.e. if the difference

between the redundant values is within a certain safe range,

there is no indication of a failure). In Section IV we will

show how we can monitor such inconsistencies, including the

filtering of small deviations.

C. Deriving a Dependency Graph

From a specification written in SIDOPS+, a dependency
graph is created. Such a graph describes how the values of

physical variables relate to values of other physical variables,

through the different equations specified in the SIDOPS+

model. Figure 4 visualizes a dependency graph for the example

in Listing 3. The figure shows, for example, that variable

Tcontact can be derived through Equation 2 from the variables

Tbelt, Prad and v.

Equation: Variable Relationship

Tcontact

Tph

eq2Prad

v

Tbelt

eq3

Sensor Actuator

Fig. 4. Dependency graph for the belt temperature model

Redundancy is easily recognizable in dependency graphs;

there is a redundant calculation if a variable node has multiple

incoming edges. This means that the corresponding variable

can be calculated in multiple ways. Figure 4 contains one

redundant calculation. The variable Tbelt can be determined in

two ways; it can be derived from a sensor input and through

Equation 3. Note that there is actually a cycle in the graph, in

which Tbelt depends on itself through Equations 2 and 3. In our

example, this means that the new value of Tbelt is determined

from the previous value of Tbelt.

D. Diagnosing Faults

When the outcomes of redundant calculations are incon-

sistent, this indicates that there is a failure. The next step

is diagnosing the cause of the failure. This can either be a

failure of a physical component, e.g. a sensor, or a fault in

the implementation of the relationships. Possible causes can

be determined from the dependency graph, by tracing back

all paths from the variable of which the redundant calculation

was not consistent.

For example, suppose that in the printer case the sensor

reading for variable Tbelt gives a different value than the

calculation through function f2. Using the dependency graph

in Figure 4, we can trace back the paths leading to the

following possible causes:

1) The sensor value is wrong: this may indicate a malfunc-

tioning sensor.

2) The outcome of Equation 3 is wrong. This may indicate:

a) Equation 3 itself is incorrect.

45



b) The input Tph is incorrect. This may indicate a

malfunctioning sensor.

c) The input v is incorrect. This may indicate a

problem in the actuation/controlling of v, either in

software or in hardware.

d) The input Tpinch is incorrect. This means that

the result of Equation 2 is incorrect, which may

indicate:

i) Equation 2 itself is incorrect.

ii) The input Tbelt is incorrect. Because there is a

cycle in the dependency graph, by tracing back

the paths we end up at the previous value of the

variable Tbelt, which is potentially incorrect.

Because of the cycle, the possible causes of

this are the recursive closure of this cause list.

This closure is finite, because the system was

initialized/started a finite time-step in the past.

iii) The input Prad is incorrect. This indicates

a problem in the actuation/controlling of the

radiator, either in software or in hardware.

iv) The input v is incorrect. This case has already

been taken into account in point 2c.

IV. REALIZATION OF THE APPROACH

This section describes how our approach is realized; how

SIDOPS+ models are interpreted and how the aspect-oriented

composition filters approach [6] is utilized to monitor physical

models for inconsistency, and to handle detected inconsistency.

A. Interpreter

We implemented an interpreter2 to execute models specified

in SIDOPS+. Therefore, we introduced the concept of physical
model instance, which contains besides the physical relation-

ships also the state of the physical system that is modeled.

A physical model instance can be created from one or more

SIDOPS+ specifications. A SIDOPS+ specification can be

used in multiple physical model instances. Listing 4 shows

how a physical model instance can be created, using Java as

the general-purpose programming language of the software.

1 PhysicalModel beltTemperature =
PhysicalModel.load("belttemperature.phys");

2 PhysicalModelInstance BeltTemperatureModel = new
PhysicalModelInstance( new
PhysicalModel[]{beltTemperature} );

Listing 4. Instantiation of the physical model

The interpreter handles the calculations in the model to

update the state. It also provides an interface to the physical

model instance so that modules in the general-purpose pro-

gramming language can query the model for values of physical

variables and can update the value of certain physical variables

in the model. As the focus of this paper is not on how to

implement such an interpreter, we omit these details.

2We applied an interpreter based approach for research purposes; an
interpreter provides the flexibility to quickly implement and change concepts,
thus making it easier to experiment with language concepts. For industrial
application a compiler based implementation would be preferred.

B. Applying Composition Filters

To monitor for inconsistencies in the physical models, we

apply the composition filters approach. The composition filters

approach has been applied before as a monitoring approach

for runtime verification, such as described in [7]. Figure 5

schematically shows how composition filters are applied to

monitor for inconsistencies in the physical model. At runtime,

the physical model instance generates different types of events.

Some of these events indicate that there are inconsistencies

between physical relationships. The composition filters filter

these events for relevance and can execute certain behavior

based on the event that was captured.

Event Interface

Execute behavior
Composition Filters

Fig. 5. Monitoring using Composition Filters

If the composition filters capture an event of interest, they

can execute certain behavior, either specified by the type of

filter or by sending a message to a base-program module.

This behavior can for example be logging and reporting the

inconsistency or starting a recovery action to recover from

known malfunctions.

The event messages that are generated have, among others,

the following properties on which they can be filtered:

• variable: The identifier of the physical variable on which

the event applies.

• eventType: The type of the event. Examples of types are:

– inconsistency: The redundant outcomes for the phys-

ical variable are not consistent.

– update: The value of the physical variable in the

model has changed.

– request: The physical model needs a new value for

a certain physical variable, to update the model.

• inconsistencyRange: In case the eventType is

inconsistency, this property indicates how much

the different values deviate from each other.

• value: This property contains the value of the physical

variable. In case the eventType is update, this is a single

value. In case the eventType is inconsistency, this is

an array containing all values of the redundant derivations

of the physical variable.

• result: Property that can be set by composition filter

actions, indicating a returned value.

Listing 5 shows a composition filters specification for the

warm process case. The purpose of this specification is to

log inconsistencies in Tbelt that are larger than 0.2. Line

3 shows a specification of a Logging filter with name

tbeltLog. A filter of type Logging provides logging of

46



the messages that are matched. The shown filter matches

messages for which the property variable has value Tbelt
(matching of events on Tbelt) and property eventType has

value inconsistency (matching of inconsistency events)

and property inconsistencyRange has a value larger than

0.2 (matching of inconsistencies that are larger than 0.2).

1 filtermodule TbeltLogging{
2 outputfilters
3 tbeltLog: Logging = (variable==Tbelt &

eventType==inconsistency &
inconsistencyRange > 0.2);

4 }
5

6 superimposition{
7 selectors
8 models = { M | isModelInstance (M,

[BeltTemperatureModel]) };
9 filtermodules

10 models <- TbeltLogging;
11 }

Listing 5. Composition filters specification to log inconsistencies

Lines 6 till 11 show the superimposition part of the com-

position filters specification. This part specifies that the filters

should be placed on the physical model of the warm process

(called BeltTemperatureModel).

Listing 6 shows a filter specification that handles the in-

consistency, by specifying the value that the physical model

should use. The filtertype is Result, meaning that if a

message is matched by this filter, the filter returns with a

given result. The matching part of the filter shows that the

filter matches for inconsistency events concerning Tbelt. After

the matching part, this filter has an assignment part (shown

on Line 5). In this assignment part, the property result is

set to the value from the sensor reading (the value property

is an array, from which a value can be acquired by using an

identifier, such as the sensor name in this case).

1 filtermodule TbeltHandler{
2 outputfilters
3 tbeltHandler: Result = (variable==Tbelt &
4 eventType==inconsistency)
5 {result=value[’Tbelt_sensor’]};
6 }

Listing 6. Composition filters specification to handle inconsistency

Figure 6 shows both filters in the case’s software structure,

which was shown in Figure 2.

For further information on the composition filters model, the

language and its application in runtime verification in general,

we refer to [6]–[9].

V. APPLICATION ON A SECOND INDUSTRIAL CASE

This section introduces a second industrial case study, and

shows how our approach can be applied to this case study.

A. Drum Shuttling Case Study

The second industrial case is the Drum Shuttling subsystem

of a printing system. The drum is a rotating cylindrical

component in the printer system, on which the toner image

is created. To reduce deterioration, the drum also has to

shuttle (i.e., move backward and forward) along its axis. Figure

troller
Tsp

phh

Controller
TcontactTsp

contact Prad

Tcontact

v

Belt Temperature
Model Prad

Tcontact

Tbeltv

Physical System I/O

Tbeltv Prad

KEY: In-port Out-portData-flowModule

Tph

tb
el

tL
og

tb
el

tH
an

dl
er

Ev
en

t I
nt

er
fa

ce

Composition filter Message

Fig. 6. Specified composition filters applied on Belt Temperature Model

7 schematically shows the drum and additional components

needed to rotate and shuttle the drum.

M
Stepper
motorCam

x-movement

z-movement

M

Motor Gears
Drum

Fig. 7. Schematic view of the drum and components for rotation and shuttling

There is a motor and gears for the rotational movement

of the drum. We call this rotation x-movement, and the

corresponding position (i.e. distance travelled by the surface

of the cylinder) x-position.
The linear shuttling movement of the drum is provided by

a stepper motor (i.e. a motor that rotates in fixed sized steps)

and a cam, which is a component that can translate rotational

movement into linear movement. We call this linear movement

z-movement, and the corresponding position z-position.
Software has been implemented to control the shuttling

behavior of the drum. Figure 8 shows the software structure

and the data-flow between the different modules.
The Physical System I/O module provides an inter-

face to the following sensors and actuators of the system:

• pulseCount: Sensor that counts and provides the number

of hall pulses of the motor for x-movement. On each rev-

olution, the motor gives a fixed number of hall pulses, so

pulseCount is proportional to the number of revolutions

made by the motor.

• homeSensor: Sensor that gives a signal when the drum

is at a specific z-position.

• dir: Actuator to set the direction in which the stepper

motor should step.

• Prad: Actuator that executes one step of the stepper motor

when a signal is provided.

The Shuttling Controller decides what zPos should

be based on the xPos. The Stepper Controller controls

47



Rotation Model

xPos

pulseCount

Shuttling
Controller

xPos
zPos

Shuttling
Model

zPos stepPos

Stepper
Controller

stepPossp

stepPos dir step

Shuttling Model
stepPos

step

dir

homeSensor

Physical System I/O

homeSensor dir

KEY: In-port Out-portData-flowModule

pulseCount step

A

B

Fig. 8. Schematic overview of the software structure

the stepper motor to a given step position (stepPossp), pro-

vided a current step position (stepPos) by actuating dir and

step.

The module Rotation Model implements a physical

model that models the relationship between pulseCount and

xPos. It contains physical characteristics of the motor, the

gears and the drum.

The module Shuttling Model implements a physi-

cal model that models the relationship between zPos and

stepPos, between a signal on homeSensor and zPos and on

how a signal on dir and step influence stepPos. It thereby

contains physical characteristics of the stepper motor, the cam

and the drum. Note that this module is actually used two times

in the software. The instance labeled A is used to translate a

requested zPos to the required stepPos, which is the setpoint

for the Stepper Controller. The instance labeled B
maintains the current step position, based on the output to

dir and step and the input from homeSensor.

B. Applying the Approach

In the drum shuttling case, the z-position of the drum (zpos)

is derived from the step position of the stepper motor. This step

position is updated if a step is actuated. However, the stepper

motor occasionally does not step when it is actuated, creating

a deviation between the physical model and physical reality.

Small deviations are no problem, but when the physical model

is not corrected once in a while, the errors may accumulate

into larger deviations. To cope with this problem, there is a

calibration sensor in the system, called homeSensor that is

triggered when the drum reaches a specific z-position. In this

section we will show how this is implemented.

1) Definition of the Physical Model: Listing 7 shows the

SIDOPS+ physical model of drum rotation. It shows the

translation from pulseCount to xPos through a series of

equations.

1 // Rotation Model
2 constants
3 real pulsesPerRev=24.0;
4 real gearTransmission=15.0 / 126.0;

5 real drumCircumference=350.0 {Distance, mm};
6 variables
7 integer global pulseCount=0;
8 real global motorRotation {Rotation, rev};
9 real global gearRotation {Rotation, rev};

10 real global drumRotation {Rotation, rev};
11 real global xPos {Distance, mm};
12 equations
13 motorRotation=pulseCount / pulsesPerRev;
14 gearRotation=gearTransmission * motorRotation;
15 drumRotation = gearRotation;
16 xPos = drumRotation * drumCircumference;

Listing 7. SIDOPS+ specifications of drum rotation

Listing 8 shows the SIDOPS+ specification of drum shut-

tling. It shows how stepPos and zPos relate through the

equation on Lines 14 and 15. On Line 16 it shows an

equation that gives a new stepPos, when the stepper motor

is actuated (the used function f is not specified further in

this paper). Line 17 shows an equation that sets the zPos
on the homeLocation if the homeSensor gives a signal

(1.0). Otherwise, it maintains the zPos (homeSensor = 0.0).

If the zPos changes, the interpreter is capable to solve the

corresponding stepPos, using the equations (the interpreter

uses known equation solving algorithms to do this).

1 // Shuttling Model
2 constants
3 real degreesPerStep=/* some value */;
4 real movementPerDegree=/* some value */;
5 real homeLocation=/* some value */;
6 variables
7 integer global stepPos=0;
8 real global stepRotation {Rotation, deg};
9 real global zPos {Distance, mm};

10 real global dir;
11 real global step;
12 real global homeSensor;
13 equations
14 stepRotation=stepPos * degreesPerStep;
15 zPos=stepRotation * movementPerDegree;
16 stepPos=f(stepPos, dir, step);
17 zPos=(1.0-homeSensor) * zPos + homeSensor *

homeLocation;

Listing 8. SIDOPS+ specifications of drum shuttling

Listing 9 shows the composition filters specification to mon-

itor and handle inconsistencies in the Shuttling Model.

Line 3 shows the specification of a composition filter that

matches when there is an inconsistency in zPos. This is the

case if the homeSensor gives a signal, but the zPos derived

from the current stepPos in the model is different from the

homeLocation. The composition filter specifies that in this

case the zPos derived using the homeSensor should be used.

1 filtermodule sensorHandler{
2 outputfilters
3 sensorHandler: Result = (variable==zPos &

eventType==inconsistency)
{result=value[’homing_sensor’]};

4 }
5

6 filtermodule zPosLogging{
7 outputfilters
8 zPosLog: Logging = (variable==zPos &

eventType==inconsistency &
inconsistencyRange > 2);

9 }

48



10

11 superimposition{
12 selectors
13 models = { M | isModelInstance (M,

[ShuttlingModelB]) };
14 filtermodules
15 models <- zPosLogging, sensorHandler;
16 }

Listing 9. Composition filters specification to handle home sensor

Line 8 shows a filter that performs logging of the inconsis-

tency if it is larger than two, for later problem diagnosis. Lines

11 until 16 show how the two filter modules are superimposed

on the module ShuttlingModelB.

VI. DISCUSSION

This section discusses some additional subjects related to

our approach and the implementation of our approach.

A. Efficiency of the Monitoring Approach

Applying runtime verification means that additional behav-

ior is executed, leading to a certain performance overhead. We

used an interpreter based implementation for the evaluation of

the SIDOPS+ specifications and the execution of the composi-

tion filters for monitoring. Such an interpreter based approach

introduces considerable runtime overhead. However, the aim

of the interpreter based implementation is to experiment with

and demonstrate our approach, not to provide an efficient run-

time environment. Efficient compilation algorithms for aspect-

oriented languages, such as the composition filters model, are

known in literature, e.g., in works of Bockisch [10].

B. Moment of Checking

The time instance on which a fault/inconsistency in a

physical model can lead to a failure is the moment on

which that model is evaluated and the result is used by the

control modules. Since we want to monitor whether there are

inconsistencies in the system that can lead to failures, the best

time to do monitoring is after the physical model has been

evaluated but before the result is used. In this way, the result

of the calculation can also be used in the monitoring (reducing

overhead of additional calculations) and we are able to take

certain action before the potentially erroneous result of the

calculation is used by the control modules, leading to a failure.

One could argue that we can also perform monitoring at

other time instances, to diagnose problems in an earlier stage.

But this may lead to problems, as the physical relationships

might be designed to only be consistent at the time they are

evaluated. Furthermore, this reduces performance.

C. Recovery Actions

If the different redundant values of a certain physical

variables do not match, a recovery action needs to be taken.

Depending on how the engineer perceives the severity of the

inconsistency, there are several options, which include:

• Stop the operation of the system, for safety-critical oper-

ations.

• Select one of the calculated values, e.g., randomly, based

on a voting scheme or based on a preference.

• Log the inconsistency for diagnosis.

D. Integration with System Architecting Models

In this paper we used the domain-specific SIDOPS+ lan-

guage to make the physical models used in embedded software

explicit. In this way, domain engineers are able to read the

specification, check for correctness and are even able to

write the specifications themselves. By using domain-specific

languages and models, it becomes possible to integrate them

with other system architecting models. System architects use

tools to model different aspects of the physical system, such

as the physical structure, physical behavior and interaction

between components in the system, state of the system etc.

As the models of physical characteristics are heavily based on

such system models, integration is a possibility.

VII. RELATED WORK

Literature shows, e.g. in the taxonomy of Delgado et al. [5]

and in the work of Barringer et al. [11], that the common

approach to runtime verification is to create a data and/or

event model in which the software can be described and to

verify certain properties on this model, specified in a certain

logic, such as temporal logic or regular expressions. Examples

of such runtime verification approaches are the MOP frame-

work [12] and the tracematches extension to AspectJ [13].

Such approaches cannot be applied in our case, as we need

to take the impact of the software behavior on the physical

behavior of the system (i.e. the operating environment of the

software) into account; failures only become apparent in the

physical behavior. Therefore, our approach uses redundant

models of physical relationships to verify their conformance

with physical reality.

Van Gemund et al. have worked on fault diagnosis in

embedded systems [14]. Fault diagnosis aims at determining

the health state of the system or components in the system, by

analyzing the output of the system given a certain input. There

are two approaches to diagnose the location of faults in com-

ponents; model-based diagnosis, as introduced by Reiter [15]

and De Kleer [16], uses a model of the system to diagnose

the failing component based on the system’s input and output.

Spectrum-based fault localization is a statistical approach that

diagnoses failing components by correlating failures in the

output with execution traces [14]. Van Gemund et al. combined

both approaches to be applied on the combination of embedded

system and the corresponding embedded software [17], [18].

Work is being done on integrating system architecting mod-

els, describing the system from different perspective, so that

consistency can be maintained and changes in one model can

be automatically reflected in other models. An example of such

an effort is the Knowledge Intensive Engineering Framework

(KIEF), described in [19]. The model of physical characteris-

tics and the dependency graphs we use are closely related to

models used in these system architecting tools. For example,

Forbus describes in [20] the concept of qualitative process

theory. This is the analysis and specification of the qualitative

49



relationships between different physical quantities in a physi-

cal system. Such a specification can be used to predict behavior

in the system. This theory has been incorporated in KIEF in

the form of parameter networks. Parameter networks are graph

structures that describe the qualitative relationships between

physical parameters [19]. They can be derived from other

system models, like structural models. Parameter networks are

similar to the dependency graphs presented in this paper. The

difference between them is that dependency graphs provide a

quantification on these relationships, while parameter networks

only qualitatively describes the relationships. So, parameter

networks reflect the graph structure of dependency graphs,

but without the function nodes in the graph. As such, the

parameter networks can be used as a starting point for a

SIDOPS+ specification.

VIII. CONCLUSION AND FUTURE WORK

In this paper we showed that models of physical charac-

teristics (i.e., physical models) are part of control software.

Such models are used for estimating physical relationships

among system components, and influencing the control behav-

ior accordingly. As such, faults that are undetected in physical

models can lead to a failure in control behavior. Therefore,

it is important to monitor and verify the accuracy of these

models at runtime.

However, traditional runtime verification techniques cannot

be applied, as their focus is on verifying whether software

behavior corresponds to a separately specified model of correct

behavior. Our aim is to verify physical models used in software

for their correspondence with physical reality. Furthermore,

implicit implementation of physical models in a general-

purpose programming language makes these models hard to

locate and verify.

We showed that it is possible to specify the physical

models used in software in the domain-specific SIDOPS+

language from the 20-Sim toolset. Such specifications are

applied as part of the software, using an interpreter based

approach. We showed that redundancy can be identified in such

specifications, using dependency graphs. The redundancy can

be exploited to detect inconsistencies in the physical model or

malfunctions of related sensors and actuators in the system.

The dependency graph can be further utilized for diagnosing

root causes of failures (i.e., faults) in physical models or

malfunctioning sensor/actuator components in the system, by

tracing back the paths from an inconsistent variable node.

We showed that monitors can be generated using the aspect-

oriented composition filters language.

Future work is the integration of our tools with system

architecting tools, to better align the different disciplines of

embedded systems development.

Furthermore, we want to analyze how different levels of

redundancy influence the accuracy of the diagnosis. In this

paper we have shown that diagnosis can be done by tracing

back the paths from the failing node in the dependency graph.

If there are more redundant nodes, such paths may become

shorter, making the analysis more precise.

ACKNOWLEDGMENT

This work has been carried out as part of the OCTOPUS

project under the responsibility of the Embedded Systems

Institute. This project is partially supported by the Netherlands

Ministry of Economic Affairs under the Embedded Systems

Institute program. We thank Jacques Verriet from ESI and

Lodewijk Bergmans from our group for reviewing this paper

and providing useful feedback.

REFERENCES

[1] J. Broenink, “Modelling, simulation and analysis with 20-sim,” Journal
A, vol. 38, no. 3, pp. 22–25, 1997.

[2] C. Kleijn, 20-sim 4.1 Reference Manual, 2009.
[3] E. D. Sontag, Mathematical Control Theory: Deterministic Finite Di-

mensional Systems, 2nd ed. New York: Springer, 1998.
[4] “Octopus project, ESI,” 2010, http://www.esi.nl/projects/octopus.
[5] N. Delgado, A. Gates, and S. Roach, “A taxonomy and catalog of

runtime software-fault monitoring tools,” Software Engineering, IEEE
Transactions on, vol. 30, no. 12, pp. 859 – 872, dec. 2004.

[6] A. J. de Roo, M. F. H. Hendriks, W. K. Havinga, P. E. A. Durr, and
L. M. J. Bergmans, “Compose*: a language- and platform-independent
aspect compiler for composition filters,” in First International Workshop
on Advanced Software Development Tools and Techniques, WASDeTT
2008, Paphos, Cyprus, July 2008.

[7] S. Malakuti Khah Olun Abadi, C. M. Bockisch, and M. Akşit, “Apply-
ing the composition filter model for runtime verification of multiple-
language software,” in The 20th annual International Symposium on
Software Reliability Engineering, ISSRE 2009, Mysore, India. IEEE
Computer Society Press, 2009, pp. 31–40.

[8] University of Twente, “COMPOSE*,” http://composestar.sourceforge.net.
[9] Compose* Annotated Reference Manual, Internet: http:

//composestar.svn.sourceforge.net/viewvc/composestar/documentation/
ARM/ARM.pdf, University of Twente.

[10] C.-M. Bockisch, “An efficient and flexible implementation of aspect-
oriented languages,” Ph.D. dissertation, Technische Universität Darm-
stadt, Germany, July 2008.

[11] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-based run-
time verification,” in VMCAI, ser. Lecture Notes in Computer Science,
B. Steffen and G. Levi, Eds., vol. 2937. Springer, 2004, pp. 44–57.

[12] F. Chen and G. Roşu, “Mop: an efficient and generic runtime verification
framework,” in OOPSLA ’07: Proceedings of the 22nd annual ACM
SIGPLAN conference on Object-oriented programming systems and
applications. New York, NY, USA: ACM, 2007, pp. 569–588.

[13] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble,
“Adding trace matching with free variables to AspectJ,” in OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. New
York, NY, USA: ACM, 2005, pp. 345–364.

[14] P. Zoeteweij, J. Pietersma, R. Abreu, A. Feldman, and A. van Gemund,
“Automated fault diagnosis in embedded systems,” in Secure System
Integration and Reliability Improvement, 2008. SSIRI ’08. Second Inter-
national Conference on, 14-17 2008, pp. 103 –110.

[15] R. Reiter, “A theory of diagnosis from first principles,” Artificial
Intelligence, vol. 32, no. 1, pp. 57–95, 1987.

[16] J. de Kleer and B. C. Williams, “Diagnosing multiple faults,” Artificial
Intelligence, vol. 32, no. 1, pp. 97–130, 1987.

[17] R. Abreu, P. Zoeteweij, and A. van Gemund, “Spectrum-based multiple
fault localization,” in Automated Software Engineering, 2009. ASE ’09.
24th IEEE/ACM International Conference on, 16-20 2009, pp. 88 –99.

[18] A. Feldman, G. Provan, and A. van Gemund, “The Lydia approach to
combinational model-based diagnosis,” in Proceedings of the Twentieth
International Workshop on Principles of Diagnosis (DX’09), Stockholm
Sweden. Erik Frisk and Mattias Nyberg and Mattias Krysander and
Jan Åslund, June 2009, pp. 403–408.

[19] M. Yoshioka, Y. Umeda, H. Takeda, Y. Shimomura, Y. Nomaguchi, and
T. Tomiyama, “Physical concept ontology for the knowledge intensive
engineering framework,” Advanced Engineering Informatics, vol. 18,
no. 2, pp. 95 – 113, 2004.

[20] K. D. Forbus, “Qualitative process theory,” Artificial Intelligence,
vol. 24, no. 1-3, pp. 85 – 168, 1984.

50


