
Please do not remove this page

On testing effectiveness of metamorphic
relations: A case study
Asrafi, Mahmuda; Liu, Huai; Kuo, Fei Ching
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/On-testing-effectiveness-of-metamorphic-relations/9921859494101341
/filesAndLinks?index=0

Asrafi, M., Liu, H., & Kuo, F. C. (2011). On testing effectiveness of metamorphic relations: A case study.
Proceedings of the 5th International Conference on Secure Software Integration and Reliability
Improvement (SSIRI 2011), 147–156. https://doi.org/10.1109/SSIRI.2011.21

Published Version: https://doi.org/10.1109/SSIRI.2011.21

Document Version: Accepted Manuscript

Downloaded On 2024/03/29 12:01:12 +1100
© 2011 IEEE.
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/On-testing-effectiveness-of-metamorphic-relations/9921859494101341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/On-testing-effectiveness-of-metamorphic-relations/9921859494101341
http://doi.org/doi:https://doi.org/10.1109/SSIRI.2011.21
https://researchrepository.rmit.edu.au

Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

Asrafi, M, Liu, H and Kuo, F 2011, 'On testing effectiveness of metamorphic relations: A
case study', in Yong Rae Kwon, Sooyong Park (ed.) Proceedings of the 5th International
Conference on Secure Software Integration and Reliability Improvement (SSIRI 2011), USA,
27-29 June 2011, pp. 147-156.

http://researchbank.rmit.edu.au/view/rmit:20949

Accepted Manuscript

2011 IEEE

http://dx.doi.org/10.1109/SSIRI.2011.21

http://researchbank.rmit.edu.au/

On Testing Effectiveness of Metamorphic Relations:

A Case Study

Mahmuda Asrafi, Huai Liu
*
, Fei-Ching Kuo

Faculty of Information and Communication Technologies

Swinburne University of Technology

Hawthorn 3122 VIC, Australia

e-mail: {masrafi, hliu, dkuo}@swin.edu.au

Abstract—One fundamental challenge for software testing is

the oracle problem, which means that either there does not

exist a mechanism (called oracle) to verify the test output given

any possible program input, or it is very expensive, if not

impossible, to apply the oracle. Metamorphic testing is an

innovative approach to oracle problem. In metamorphic

testing, metamorphic relations are derived from the innate

characteristics of the software under test. These relations can

help to generate test data and verify the correctness of the test

result without the need of oracle. The effectiveness of

metamorphic relations can play a significant role in the testing

process. It has been argued that the metamorphic relations

that cause different software execution behaviors should have

high fault detection ability. In this paper, we conduct a case

study to analyze the relationship between the execution

behavior and the fault-detection effectiveness of metamorphic

relations. Some code coverage criteria are used to reflect the

execution behavior. It is shown that there is a certain degree of

correlation between the code coverage achieved by a

metamorphic relation and its fault-detection effectiveness.

Keywords- software testing, metamorphic testing,

metamorphic relation, fault-detection effectiveness, code

coverage.

I. INTRODUCTION

Software testing is a very crucial approach for assuring
the quality of the software applications. Although software
testing cannot guarantee the absence of faults, it is the major
approach of revealing software faults. After the testing
process, other techniques such as debugging can be applied
to fix the faults and thus to improve the software quality.
Many testing methods have been proposed to select some
program inputs as test cases such that faults in the program
can be effectively detected. After executing the test cases,
the test outputs are checked against a test oracle to verify the
functionality of the system. An oracle is a mechanism for
determining whether the program has passed or failed a test.
A complete oracle should be accomplished of an
“originator”, a “comparator” and an “evaluator” [17].
Originator offers the expected outcome for each test case.
Comparator checks the test output against the expected
outcome. Finally evaluator verifies whether the software
under test has passed or failed the testing.

 Corresponding author.

Without the presence of an oracle it is very difficult to
verify the correctness of test outputs and thus the
effectiveness of software testing is greatly hindered. This
dilemma is known as “oracle problem” in software
engineering. It is one of the most difficult tasks in software
testing [23]. An effort to resolve this problem is to use a
pseudo-oracle [13], where several implementations of an
algorithm practice an input and the outcomes are compared
to decide whether there are faults in some of the
implementations. However, this procedure is not useful in
many practical situations where various implementations
may not exist or may be created by same group of developers
who tend to make same fault. Several other techniques such
as gold standard oracle [1], reference model [5, 6], assertion
checking [2, 26], and metamorphic testing [7] have been
proposed to alleviate the oracle problem.

Metamorphic testing [7] employs properties of the target
function of the software under test. It discovers some
properties from the specification or algorithm of the software
under test. Based on these properties some relations are
derived known as metamorphic relations (MRs). Some
source test cases from traditional test case generation
methods are used in metamorphic testing. MRs are used to
generate follow-up test cases based on the source test cases.
After executing source and follow-up test cases metamorphic
testing verifies the outputs of test cases based on MRs. A
great amount of MRs can be identified from the algorithm or
specification of the software under test. Different MRs have
different effectiveness for the detection of various faults. It is
important to use MRs with high fault-detection effectiveness
to save the time and resources.

It has been suggested [10] that MRs that can cause the
program under test to exhibit diverse execution behaviors
should have high fault-detection effectiveness. In this paper
we conduct a case study to investigate to what extent the
execution behaviors caused by an MR is correlated with its
effectiveness. It is expected that the study will result in some
rules to judge the effectiveness of MRs.

This paper is organized as follows. Section II presents the
basic information of metamorphic testing. Section III
introduces some previous studies related to metamorphic
testing and the selection of good MRs. Section IV reports our
case study and discuss the experimental results. Section V

mailto:masrafi,%20hliu,%20dkuo%7d@swin.edu.au

discusses the threats to validity. Section VI concludes the
paper.

II. METAMORPHIC TESTING

Metamorphic testing (MT) is an innovative approach for
alleviating the oracle problem. It aims to conduct the testing
on the basis of some domain knowledge acquired from the
algorithm or specification of the software under test. A
metamorphic relation (MR) is an expected relation of the
software under test which should be valid over a set of
distinct input data and their corresponding output values for
multiple executions. MT checks the validity of MRs by
multiple executions of the target program. MT is conducted
as follows: (1) find out specific properties of the SUT to
construct MRs, (2) generate source test case by some
traditional testing techniques (such as random testing, fault-
based testing, etc), (3) generate follow-up test cases based on
source test cases according to the MRs, (4) execute the test
cases, and (5) verify the outputs of the test cases against
MRs. If the outputs of the source and follow-up test cases
violate their corresponding MR, then a fault is detected.

A simple example to elaborate the MT technique is a
sorting program, which sorts a set of integers in the
ascending order. Suppose S is a set of elements to be sorted.
If the set S is rearranged in reverse order the output of the
sorting program will still remain same. This MR can be
denoted by Sort(S) = Sort (reverse(S)). Suppose S = {35, 15,
32, 25}, Sort(S) will yield {15, 25, 32, 35}.We reverse the
set S to generate the follow-up test case reverse(S) = {25, 32,
15, 35}. If Sort (reverse(S)) ≠ {15, 25, 32, 35}, we can say a
fault is detected.

III. RELATED WORK

Since the proposal of MT, it has been applied to detect
faults in various areas. MT was first used for testing
scientific programs [7]. Distributional properties have been
used in [24] as MRs to test image processing and analysis
applications. MT is used to find errors in a program solving
elliptic partial differential equations with dirichlet boundary
conditions [8]. Isotropic properties of contexts were used as
MRs for testing context-sensitive applications [28] and this
work was enhanced further by using checkpoints [4]. Real
life bugs were detected by MT in some bioinformatics
programs [9].

Some testing methodologies were proposed based on
MT. A combination of MT and symbolic execution namely
semi-proving [11], uses symbolic inputs to indicate whether
a program satisfies a MR (at least for an execution path).
Some approaches have been proposed to automate MT [14,
27]. MT was also integrated with fault-based testing [12].

The major task in MT is to identify proper MRs. Mayer
and Guderlei [25] conducted case studies to check the
effectiveness of different MRs. They found that MRs with
rich semantic properties are typically strong and proposed
that testers should not select MRs that are too close to the
implemented algorithm. Chen et al. [10] conducted case
studies for selection of good MRs where MT is applied on

implementations of shortest path and critical path algorithms.
It was suggested that the theoretical properties are not
sufficient to distinguish good MRs, while MRs that can
make the executions of the software under test more different
are good MRs [10]. It was proposed to understand the
algorithm of the software under test before selecting MRs.

Having said that, no work has been conducted to
systematically evaluate the relationship between the
execution behaviors and the fault-detection effectiveness of
MRs. In this paper, we conduct a case study to examine to
what extent the execution behaviors caused by an MR are
correlated to its fault-detection effectiveness.

IV. CASE STUDY

We have conducted some experiments to investigate the
relationship between the resultant execution behaviors and
the effectiveness of MRs. In our study, execution behaviors
are measured against the code coverage achieved by the
source and corresponding follow-up test cases. The rationale
behind this measurement is that the higher the code coverage
the more diverse the execution behaviors of the test set.

A. Subject programs

Table I: Subject Programs

Program Language LOC

TCAS C 173

KNASPSACK Java 780

In this study, we have selected two programs as the
subject. One program is TCAS [15] which is written in C
language. TCAS is an implementation of onboard aircraft
conflict detection and resolution system. It accepts twelve
input parameters, judges whether there will be a conflict
between the current aircraft and the intruder aircraft based on
the inputs, and finally outputs which kind of manoeuvre the
current aircraft should take. TCAS has three types of
outputs: 0 represents UNRESOLVED that indicates no
manoeuvre, while 1 and 2 represent UPWARD or
DOWNWARD manoeuvres, respectively.

The other subject program is KNAPSACK [19], which is
written in Java language. The KNAPSACK program accepts
three sets of integers. Two n-tuple sets P = {p1, p2, …, pn}
and W = {w1, w2, …, wn} represent the profits and the
weights of n items, respectively; while another m-tuple set C
= {c1, c2, …, cm} contains the capacities of m knapsacks. The
outputs of KNAPSACK are one n-tuple set Y = {y1, y2, …,
yn} and one positive integer TP. yi = j (where i = 1, 2, …, n
and j = 0, 1, …, m) represents that the i

th
 item should be put

into the j
th
 knapsack. If yi = 0, it means that the i

th
 item will

not be selected into any knapsack. TP represents the total
profit of the picked items. The KNAPSACK program
attempts to calculate the optimal solution and thus to
maximize the total profit.

B. Metamorphic Relations (MRs)

We have identified fourteen MRs for TCAS and ten MRs
for KNAPSACK. During the identification of MRs, we have
considered all the input parameters and all the functionalities
of the subject programs. The identified MRs have covered
most portions of the subject programs. Different MRs reflect
different aspects of the subject programs, and thus have
diversified characteristics.

Details of all the identified MRs can be found in
Appendix. The following give two examples of the MRs.

 MR1-TCAS: Given that the intruder aircraft does not
have the TCAS system, if we change the intention of
the intruder aircraft, the outputs of the source and
follow-up test cases should be identical.

 MR1-KNAPSACK: Given the source test case T =
{P, W, C}, its output is O = {Y, TP}. Swap the k

th
 and

the l
th
 items, where 1 ≤ k < l ≤ n, and pk ≠ pl or wk ≠

wl. We can get the follow-up test case T’ = {P’, W’,
C}, where P’ = {p1, p2, …, pl, …, pk, …, pn} and W’ =
{w1, w2, …, wl, …, wk, …, wn}. The output
corresponding to T’ is O’ = {Y’, TP’}. We should
have Y’ = {y1, y2,…, yl, …, yk, …, yn} and TP’ = TP.

C. Fault detection effectiveness of MRs

Mutation analysis has been applied in this study to
evaluate the testing effectiveness. Mutation analysis is a
method where some faults are injected into the source code
of the original program to generate some faulty versions,
which are known as mutants. A set of test cases are normally
executed on the original and its mutant programs. The output
of the original program is compared against a mutant to
detect any dissimilarity between the outputs for the same test
case. If dissimilarity is found, then the mutant is said to be
killed, and thus fault to be detected by the test case. In other
words, the original program under test acts as the oracle to
verify the correctness of the mutants in traditional mutation
analysis. However, in our study, we will investigate the
effectiveness of MRs without the need of oracle. We are
using the MT technique to test the mutants generated from
the subject programs.

We have generated 422 mutants for TCAS using automated
mutant generator tool Milu [16]. We have tested them using
all fourteen MRs identified in the previous section. For each
MR, we used random testing technique to construct 10,000
source test cases, and then generated 10,000 corresponding
follow-up tests cases according to each MR. The
effectiveness of MRs is measured against the number of
detected faults. After the execution of all test cases of all
MRs, the numbers of faults detected by each MR are plotted
in Fig.1. From Fig.1 it can be observed that among all MRs,
MR4 detects the highest number of faults while MR2 detects
only one fault. In addition, MR5, MR6, and MR7 also detect
a great amount of faults comparing to other MRs for this
program.

A total of 100 mutants are generated by automated
mutant generator tool muJava [22] for KNAPSACK. We test

them using all ten MRs identified for this program. The test
case generation process is similar to that for TCAS.

After the execution of all test cases of all MRs the
numbers of faults detected by each MR are plotted in Fig.2.
From Fig.2, we can observe that except MR1 all the MRs
can detect all the faults.

D. Coverage achieved by MRs

Code coverage is used to measure the degree to which
the source code of a program has been executed. In this
study, we are considering the coverage percentages achieved
by the test cases of a MR as the representative of its carried
out execution behaviors.

Fig.1: Number of Faults Detected by Each MR in TCAS

Fig.2: Number of Faults Detecetd by Each MR in KNAPSACK

Coverage data have been collected for both subject
programs using automated coverage data collection tool. We
collected the data for line and branch coverage. Line
coverage is used to determine which lines/statements of the
code are being covered throughout the execution of test
cases. Branch coverage calculates the percentage of the
branches in the code that are covered by test cases.

 For TCAS, linux tools, namely gcov[21] and lcov[20],
are used to collect coverage achieved by all MRs. gcov is a
test coverage program which can be used as a profiling tool
in connection with gcc to test code coverage in programs
written in C. lcov is a graphical interface for gcov. It collects
gcov data for multiple source files.

http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Computer_program
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

 For KNAPSACK, a standalone application CodeCover
[3] is used to collect line and branch coverage. CodeCover is
a free white-box testing tool that measures statement, branch,
loop, MC/DC operator, and sync- coverage.

All 10,000 source test cases and corresponding 10,000

follow up test cases used in the previous section for each

metamorphic relation are executed on the subject program.

The accumulative coverage percentages achieved by these

20,000 test cases are considered as the coverage achieved by

that particular MR for the program. The same procedure has

been applied on the mutant programs to collect the

accumulative coverage data for each MR. Thus we have a

set of coverage percentages achieved by each MR from the

original and mutant programs. For example, KNAPSACK

has 100 mutants, so each MR of this program has a set of

101 coverage percentages. The mode and average value of

coverage set for each MR on all the programs are calculated.

Here mode value refers to the coverage percentage that

occurs most often in the set of all coverage values achieved

by the particular MR. On the other hand, average value

refers to the arithmetic mean of the coverage percentages

achieved by a particular MR. These values are plotted in

Figs. 3 to 6. Fig.3 and Fig.4 display the line coverage and

branch coverage values achieved by fourteen MRs for

TCAS, respectively. Fig.5 and Fig.6 represent the line and

branch coverage data for KNAPSACK, respectively.

Based on these Figures, we made the following
observations on the two subject programs:

1) For program TCAS:

a) Line Coverage: From Fig.3, we can observe that

MR6 and MR7 have low line coverage, MR1 to MR5

have same percentage of line coverage. MR9, MR11

and MR13 have the highest line coverage among all the

MRs.

b) Branch Coverage: From Fig.4, we can see that MR

4 to MR7 have the lowest branch coverage. The other

MRs however maintain similar amount of high branch

coverage. MR13 still maintains the highest branch

coverage as it does in line coverage.

c) MODE vs AVE: Both in line and branch coverage

we can see the MODE and AVE value of the coverage

percentage achieved by the MRs is quite close to each

other.

2) For program KNAPSACK:

a) Line Coverage: From Fig.5, it can be observed that

MR9 has the highest line coverage that is 87.5%. On

the other hand six MRs (that is, MR1 to MR4, MR6,

and MR7), which are in a low stand in the figure in

comparison to other MRs of this program, are bearing

line coverage near 85%.

b) Branch Coverage: Based on Fig.6, we can observe

MR7, MR9 and MR10 show higher branch coverage

than other MRs. MR1, MR2, MR4 and MR 6 achieve

lower branch coverage in comparison to other MRs. In

contrast to line coverage, MR3 achieves high branch

coverage here.

Fig.3: Line Coverage for TCAS

Fig.4: Branch Coverage for TCAS

Fig.5: Line Coverage for KNAPSACK

c) MODE vs AVE: For line coverage we can see that

MR7 has a higher mode value than its average value.

In contrary MR9 has a higher average value than its

corresponding mode value. From Fig.6 it is also visible

that in MR7, MR9 and MR10 the average branch

coverage value is a little bit higher than their

corresponding mode value.

Fig.6: Branch Coverage for KNAPSACK

E. Discussion:Relationship between Code Coverage and

Fault-detection effectiveness

Our identified MRs are associated with a large number of
different coverage percentages as well as various numbers of
detected faults. It is difficult to analyze the relationship
between code coverage and fault-detection effectiveness
directly on these raw data. In the following, we conduct
some statistical analyses.

We have divided the whole range of coverage
percentages (line and branch) in several clusters using
standard histogram function [18]. The histogram function
distributes the elements of the coverage set into equally
spaced clusters and returns the number of elements in each
cluster. The total number of MRs and the total number of
fault detecting MRs in the particular range are calculated.
Here we are considering each MR with its achieved coverage
percentages on different mutant programs. For example,
KNAPSACK has (10*101) set of coverage percentages
achieved by its ten MRs on 100 mutants as well as the
original KNAPSACK program.

We first define “MR Probability” (MRP) as the
probability of a MR to be located in one particular range, as
follows:

programtheforMRsofNoTotal

rangetheinMRsofNo
MRP

.

.


Second, we define “Fault Detection Probability within a

Range” (FDPR), as the probability of a MR in one particular
range to be able to detect faults, as follows:

rangetheinMRsofNoTotal

rangetheinMRsDetectingFaultofNo
FDPR

.

.


Finally, we define “Fault Detection Probability” (FDP) as
the probability of all MRs in one particular range to be able
to detect faults, as follows:

FDPRMRPFDP *

Figs. 7 to 10 illustrate the relationship between the

coverage percentages and FDPs. In these figures, the x-axis
represents the centre points of each cluster of coverage
percentages, while the y-axis denotes the values of FDPs.
For ease of illustration, we also drew an exponential trend
line for the points in each figure.

To analyze to what extent these data are correlated with

each other, we have calculated Pearson correlation

coefficient. Pearson’s correlation coefficient, which is based

on the method of covariance, is a well-known method of

measuring the correlation [18]. Pearson’s correlation

coefficient gives information about the degree of correlation

as well as the direction of the correlation (as shown by the

curves in Figs. 7 to 10). If Pearson’s correlation coefficient

value is near ± 1, then it said to be a perfect correlation. If

Pearson’s correlation coefficient value lies between ± 0.75

and ± 1, then it is said to be a high degree of correlation.

The coefficient values for the points in Figs 7 to 10 are

summarized in the Table II.

Table II: Pearson Correlation Co-efficient Values between Coverage

Percentage and FDPs

Program Line coverage Vs
FDP coefficient

Branch coverage
Vs FDP coefficient

TCAS 0.69 0.56

KNAPSACK 0.98 0.92

Fig.7: Fault Detection Probability of the MRs with Line Coverage for

TCAS

Generally speaking, in both type of coverage criteria (line
and branch) we can observe that FDP normally increases
with the increase in coverage value. However, under some
situations, the rising trend falls in some points at the higher
coverage percentages. This phenomenon implies that some
MRs with high coverage do not have high fault-detection
effectiveness. Detailed of these scenarios along with the
figures of each subject program are explained as follows.

Fig.8: Fault Detection Probability of the MRs with Branch Coverage for

TCAS

Fig.9: Fault Detection Probability of the MRs with Line Coverage for
KNAPSACK

Fig.10: Fault Detection Probability of the MRs with Branch Coverage

for KNAPSACK

For TCAS, rising trend is not so constant. In Fig.7, we
found that the rightmost two points are inconsistent with the
rising trend. Further inspection shows that the numbers of
samples in the ranges represented by these two points differ
1.5 times. This may cause to lower down the value of FDP
for the rightmost point with line coverage 89.52% from the
other point with line coverage 87.90%. Again in Fig.8, for

branch coverage large fluctuation is visible for third and
fourth points from left. Here we found that the number of
sample for range represented by the third point (with branch
coverage 52.25%) is 2.3 times more than that for the fourth
point (with branch coverage 64.74%). This can lower down
the FDP for the range represented by the third point, and thus
affect the whole graph’s flow as well. Data from Table II
show that the correlation coefficients are greater than 0.5 for
both line and branch coverage for TCAS. In general, the data
of coverage and FDP are positively correlated but the
strength of the correlation is not very strong.

For KNAPSACK, from Figs. 9 and 10, we can observe a
good exponential increase for fault detection probability
against both line and branch coverage data. Correlation
coefficients from Table II also state the strong correlation
between the coverage (line and branch) and FDP for
KNAPSACK program.

Based on the experimental results, we can say that the
code coverage attained by MRs is a good indicator for the
fault-detection effectiveness, but not the only one. There may
present several other factors that have an impact on the
effectiveness of MRs. For example, the structure of the
subject program must also be considered. In our study, the
value range of the coverage percentages on TCAS is much
broader than that on KNAPSACK. For TCAS, there can be
some situations where some program segments are covered
by some MRs with low coverage, but not by those with high
coverage. If faults are located in these segments, some MRs
will not able to detect them, even if they have high coverage.
In other words, when the coverage achieved by an MR
disperses in a broad range from a very low value, we cannot
guarantee that high code coverage always brings high fault-
detection effectiveness.

In summary, there exists a correlation between the code
coverage and the fault-detection effectiveness. In other
words, execution behavior caused by the MR can be a very
good estimator of MR’s effectiveness. However, it is also
necessary to consider other factors, such as the program
structure when identifying the MRs.

V. THREATS TO VALIDITY

The threats to validity in our works are discussed as
follows.

The internal validity of our study lies in the
implementation of our experiment. Some errors might exist
when executing the processes of test case generation and test
output verification. However, these processes only involve
some simple programming tasks. Moreover, the source code
has been checked by different individuals.

The main concern about the external validity of our study
exists in the subject programs. We have chosen two subject
programs from two different platforms. TCAS is written in C
which is a procedural language; on the other hand
KNAPSACK is written in object oriented programming
language Java. The purpose of choosing these two programs
is to make this study platform independent. In order to make

this study scale independent, automated mutant generation
tools were used to avoid any bias, which may be introduced
by hand seeded fault. Moreover, the MRs were identified by
the testers, so such an identification process is subjective. In
our study, we asked independent individuals to identify the
MRs without a prior knowledge of the research question of
the paper. This avoided us subconsciously identifying the
MRs that favor our rationale.

The construct validity of this study comes with the
measurement metrics used in the experiment. We have used
two kinds of coverage criteria, namely line and branch
coverage to measure the coverage percentages and thus
reflect the execution behaviors caused by MRs. These two
criteria are very basic code coverage criteria and they have
been popularly used in practice. We measured the testing
effectiveness of MRs based on their fault-detection
effectiveness, which is also widely used in the community.

VI. CONCLUSION

Metamorphic testing technique alleviates the oracle
problem by using a set of metamorphic relations (MRs).
Many MRs can be identified on the basis of the algorithm or
the logic of the software under test. Different MRs have
different effectiveness for the detection of various faults. We
can save both time and resources while testing by exploring
MRs with high effectiveness. Some researchers have argued
that the MRs that can cause different execution behaviors of
the software under test will have a high effectiveness. In this
paper, we conducted a case study to systematically
investigate the relationship between the execution behaviors
and the effectiveness of MRs. The code coverage achieved
by the MRs is considered as the indicator of execution
behavior caused by the MR.

An on-board aircraft conflict detection and resolution

system (TCAS) and a program for solving the multiple

knapsack problem (KNAPSACK) were selected as the

subject programs for our study. In total, fourteen MRs and

ten MRs are identified for these two programs, respectively.

10,000 source test cases are generated randomly and 10,000

follow-up test cases are generated according to each MR.

Mutation analysis was conducted to evaluate the fault

detection effectiveness of different MRs. Coverage data were

collected and analyzed to find out the relationship between

the execution behaviors and effectiveness of MRs.

It was found that MRs with low coverage have low

effectiveness in detecting software faults. On the other hand

a high coverage shows better performance in most cases.

However high coverage does not necessarily imply a high

effectiveness all time. Our experimental results showed that

some MRs with high coverage cannot detect a large number

of faults. Such an observation is also understandable, as an

MR cannot detect a fault as long as the MR does not execute

the statement containing that fault, even if the MR achieves

high coverage. In a word, high coverage indicating diverse

execution behavior is a good estimator of fault effectiveness

for MR, but the high coverage value cannot be a perfect

indicator for the fault detection effectiveness.

It is necessary to further investigate other factors that

may affect the fault-detection effectiveness besides the code

coverage. Another future work is to conduct more studies

with various subject programs. We have used only line and

branch coverage as code coverage criteria in this study.

Other coverage criteria, such as data-flow criteria, and some

inner inspections in the execution of the programs are also

our future projects.

ACKNOWLEDGEMENT

We are thankful to Shengqiong Wang and Ling Chen for

their contributions in the preliminary experiment of this

study, and Peishi Yong for helping in data collection. This

project is supported by the Australian Research Council

Discovery Project (ARC DP0984760).

REFERENCES

[1] Binder, R. V.: Testing Object-Oriented Systems: Models, Patterns,
and Tools. Addison Wesley, Massachusetts (2000).

[2] Briand, L. C., Penta, M. Di, Labiche, Y.: Assessing and improving
state-based class testing: a series of experiments. IEEE Transactions
on Software Engineering, 30 (11): 770–783(2004).

[3] CodeCover: an open source glass- box testing tool,
http://codecover.or g/index.html.

[4] Chan, W. K., Chen, T. Y., Lu, H., Tse, T. H., Yau, S. S.: A
metamorphic approach to integration testing of contextsensitive
middleware-based applications. In Proceedings of the 5th
International Conference on Quality Software (QSIC 2005). 241–249
(2005).

[5] Chan, W. K., Cheung, S. C., Ho, J. C. F., Tse, T. H.: Reference
models and automatic oracles for the testing of mesh simplification
software for graphics rendering. In Proceedings of the 30th Annual
International Computer Software and Applications Conference
(COMPSAC 2006), 429–438 (2006).

[6] Chan, W. K., Cheung, S. C., Ho, J. C. F., Tse, T. H.: PAT: a pattern
classification approach to automatic reference oracles for the testing
of mesh simplification programs. Journal of Systems and Software,
Vol. 82, 422-434 (2008).

[7] Chen, T. Y., Cheung, S. C., Yiu, S. M.: Metamorphic testing: a new
approach for generating next test cases.Technical Report HKUST-
CS98-01, Department of Computer Science, Hong Kong University
of Science and Technology (1998).

[8] Chen, T. Y., Feng, J., Tse, T. H.: Metamorphic testing of programs on
partial differential equations: A case study. In Proceedings of the 26th
IEEE Annual International Computer Software and Applications
Conference (COMPSAC 2002). 327–333 (2002).

[9] Chen, T. Y., Ho., J. W. K., Liu, H., Xie, X.: "An innovative approach
for testing bioinformatics programs using metamorphic testing".
BMC Bioinformatics. 10-24 (2009).

[10] Chen, T. Y., Huang, D. H., Tse, T. H., Zhou, Z. Q.: Case studies on
the selection of useful relations in metamorphic testing. In
Proceedings of the 4th Ibero-American Symposium on Software
Engineering and Knowledge Engineering. 569–583 (2004).

[11] Chen, T. Y., Tse, T. H., Zhou, Z. Q.: Semi-proving: An integrated
method based on global symbolic evaluation and metamorphic
testing. In Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2002). 191–
195 (2002).

[12] Chen, T. Y., Tse, T. H., Zhou, Z. Quan.: "Fault-based testing without
the need of oracles." Information and Software Technology. Vol.
45(1). 1-9 (2003)

[13] Davis, M. D., Weyuker, E. J.: Pseudo-oracles for non-testable
programs. In Proceedings of the ACM '81 Conference. 254-
257(1981).

[14] Gotlieb, A., Botella, B.: Automated metamorphic testing. In
Proceedings of the 27th IEEE Annual International Computer
Software and Applications Conference (COMPSAC2003). 34–40
(2003).

[15] Hutchins, M., Foster, H., Goradia, T., and Ostrand, T.: Experiments
on the effectiveness of dataflow- and controlflow-based test adequacy
criteria. In Proceedings of the 16th International Conference on
Software Engineering (ICSE 1994), 191–200 (1994).

[16] Jia, Y., Harman, M.: A Custimizable, Runtime-Optimized Higher
Order Mutation Testing Tool for the Full C Language. The 3rd Testing
Academia and Industry Conferrence- Practice and Research
Techniqes TAIC PART’08, Windsor, UK, 29th-31st August 2008.

[17] Kaner, C. Center for Software Testing & Research: Examples of Test
Oracle.http://www.testingeducation.org/k04/OracleExamples.htm.

[18] Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, Pt. 1, 3rd
ed. Princeton, NJ: Van Nostrand, pp. 25-26, 1962.

[19] Lau, H. T. 2007, A java library of graph algorithms and optimisation,
Taylor & Francis Group, Boca Raton.

[20] LCOV- the LTP GCOVextension,http://ltp.sourceforge.net/coverage
/lcov.php

[21] Gcov-kernel - a gcov infrastructure for the Linux kernel, http://ltp.so
urce forge .net/coverage/gcov.php

[22] Ma, Y.-S., Offutt, J., Kwon, Y.-R.: MuJava: An Automated Class
Mutation System. Journal of Software Testing, Verification and
Reliability. 15(2):97-133, June 2005.

[23] Manolache, L. I., Kourie, D.G.: Software testing using model
programs. Software: Practice and Experience. Vol. 31, 1211–1236,
(2001).

[24] Mayer, J., Guderlei, R.: Test oracles using statistical methods. In
Lecture Notes in Informatics P-58, 179–189 (2004).

[25] Mayer, J., Guderlei, R.: An Empirical Study on the Selection of Good
Metamorphic Relations. In Proceedings of the 30th Annual
international Computer Software and Applications Conference
(COMPSAC 2006). 475-484 (2006).

[26] Meyer, B.: Eiffel: the Language. Prentice Hall (1992).

[27] Murphy, C., Shen, K., Kaiser, G.: Automatic system testing of
programs without test oracles. In Proceedings of the Eighteenth
international Symposium on Software Testing and Analysis (ISSTA
2009). 189-200 (2009).

[28] Tse, T. H., Yau, S. S., Chan, W. K., Lu, H., Chen, T. Y.: Testing
context-sensitive middleware-based software applications. In
Proceedings of the 28th Annual International Computer Software and
Applications Conference (COMPSAC 2004). 458–466 (2004).

APPENDIX

A. MRs of TCAS

We have identified 14 MRs for TCAS, as described

below. In the following, source and follow-up test cases are

denoted by Ts and Tf, respectively, while the test outputs of

Ts and Tf are denoted by Os and Of , respectively.

 MR1: Given that the intruder aircraft does not have the

TCAS system, if Ts and Tf only differ in whether the

intruder aircraft has an intention or not, we should have

the relation Of = Os.

 MR2: Given that the intruder aircraft does not have the

TCAS system, if Ts and Tf only differ in whether the

report describing the presence of any intruder is valid or

not, we should have the relation Of = Os.

 MR3: Given that the intruder aircraft does not have any

intention, and the report describing the presence of any

intruder is valid, if Ts and Tf only differ in whether the

intruder aircraft has the TCAS system or not, we should

have the relation Of = Os.

The next eight relations (MR4-MR11) have an additional

prerequisite that includes the following conditions.

(1) The TCAS system on the controlled aircraft has a high

confidence, and

(2) The vertical converging speed is not larger than 600, and

(3) The current vertical separation between the two aircrafts

at the closest point will be larger than 600 if the controlled

aircraft maintains its trajectory, and

(4) (i) The intruder aircraft does not have the TCAS system,

 or

 (ii.a) the intruder aircraft does not have any intention,

 and
 (ii.b) the report describing the presence of any intruder is

valid.

 MR4: Given that the current altitude of the controlled

aircraft is smaller than that of the intruder aircraft, and the

vertical separation between two aircrafts will be smaller

than the threshold value if the controlled aircraft initiates

a downward maneuver, if Ts and Tf differ in the relation

between the calculated inhibit biased climb and the

vertical separation between two aircrafts where the

controlled aircraft initiates a downward maneuver, we

should have the relation Of  Os.

 MR5: Given that the current altitude of the controlled

aircraft is not smaller than that of the intruder aircraft, and

the vertical separation between two aircrafts will not be

smaller than the threshold value if the controlled aircraft

initiates an upward maneuver, if Ts and Tf differ in the

relation between the calculated inhibit biased climb and

the vertical separation between two aircrafts where the

controlled aircraft initiates a downward maneuver, we

should have the relation Of  Os.

 MR6: Given that the vertical separation between two

aircrafts will be no larger than the calculated inhibit

biased climb and smaller than the threshold value if the

controlled aircraft initiates an downward maneuver, if Ts

and Tf differ in the relation between the current altitudes

of the two aircrafts, we should have the relation Of  Os.

 MR7: Given that the vertical separation between two

aircrafts will not be smaller than the calculated inhibit

biased climb if the controlled aircraft initiates a

downward maneuver and not larger than the threshold

value if the controlled aircraft initiates an upward

http://www.ise.gmu.edu/~offutt/rsrch/abstracts/mujava.html
http://www.ise.gmu.edu/~offutt/rsrch/abstracts/mujava.html

maneuver, if Ts and Tf differ in the relation between the

current altitudes of the two aircrafts, we should have the

relation Of  Os.

 MR8: Given that the vertical separation between two

aircrafts will be smaller than the threshold value if the

controlled aircraft initiates a downward maneuver, if Ts

and Tf differ in the relation between the calculated inhibit

biased climb and the vertical separation between two

aircrafts where the controlled aircraft initiates a

downward maneuver, we should have the relation: if Os =

0, Of ∈ {0, 1, 2}; otherwise, Of  Os.

 MR9: Given that the vertical separation between two

aircrafts will not be smaller than the threshold value if the

controlled aircraft initiates an upward maneuver, if Ts and

Tf differ in the relation between the calculated inhibit

biased climb and the vertical separation between two

aircrafts where the controlled aircraft initiates a

downward maneuver, we should have the relation: if Os =

0, Of ∈ {0, 1, 2}; otherwise, Of  Os.

 MR10: Given that the vertical separation between two

aircrafts will be smaller than the threshold value if the

controlled aircraft initiates a downward maneuver, if Ts

and Tf differ in the relation between the current altitudes

of the two aircrafts, we should have the relation: if Os = 0,

Of € {0, 1, 2}; otherwise, Of  Os.

 MR11: Given that the vertical separation between two

aircrafts will not be smaller than the threshold value if the

controlled aircraft initiates an upward maneuver, if Ts and

Tf differ in the relation between the current altitudes of the

two aircrafts, we should have the relation: if Os = 0, Of ∈

{0, 1, 2}; otherwise, Of  Os.

 MR12: Given that other parameters can be randomly

changed, if Ts and Tf differ in whether the TCAS system

on the controlled aircraft has a high confidence or not, we

should have the relation: if Os = 0, Of ∈ {0, 1, 2};

otherwise, Of  Os.

 MR13: Given that other parameters can be randomly

changed, if Ts and Tf differ in whether the vertical

converging speed is larger than 600 or not, we should

have the relation: if Os = 0, Of ∈ {0, 1, 2}; otherwise, Of

 Os.

 MR14: Given that other parameters can be randomly

changed, if Ts and Tf differ in whether the current vertical

separation between the two aircrafts at the closest point

will be larger than 600 or not where the controlled

aircraft maintains its trajectory, we should have the

relation: if Os = 0, Of ∈ {0, 1, 2}; otherwise, Of  Os.

B. MRs of KNAPSACK

Ten MRs were identified for KNAPSACK as follows. In

the following, the source test case is denoted as T = {P, W,

C}, where P = {p1, p2, …, pn}, W = {w1, w2, …, wn}, and C

= {c1, c2, …, cm}. The output of the source test case is

denoted as O = {Y, TP}, where Y = {y1, y2, …, yn}, and TP is

a positive integer representing the total profit.

 MR1: Swap the k
th
 and the l

th
 items, where 1 ≤ k < l ≤ n,

and pk ≠ pl or wk ≠ wl. We can get the follow-up test case
T’ = {P’, W’, C}, where P’ = {p1, p2, …, pl, …, pk, …, pn}
and W’ = {w1, w2, …, wl, …, wk, …, wn}. The output
corresponding to T’ is O’ = {Y’, TP’}. We should have Y’
= {y1, y2, …, yl, …, yk, …, yn} and TP’ = TP.

 MR2: Select the k
th
 item where yk = 1 (that is, the k

th
 item

is put into the 1
st
 knapsack), and then increase its profit by

a positive integer c, that is, p’k= pk + c. We can get the
follow-up test case T’ = {P’, W, C}, where P’ = {p1, p2,
…, p’k, …, pn}. The output corresponding to T’ is O’ =
{Y’, TP’}, where Y’ = {y’1, y’2, …, y’n}. We should have
yj • y’j = 0 iff yj = y’j = 0, and TP’ = TP + c.

 MR3: Select the k
th

 item where yk = 0 (that is, the k
th

 item

is not put into any knapsack), and then increase its weight

by a positive integer c, that is, w’k = wk + c. We can get

the follow-up test case T’ = {P, W’, C}, where W’ = {w1,

w2,…, w’k, …, wn}. The output corresponding to T’ is O’

= {Y’, TP’}, where Y’ = {y’1, y’2, …, y’n}. We should

have yj • y’j = 0 iff yj = y’j = 0, and TP’ = TP.

 MR4: Select the k
th
 item where yk = 0 (that is, the k

th
 item

is not put into any knapsack), and then decrease its profit
by a positive integer c, that is, p’k = pk – c. We can get the
follow-up test case T’ = {P’, W, C} where P’ = {p1, p2,…,
p’k, …, pn}. The output corresponding to T’ is O’ = {Y’,
TP’}, where Y’ = {y’1, y’2, …, y’n}. We should have yj • y’j
= 0 iff yj = y’j = 0, and TP’ = TP.

 MR5: Change the capacity of the 1
st
 knapsack to a new

value c’1, where c’1 is equal to the summary of the

weights of all items put into the 1
st
 knapsack. We can get

the follow-up test case T’ = {P, W, C’} where C’ = {c’1,

c2, …, cm}. The output corresponding to T’ is O’ = {Y’,

TP’}. We should have Y’ = Y and TP’ = TP.

 MR6: Add a new item at the position n + 1, where pn+1 =

min (pj) and wn+1 = max (wj) for all j such that yj ≠ 0. We

get the follow-up test case T’ = {P’, W’, C}, where P’ =

{p1, p2, …, pn, pn+1}and W’ = {w1, w2, …, wn, wn+1}.The

output corresponding to T’ is O’ = {Y’, TP’}. We should

have Y’ = {y1, y2,…, yn, 0}and TP’ = TP .

 MR7: Select the k
th
 item where yk = 0 (that is, the k

th
 item

is not put into any knapsack), and then delete it. We can
get the follow-up test case T’ = {P’, W’, C}, where P’ =
{p1, p2, …, pk-1, pk+1, …, pn}and W’ = {w1, w2, …, wk-1,
wk+1, …, wn}. The output corresponding to T’ is O’ = {Y’,
TP’}, where Y’ = {y’1, y’2, …, y’k-1, y’k+1, …, y’n}. We
should have yj • y’j = 0 iff yj = y’j = 0 (j ≠ k), and TP’ = TP.

 MR8: Select the k
th

 item where yk = 1 (that is, the k
th

 item

is put into the 1
st
 knapsack), delete it, and then decrease

the capacity of the 1
st
 knapsack by wk, that is, c’1 = c1 –

wk. We can get the follow-up test case T’ = {P’, W’, C’},

where P’ = {p1, p2, …, pk-1, pk+1, …, pn},W’ = {w1, w2,

…, wk-1, wk+1, …, wn}and C’ = {c1 – wk, c2, …, cm}. The

output corresponding to T’ is O’ = {Y’, TP’}, where Y’ =

{y’1, y’2, …, y’k-1, y’k+1, …, y’n}. We should have yj • y’j =

0 iff yj = y’j = 0 (j ≠ k), and TP’ = TP-pk.

 MR9: Select the k
th
 and l

th
 items where 1 ≤ k < l ≤ n and yk

= yl = i ≠ 0, delete the l
th

 item, and then create a new k
th
,

where p’k = pk + pl and w’k = wk + wl. We can get the
follow-up test case T’ = {P’, W’, C}, where P’ = {p1, p2,
…, pk+pl, …, pl-1, pl+1,…, pn} and W’ = {w1, w2, …,
wk+wl, …, wl-1, wl+1,…, wn}. The output corresponding to
T’ is O’ = {Y’, TP’}. We should have TP’ = TP.

 MR10: Delete all items put into the 1
st
 knapsack and

delete the 1
st
 knapsack. Given that  items were in the 1

st

knapsack and their total profit is, we can get the follow-
up test case T’ = {P’, W’, C’}, where P’ = {p’1, p’2, …,

p’n-}, W’ = {w’1, w’2, …, w’n-}, and C’ = {c2, c3, …, cm}.
The output corresponding to T’ is O’ = {Y’, TP’}. We

should have TP’=TP –  .

