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ABSTRACT

Multiple-channel detection is considered in the context of
a sensor network where raw data are shared only by nodes
that have a common edge in the network graph. Estab-
lished multiple-channel detectors, such as those based on
generalized coherence or multiple coherence, use pairwise
measurements from every pair of sensors in the network and
are thus directly applicable only to networks whose graphs
are completely connected. An approach introduced here uses
a maximum-entropy technique to formulate surrogate values
for missing measurements corresponding to pairs of nodes
that do not share an edge in the network graph. The broader
potential merit of maximum-entropy baselines in quantifying
the value of information in sensor network applications is
also noted.

Index Terms— Sensor networks, Multiple-channel de-
tection, Generalized coherence, Maximum entropy, Value of
information

1. INTRODUCTION

Established methods in coherent multiple-channel signal de-
tection typically assume that data from all sensors is collected
at a single location for processing. In particular, this view is
implicit in the generalized coherence (GC) approach intro-
duced in [?] and elaborated and extended in numerous other
works (e.g., [?, ?, ?, ?, ?]). In signal processing for sensor
networks, it is frequently desirable to process data locally at
(or in local neighborhoods of) the nodes and reduce, or even
eliminate, the need for aggregation of data at a “fusion cen-
ter.”

In GC-based detection and related methods, such as those
using multiple coherence [?], processing entails computing
inner products (correlations) between segments of time series
data collected at each pair of nodes in the network. When all
data are collected at a fusion center, this is not an issue. This
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paper proposes an approach for implementing a GC detec-
tor that incorporates a high degree of local data reduction by
using only inner products of time series segments collected at
pairs of nodes that are adjacent in the topology of the network.
This is equivalent to traditional GC detection only when the
network is fully connected. Otherwise, the detector must op-
erate without using the inner products associated with pairs of
nodes that do not share an edge in the network graph.

The approach introduced here replaces each missing inner
product datum by a surrogate value obtained via a maximum
entropy method, and then proceeds to apply a standard GC
detector as though all data were available. The paper begins
in Section 2 by summarizing the basics of GC detection, and
proceeds in Section 3 to describe the maximum entropy pro-
cedure that allows surrogation for missing data in networks
that are not fully connected. Section 4 shows simulation re-
sults for small networks that illustrate the performance of the
approach in such settings. The paper concludes in Section 5
with a discussion of further work needed to make this tech-
nique viable for larger sensor networks and also how this ap-
proach suggests a point of view about quantifying the value
of information in network signal processing.

2. THE GENERALIZED COHERENCE DETECTOR

The GC estimate is an established statistic for detection of a
common signal on several noisy channels [?]. Its properties
and applications have been well documented, and it continues
to be extended and studied in various contexts [?, ?]. A crucial
drawback of GC-based methods in the sensor network setting
is that standard implementations require all the raw sensor
data to be collected in one place (i.e., a “fusion center”) to
perform the processing.

Given M measurements X1, . . . , XM at the nodes of
a network with each Xm ∈ CN , define normalized mea-
surement vectors Um = Xm/||Xm|| for m = 1, . . . ,M .
The GC estimate obtained from these measurements is
γ̂2(X1, . . . , XM ) = 1 − detG(U1, . . . , UM ), where the

ar
X

iv
:1

20
2.

64
20

v1
  [

st
at

.A
P]

  2
9 

Fe
b 

20
12



matrix G(U1, . . . , UM ) is the M ×M Gram matrix
1 〈U1, U2〉 · · · 〈U1, UM 〉

〈U2, U1〉 1 · · · 〈U2, UM 〉
...

. . .
...

〈UM , U1〉 · · · 〈UM , UM−1〉 1

 (1)

formed from the normalized data vectors. In typical multiple-
channel detection applications, the value of γ̂2 is compared to
a threshold to decide between signal-present (H1) and signal-
absent (H0) hypotheses.

In a completely connected network, such as those de-
picted in Figures 1(a) and 2(a), all of the inner products
comprising the Gram matrix may be computed locally; i.e.,
by exchange of data between nodes that share an edge in
the network graph. This enables dramatic reduction in the
amount of data necessary to communicate to the fusion cen-
ter in order to implement a GC detector for the network.
When the network graph is not complete, however, inner
products of data vectors corresponding to nodes that do not
share an edge cannot be computed locally and transmission of
these scalar values corresponding to each edge in the network
graph is not sufficient to enable the fusion center to compute
the GC estimate.

N2 N3

N1

(b)(a)

N2 N3

N1

Fig. 1. (a) A completely connected three-node network. (b)
A three-node network with no edge between nodes one and
two. Every three-node network with two edges has the same
topology (i.e., linear).

Considering the three-node case depicted in Figure 1(b),
note that the value of 〈U1, U2〉 is generally not determined
by the values of 〈U1, U3〉 and 〈U2, U3〉. But it is not inde-
pendent of these values either; e.g., G must be non-negative
definite. In the approach described in Sec. 3, the values of the
“missing” inner products (i.e., those corresponding to pairs of
nodes that do not share an edge) will be replaced by surrogate
values obtained via a maximum entropy technique, thereby
enabling a GC test to be performed despite the missing data.
Sec. 4 considers the detection performance of GC detectors
implemented in this way.

3. MAXIMUM-ENTROPY SURROGATION

Assume that there is a complex random variable xm associ-
ated with each network node m, modeling data samples col-
lected at that node. Collected samples at node m are hence

realizations of xm and can be used to estimated the mean and
variance of xm in standard ways [?]. The ability to com-
municate between nodes m and j linked by an edge permits
estimation of the covariance cov(xm,xj) by similar meth-
ods. For a complete graph (i.e., one in which each pair of
nodes shares an edge), it is thus possible to estimate the full
M × M covariance matrix C of the variables x1, . . . ,xM .
Indeed, assuming the Xm have mean zero, if N independent
samples of xm are collected at node m for each m and are
assimilated into complex N -vectors X1, . . . ,XM of sample
values, then the standard estimator Ĉ of C is proportional to
the Gram matrix G(X1, . . . ,XM ). The GC detector can thus
be viewed as a test on the estimated covariance matrix of the
variates x1, . . . ,xM . If each xm is further assumed to be nor-
malized to unit variance, using the true variance in place of an
estimate on the main diagonal gives a test matrix of the form
(1).

The maximum-entropy method [?] holds that missing val-
ues in C should be surrogated in such a way as to introduce
no new assumptions about the nature of the random variables
or of the network. The joint distribution of the random vari-
ables x1, . . . ,xM that best describes current knowledge (i.e.,
the covariance estimates for all pairs of directly connected
nodes) with no further assumptions is the maximum entropy
distribution constrained by the available data.

The problem of finding the maximum-entropy completion
of a covariance matrix has been studied in prior literature (see,
e.g., [?] and references cited therein). The maximum-entropy
probability density p(x1, . . . , xM ) consistent with the esti-
mated covariances must be of the form

1

Z
exp

−(
M∑

m=1

λmx
∗
m +

1

2

∑
(m,j)∈E

µm,jxmxj

) (2)

In this expression λm for m = 1, . . . ,M and µm,j = µj,m

for values of (m, j) corresponding to the edge set E of the
network graph are Lagrange parameters in the constrained
optimization problem that arises in maximization of entropy
subject to the constraints imposed by knowledge of the co-
variance values estimated from available measurements. For
complex random variables, this will be a complex normal den-
sity and hence completely specified by its mean and covari-
ance matrix.

It follows from (2), and is also noted in past literature
[?, Sec. 2.2], that the covariance matrix A of this maximum-
entropy distribution will have the property that its inverse will
has zeros in positions corresponding to the missing covari-
ance values. This observation gives a direct means for calcu-
lating the needed surrogate values in small networks.

Example: Consider the three node network depicted in
Fig. 1(b). Writing the estimated covariance matrix as

Ĉ =

 1 s â

s∗ 1 b̂

â∗ b̂∗ 1





the value of the covariance estimate â is assumed to be ob-
tained by exchange of data between nodes 1 and 3 and the
value b̂ is obtained by exchange of data between nodes 2 and
3. A maximum-entropy surrogate value for s is obtained by
noting

Ĉ−1 =
1

D

 1− |b̂|2 âb̂∗ − s sb̂− â
â∗b̂− s∗ 1− |â|2 s∗â− b̂
s∗b̂∗ − â∗ sâ∗ − b̂∗ 1− |s|2


where D = det Ĉ. The 1-2 entry of Ĉ−1 will be zero
when s assumes the desired value. Hence, s = âb̂∗ and the
maximum-entropy completion of Ĉ is

Ĉ =

 1 âb̂∗ â

â∗b̂ 1 b̂

â∗ b̂∗ 1


This direct calculation method was used to find surro-

gate values in the small network examples discussed above
and evaluated in Sec. 4. In general, a necessary and suf-
ficient condition for the existence of the maximum entropy
distribution as a (normalizable) probability distribution is Ĉ
is invertible as a symbolic matrix. Finding k surrogate val-
ues in this way requires solving k equations in k unknowns,
which becomes prohibitively cumbersome for even small net-
works (e.g., M > 5). Fortunately, maximum-entropy covari-
ance matrix completion problems [?] fall into a class of de-
terminant maximization problems (entropy in this setting is
log det Ĉ) that can be efficiently solved by convex program-
ming techniques [?, ?].

The GC statistic in invariant to re-indexing of theM chan-
nels [?]. This is in contrast to the multiple coherence statistic
[?], which distinguishes a reference channel. Consequently,
networks that are topologically isomorphic will have identi-
cal detection performance characteristics under the approach
introduced here. For example, for a network having four
nodes and five edges, it suffices to analyze the case depicted in
Fig. 2(b) since all other cases are topologically equivalent to
this one (and similarly for allM -node networks whose graphs
are one edge short of being complete). Fig. 3 shows that there
are topologically distinct cases of four-node networks with
four edges. In general, it will be necessary to analyze the per-
formance of each such equivalence class separately, and it is
anticipated that different topologies will provide distinct de-
tection performance characteristics. While further study of
this aspect of the approach is beyond the scope of this paper,
it is expected that comparison of network topologies based on
the detection performance they support when completed via
a maximum-entropy method will provide insight into sensor
network design and optimization.

4. RESULTS FOR SMALL NETWORKS OF SENSORS

Figure 4 shows receiver operating characteristic (ROC)
curves for detection of a white complex Gaussian signal
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Fig. 2. (a) A completely connected four-node network. (b)
A four-node network with no edge between nodes one and
two. Every four-node network with five edges has the same
topology.
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Fig. 3. Two four-node networks with no edge between nodes
one and two. (a) This network also lacks a 2-3 edge. (b) This
one lacks edge 3-4 as well as 1-2. Every connected four-node
network with four edges has one of these two topologies.

vector in white complex Gaussian noise in a 4-node sensor
network. The vectors are of length N=64. The signal-to-noise
ratio is identical at each sensor, with the top set of curves at
-3 dB, the center set at -4.5 dB, and the bottom set at -6 dB.
Within each set, the top curve is for the complete network
(Figure 2(a)), the middle curve for the network with no link
between nodes 1 and 2 (Figure 2(b)), and the bottom curve
for the network with no links between nodes 1 and 2 or nodes
2 and 3 (Figure 3(a)).

These curves indicate that the equal-channel SNR detec-
tion performance lost when network connectivity is reduced
by the removal of one or two links is modest – much less
significant than the detection performance would be dimin-
ished by 1 dB of SNR at each node. While this experimental
finding with such a small network is only relevant to a small
application regime, it indicates that further study with larger
networks is warranted.

5. DISCUSSION AND CONCLUSIONS

A maximum entropy method to enable the implementation of
generalized coherence detectors on incompletely connected
sensor networks without aggregation of raw data at a fusion
center has been described and demonstrated with small net-
works. Performance degradation in the cases studied was
modest, though more compete evaluation of the method with
larger and sparser networks, unequal signal-to-noise ratios at
the sensor nodes, and signals of rank greater than one is es-
sential to establish a comprehensive understanding of this ap-
proach in detection of signals spread across a sensor network.
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Fig. 4. ROC curves for detection of a 64-component white
complex Gaussian signal vector in white complex Gaussian
noise in a 4-node sensor network with identical SNR at each
sensor. The top set of curves is at -3 dB, the center set at -4.5
dB, and the bottom set at -6 dB. Within each set, the top curve
is for the complete network (Figure 2(a)), the middle curve for
the network with no link between nodes 1 and 2 (Figure 2(b)),
and the bottom curve for the network with no links between
nodes 1 and 2 or nodes 2 and 3 (Figure 3(a)).

It is anticipated that known methods for covariance matrix
completion by optimization algorithms will be essential for
applying the approach to sensor networks of even moderate
size (e.g., more than ten nodes) because direct calculation of
maximum-entropy surrogate values becomes formidable even
for a small number of nodes.

It is noteworthy that the use of maximum entropy base-
lines in this application provides a mechanism for quantifying
the value of information sharing within the sensor network;
i.e., in this setting, a link is precisely as valuable as the per-
formance gain it enables over the use of a maximum entropy
surrogate in place of its datum.
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